
PH253: The Variational Method

Patrick R. LeClair

April 1, 2020



Contents

1 The Variational Method 1
1.1 Hydrogen-like atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Gaussian approximation for Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Another approximation for Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Simple Harmonic Oscillator Approximation . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Anharmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Anharmonic oscillator, redux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

ii



1
The Variational Method

We have solved the Schrödinger equation for the hydrogen atom exactly, in principle. However,
most problems we will deal with cannot be solved exactly, and we must resort to approximations.
One method used to find the approximate ground state of a system (its lowest energy state) is the
variational method. Essentially, we come up with a decent guess for what the ground state wave
function should look like, leaving a few free parameters. The ground state of a system by definition
has the lowest possible energy. By minimizing the energy of the system with our trial wavefunction
with respect to variations in the free parameters, we can find the form of the trial wavefunction
that is closest to the true ground state. Of course, the quality of the optimized trial wavefunction
depends on how good our guess was in the first place. First, we will outline the basis of the varia-
tional method, and then discuss a few examples of how to make clever choices.

Take the time-independent Schrödinger equation as our starting point:

−
 h2

2m
∇2ψ+ Vψ ≡ Hψ = Eψ (1.1)

Here we have defined an operator H≡−
 h2

2m∇
2 + V. When H operates on the wave function, Hψ, it

returns the energy of the state ψ. This operator is called the hamiltonian of the system. For now,
however, it is mainly a matter of simplifying notation.

Now take our Schrödinger equation, Hψ = Eψ, and multiply both sides by ψ∗ (or just ψ if ψ is
purely real). Then integrate over all space (dV), and you have∫

ψ∗HψdV =

∫
ψ∗EψdV = E

∫
|ψ|2 dV (1.2)

If the ψ we choose are actually solutions for this particular H, the ratio

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

(1.3)

will equal the associated energy E. The problem is, of course, that we don’t know what ψ is for
the ground state, so these mathematical manipulations have been of little use. However, one thing
we can rely on is that the true ground state wave function will minimize E. The best choice for
ψ if we are not sure it is an exact solution, therefore, will be the one that gives the lowest value
of E[ψ]. The general approach, therefore, is to assume a reasonable form for ψ that conforms to
the basic symmetries of the problem, but with several adjustable parameters c1, c2, · · · , and adjust
these parameters to minimize E[ψ]. Using experimental constraints, such as the ionization energy
or optical spectra, we can see how close our guess was. Somewhat more formally, the variational
theorem states that for any trial wave function ψ, E[ψ]>E, where E is the true ground state energy.

1



2 1.1 Hydrogen-like atom

That is, any choice of ψ we make that isn’t a true ground state solution will give us back an energy
higher than the ground state energy, but for a clever choice we can get arbitrarily close. .

1.1 Hydrogen-like atom

For a hydrogen-like ion, with Z protons and a single electron, the energy operator may be written
as

H = −
 h2

2m
∇2 −

Zke2

r
(1.4)

The simplest thing to do is presume that the wave function of such an ion in its lowest energy state
is functionally the same as the hydrogen atom. This seems reasonable given that the symmetry of
the problem is identical, the only real change is the strength of the nuclear attraction. It seems
entirely likely that the only important change will be the characteristic distance involved - rather
than being ao, the Bohr radius, we should expect it is a decreasing function of Z. No problem:
we’ll let the length scale be an adjustable constant, and add a second one to handle normalization,
i.e.:

ψ = c1e
−c2r (1.5)

Here c1 and c2 are adjustable constants, with 1/c2 representing the characteristic length scale and
c1 handling normalization. How can we use the variational principle and the normalization con-
dition to find the values of c1 and c2 that give the minimum energy for this trial wave function?
Given the optimum values of c1 and c2, we can check compare our answer to the ionization energy
of H and the second ionization energy of He (Z=2), −54.5 eV. Note that since the trial function is
spherically symmetric, dV=4πr2 dr and ∇2ψ= 1

r2
∂
∂r

(
r2 ∂ψ∂r

)
.

The solution is somewhat lengthy, so it is best to tackle it systematically, step by step. First, let us
calculate ∇2ψ:

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
=

1

r2
∂

∂r

(
−r2c1c2e

−c2r
)
=

1

r2

(
−2rc1c2e

−c2r + r2c1c
2
2e

−c2r
)

(1.6)

= c1c2e
−c2r

(
c2 −

2

r

)
(1.7)

With that in hand, we can calculate Hψ, the energy operator H operating on the wave function ψ:

Hψ = −
 h2

2m
∇2ψ−

Zke2

r
ψ = −

 h2

2m
c1c2e

−c2r

(
c2 −

2

r

)
−
kZe2

r
c1e

−c2r (1.8)

Finally, we can calculate ψHψ by multiplying through by the wavefunction:
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1.1 Hydrogen-like atom 3

ψHψ = −
 h2

2m
c21c2e

−2c2r

(
c2 −

2

r

)
−
kZe2

r
c21e

−2c2r (1.9)

Next, we must integrate this over all space to find the numerator in our energy expression. Since
the wavefunction is spherically symmetric, we may use dV=4πr2 and let r run from 0 to ∞:

∫
ψHψdV = −

2π h2

m
c21

∞∫
0

e−2c2rr2
(
c22 −

2c2
r

)
dr− 4πZke2c21

∞∫
0

re−2c2r dr (1.10)

= −
2π h2

m
c21

(
c22

2

(2c2)
3 −

2c2

(2c2)
2

)
− Zke2c21

π

(2c2)
2 =

π h2c21
2mc2

−
Zke2πc21
c22

(1.11)

The denominator of our energy expression is just a reflection of the normalization condition:

∫
ψ2 dV =

∞∫
0

4πr2c21e
−2c2r dr =

πc21
c32

(1.12)

Combining,

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

=
c32
πc21

(
π h2c21
2mc2

−
Zke2πc21
c22

)
=

 h2c22
2m

− Zke2c2 (1.13)

The best we can do with this wave function is to minimize the energy with respect to our parameters
c1 and c2. The energy does not explicitly depend on c1 – sensible, since it is only a normalization
constant – so we can minimize with respect to c2 to find the minimum ground state energy with
this trial wave function:

∂E

∂c2
=

 h2c2
m

− Zke2 = 0 =⇒ c2 =
Zke2m

 h2
=
Z

ao
(1.14)

Here ao is the Bohr radius. This is a sensible result: the characteristic length scale is ao/Z,
meaning the larger that Z is, the stronger the attraction of the electron to the nucleus, and the
more short-range the wave function becomes. We can find c1 from normalization, which gives

c1 =

√
Z3

πa3o
(1.15)

The best-case trial wavefunction is thus

ψ =

√
Z3

πa3o
e−Zr/ao (1.16)

Given our value of c2, we may find the energy of the ground state:

PH253: Modern Physics P. LeClair



4 1.2 Gaussian approximation for Hydrogen

E =
 h2c22
2m

− Zke2c2 =
 h2Z2

2ma2o
−
kZ2e2

ao
=

− h2Z2

2ma2o
(1.17)

Here the last relationship relies on the definition of the Bohr radius, ao =  h/kmc2. For H, with
Z=1, we find E≈−13.6 eV, which we know to be the correct answer. For He+, with Z=2, we find
E≈−54 eV, in very good agreement with experiments and exact calculations. We should not be too
surprised, since our ‘trial wavefunction’ was exactly the correct one. The next problem shows how
close one can get if the trial wavefunction is not chosen quite as cleverly.

1.2 Gaussian approximation for Hydrogen

Pretend we didn’t know the ground state wave function for hydrogen, but attempted a trial solution
of

ψ = c1e
−c2r

2
(1.18)

How far off is the ground state energy using this trial wavefunction? We follow the same procedure
we did for the previous question, and calculate step by step. First, ∇2ψ:

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
= 4c1c

2
2r

2e−c2r
2
− 6c1c2e

−c2r
2

(1.19)

Using the energy operator from the previous problem with Z=1 for hydrogen,

Hψ = −
 h2

2m

(
4c1c

2
2r

2e−c2r
2
− 6c1c2e

−c2r
2
)
−
ke2

r
c1e

−c2r
2

(1.20)

Multiplying through by the wave function,

ψHψ = −
 h2

2m
c21e

−2c2r
2 (

4c22r
2 − 6c2

)
−
ke2

r
c21e

−2c2r
2

(1.21)

Integrating over all space (noting again that the wave function is spherically symmetric),

∫
ψHψdV =

∞∫
0

−
4π h2c21
m

(
2c22r− 3c2r

2
)
e−2c2r

2
− 4πke2c21re

−2c2r
2
dr (1.22)

= −
4π h2c21
m

(
2c22

3
√
π

8 (2c2)
3/2

− 3c2

√
π

4

1

(2c2)
3/2

)
−
πke2c21
c2

(1.23)

=
3π3/2 h2c21
25/2m

√
c2

−
πke2c21
c2

(1.24)

The denominator in our energy expression gives

P. LeClair PH253: Modern Physics



1.3 Another approximation for Hydrogen 5

∫
ψ2 dV =

∞∫
0

4πr2c21e
−2c2r

2
dr =

√
π

4

4πc21

(2c2)
3/2

=
c21π

3/2

23/2c
3/2
2

(1.25)

Combining, we have our energy:

E[ψ] =
23/2c

3/2
2

c21π
3/2

(
3π3/2 h2c21
25/2m

√
c2

−
πke2c21
c2

)
=

3 h2c2
2m

−
23/2ke2

√
c2√

π
(1.26)

Again, the energy does not depend on the normalization constant c1. Minimizing with respect to
c2,

∂E

∂c2
=

3 h2

2m
−

√
2

π

ke2
√
c2

= 0 =⇒
√
c2 =

2ke2m

3 h2

√
2

π
(1.27)

Plugging this back into our energy expression,

E =
3 h2

2m

4k2e4m

9 h4
−

3 h2ke2

2ke2m
=

4k2e4m

3π h2
−

8k2e4m

3π h2
= −

8

3π

(
k2e4m

2 h2

)
=

8

3π
E1 (1.28)

Recognizing that E1= k2e4m
2 h2 is the correct n=1 ground state energy for Hydrogen, our trial wave

function is just a factor of 8/3π off (or about 15%) at E≈−11.5 eV

1.3 Another approximation for Hydrogen

Pretend again we don’t know the ground state wave function for hydrogen, but decided to guess
the following form for ψ:

ψ(r) =
β

α2 + r2
(1.29)

This is a Lorentzian function, and it has the right symmetries - radially symmetric, peaked about
the origin, and strongly decaying as r increases. Plausible. Let us use the variational principle
and normalization to find the values of α and β that give the minimum energy for this trial wave
function, and compare this result to the correct ground state energy of hydrogen.

Let there be no confusion: this variational stuff is messy. Highly effective, but messy. Let’s get
started. First, let us compute Hψ.
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6 1.3 Another approximation for Hydrogen

Hψ = −
 h2

2m

1

r2
∂

∂r

(
r2
∂

∂r
ψ

)
−
ke2

r
ψ = −

 h2

2mr2
∂

∂r

(
r2
∂

∂r

β

α2 + r2

)
−
ke2

r

β

α2 + r2
(1.30)

= −
 h2

2mr2
∂

∂r

(
r2

−2rβ

(α2 + r2)2

)
−
ke2

r

β

α2 + r2
= −

 h2

2mr2
∂

∂r

(
−2r3β

(α2 + r2)2

)
−
ke2

r

β

α2 + r2
(1.31)

= −
 h2

2mr2

(
8r4β

(α2 + r2)3
−

6r2β

(α2 + r2)2

)
−
ke2

r

β

α2 + r2
(1.32)

= −
 h2

2m

(
8r2β− 6βα2 − 6β2

(α2 + r2)3

)
−
ke2

r

β

α2 + r2
= −

 h2

2m

(
2r2β− 6βα2

(α2 + r2)3

)
−
ke2

r

β

α2 + r2
(1.33)

Yes, that was just terrible. Now we multiply through by ψ again to get ψHψ. Since ψ(x) is real
for all x, we need not worry about complex conjugates and such.

ψHψ = −
 h2β

2m

(
2βr2 − 6βα2

(α2 + r2)4

)
−

ke2β2

r (α2 + r2)2
(1.34)

Now we integrate that over all space, using the volume element 4πr2 dr with r ranging from 0

to ∞. In this process, we either remember some obscure integrals or use Wolfram Alpha (http:
//wolframalpha.com).

∫
ψHψ =

∞∫
0

−
4π h2β2

2m

(
2r4 − 6α2r2

(α2 + r2)4

)
−

4πke2β2r

(α2 + r2)2
(1.35)

= −
4π h2β2

m

(
2
π

32α3
− 6α2 π

32α5

)
− 4πke2β2 1

2α2
(1.36)

= −
4π2 h2β2

2m

(
1

16α2
−

3

16α2

)
−

2πke2β2

α2
=
π2 h2β2

4mα3
−

2ke2β2

α2
(1.37)

Now the denominator in our energy expression:

∫
|ψ|2 dV =

∞∫
0

4πβ2r2

(α2 + r2)2
dr = 4πβ2 π

4α
=
π2β2

α
(1.38)

This implies that for the wave function to be normalized, such that
∫
|ψ|2 dV = 1, we require

β2=α/π2. Putting it all together, we can find our expression for energy:

E =
α

π2β2

(
π2 h2β2

4mα3
−

2πke2β2

α2

)
=

 h2

4mα2
−

2ke2

πα
(1.39)

Note that the energy is independent of β, which makes again makes sense as β is just the nor-

P. LeClair PH253: Modern Physics
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1.4 Simple Harmonic Oscillator Approximation 7

malization constant. Our variational condition is that this energy is minimized with respect to the
parameter α, thus

0 =
∂E

∂α
= 2

2 h2

4mα3
=

2ke2

πα2
(1.40)

 h2

2mα3
=

2ke2

πα2
(1.41)

α =
π h2

4mke2
=
π

4
ao (1.42)

Here ao is the Bohr radius, ao=  h2/kme2. Thus, we can interpret α as a characteristic distance of
the electron cloud, about 20% smaller than the exact solution gives us. Plugging this in our energy
equation, we have

E = −
−4 h2

π2ma2o
≈ −11.1 eV (1.43)

This is about 19% off of the exact value for the ground state energy. The plots of ψ for the varia-
tional and correct ground state wavefunctions are left as an exercise for the reader . . .

1.4 Simple Harmonic Oscillator Approximation

The energy operator for a simple harmonic oscillator in one dimension is

H = −
 h2

2m

d2

dx2
+

1

2
mω2x2 (1.44)

Presume we don’t know the proper wave function, but guessed a wave function of the form

ψ(r) =
β

α2 + x2
(1.45)

Again, this Lorentzian function has all the right properties of being localized near the origin, rapidly
decaying, etc. We can use the variational principle and normalization to find the values of α and β
that give the minimum energy for this trial wave function, and compare this result to the correct
ground state energy of the simple harmonic oscillator.

Much like the last one, except here dV = dx and x runs from −∞ to ∞, which changes all the
integrals.

PH253: Modern Physics P. LeClair



8 1.4 Simple Harmonic Oscillator Approximation

Hψ = −
 h2

2m

(
d

dx

β

α2 + x2

)
+

1

2
mω2x2

β

α2 + x2
(1.46)

= −
 h2

2m

(
−2β

(α2 + x2)2
+

8x2β

(α2 + x2)3

)
+

1

2

mωxβx2

α2 + x2
(1.47)

= −
 h2β

2m

(
3x2 − α2

(α2 + x2)3

)
+

1

2

mωxβx2

α2 + x2
(1.48)

Now HψH:

ψHψ = −
 h2β2

m

(
3x2 − α2

(α2 + x2)4

)
+

1

2

mω2β2x2

(α2 + x2)2
(1.49)

And, the full numerator:

∫
ψHψdx =

∫
−∞

 h2β2

m

(
α2 − 3x2

(α2 + x2)4

)
+

1

2

mωxβ2x2

(α2 + x2)2
=

 h2β2

2m

(
5π

16α5
−

3π

16α5

)
+
mω2β2

2

π

2α

(1.50)

=
πβ2 h2

8mα5
+
πmβ2ω2

4α
(1.51)

And the denominator:

∫
|ψ|2 dx =

∞∫
−∞

β2

(α2 + x2)2
dx =

πβ2

2α3
(1.52)

This implies that for a normalized wavefunction we require β2=2α3/π. Now the energy expression
in full:

E =
2α3

πβ2

(
πβ2 h2

8mα5
+
πmβ2ω2

4α

)
=

 h2

4mα2
+
α2mω2

2
(1.53)

Once again, the energy is independent of β as it should be, and the optimal solution is when
dE/dα=0.

dE

dα
= 0 = −

2 h2

4mα3
+mαω2 =⇒ α2 =

 h√
2mw

(1.54)

The minimum energy for this guess at the wavefunction is then
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1.5 Anharmonic oscillator 9

E =
 h2

4m

√
2mω
 h

+
mω2

2

 h√
2mω

=

√
2

2
 hω =

1

2
 hω

(√
2
)

(1.55)

Our variational approach with a plausible guess at the wavefunction yields a ground state energy
that is a factor

√
2≈1.4 times higher than the exact value. Not bad for a guess.

1.5 Anharmonic oscillator

For another example, we can estimate the ground state energy for the anharmonic oscillator,

H =
p2

2m
+ λx4 i.e., Hψ = −

 h2

2m

∂2ψ

∂x2
+ λx4ψ (1.56)

The exact result is known for comparison:

Eo = 1.060λ1/3
(

 h2

2m

)2/3

(1.57)

Note that this is a one-dimensional problem, so we can take dV=dx. The easiest thing to do is see
how bad the normal harmonic oscillator solution is, presuming the anharmonic x4 term is relatively
small and doesn’t cause too large a perturbation. The harmonic oscillator solution is known to be
ψ=e−cx

2 . First we need to find Hψ.

Hψ = −
 h2

2m

∂2ψ

∂x2
+ λx4ψ = −

 h2

2m

∂2

∂x2
e−cx

2
+ λx4e−cx

2
(1.58)

= −
 h2

2m

∂

∂x

(
−2cxe−cx

2
)
+ λx4e−cx

2
= −

 h2

2m

(
2ce−cx

2
) (

2cx2 − 1
)
+ λx4e−cx

2
(1.59)

Next, we multiply by ψ again to get ψHψ, and integrate that over all space. Multiplying by ψ just
makes the exponents all −2cx2.

∫
ψHψdV =

∞∫
−∞

−
 h2

2m

(
2ce−2cx2

) (
2cx2 − 1

)
+ λx4e−2cx2 dx (1.60)

=

∞∫
−∞

e−2cx2
(
λx4 −

2 h2c2

m
x2 +

 h2c

m

)
(1.61)

All the integrals are known (you can ask Wolfram):

PH253: Modern Physics P. LeClair



10 1.6 Anharmonic oscillator, redux

∫
ψHψdV = λ

3

16

√
π

2c5
−

2 h2c2

m

1

4

√
π

2c3
+

 h2c

m

√
π

2c
=

3λ

16

√
π

2c5
+

 h2

2m

√
πc

2
(1.62)

=

√
π

2c

(
3λ

16

1

c2
+

 h2

2m
c

)
(1.63)

The denominator in the variational expression is simpler:

∞∫
−∞

ψ2 dx =

∞∫
−∞

e−2cx2 dx =

√
π

2c
(1.64)

Our energy expression is thus

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

=
3λ

16c2
+

 h2c

2m
(1.65)

To minimize the energy with this wavefunction, we require dE/dc=0.

dE

dc
= −

6λ

16c3
+

 h2

2m
= 0 (1.66)

=⇒ c =
3

√
3λm

4 h2
(1.67)

Now we plug that back in our expression for E to find the minimum energy and simplify.

Emin =
3λ

16c2
+

 h2c

2m
=

3λ

16

(
4 h2

3λm

)2/3

+
 h2

2m

(
3λm

4 h2

)1/3

(1.68)

=
3

16
λ1/3

(
 h2

2m

)2/3(
8

3

)2/3

+
1

2
λ1/3

(
 h2

2m

)2/3

31/3 =

(
3 3
√
3

4

)
λ1/3

(
 h2

2m

)2/3

(1.69)

≈ 1.082λ1/3
(

 h2

2m

)2/3

(1.70)

This differs from the exact result by only ∼2%. Not bad!

1.6 Anharmonic oscillator, redux

Let’s repeat that problem with a different trial wave function. We know physically a trial function
must be peaked around x= 0 and must be normalizable (i.e.,

∫∞
−∞ψ2 dx is finite). Such functions

would include e−c|x| or 1/(c + x2), for instance. Choose wisely, and the mathematics will be far
simpler.
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1.6 Anharmonic oscillator, redux 11

How do we pick an appropriate function? What properties should your wave function have for the
ground state? We can come up with a few rules by looking at the potential and thinking about the
generic properties of wavefunctions. First, for the lowest energy state the wave function should be
an even function and peaked near x= 0, just like it is for the simple harmonic oscillator. Second,
it should be normalizable (i.e., in rough terms the integral of the function squared over all space
should be finite). Third, for the variational integral to converge, the square of the wavefunction
must decay faster than x4, since we have to integrate |ψ|2x4 over all space and come up with a finite
answer.

This is already pretty restrictive, when you get down to it. For instance, 1/(x2 +a2) will not work,
since when squared and multiplied by x4, its integral will not converge. You’ll run in to weirder
problems trying things like e−x4 , pushing the analogy with the harmonic oscillator. Just to cut to
the chase, one thing that does work is 1/(x2 + a)2. (It is not even that messy if you let Wolfram
do the heavy lifting.) This isn’t the only possibility, certainly. You might just try two Gaussians
with two adjustable parameters, or possibly e−a|x|. We’ll try ψ=1/(x2 + a2)2. First, we need the
second derivative.

∂2ψ

∂x2
=

4
(
5x2 − a2

)
(a2 + x2)4

(1.71)

With that, we can find Hψ

Hψ = −
 h2

2m

4
(
5x2 − a2

)
(a2 + x2)4

+ λx4
1

(a2 + x2)2
(1.72)

Now, ψHψ just means multiplying through by ψ again:

ψHψ = −
 h2

2m

4
(
5x2 − a2

)
(a2 + x2)6

+ λx4
1

(a2 + x2)4
(1.73)

With Wolfram’s help, we can integrate it over all spacei

∫
ψHψdV =

∞∫
−∞

−
 h2

2m

4
(
5x2 − a2

)
(a2 + x2)6

+ λ
x4

(a2 + x2)4
dx

= −
2 h2

m

(
35π

256a9
−

63πa2

256a11

)
+ λ

π

16a3
=

− h2

128ma9

(
35π− 63π

)
+

πλ

16a3

=
7π h2

32ma9
+

πλ

16a3
=

π

16a3

(
λ+

7 h2

2ma6

)
(1.74)

Now we need the denominator in our variational expression, the normalization condition:

iNote that you can tell Wolfram to include limits to the integral, which simplifies things a lot. Compare typing in
integral of x^2/(a =^2+x^2)^6 from -infinity to infinity to integral of x^2/(a^2+x^2)^6. Nice, right?
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12 1.6 Anharmonic oscillator, redux

∫
|ψ|2 dV =

∞∫
−∞

1

(x2 + a)4
dx =

5π

16a7
(1.75)

Combining and factoring a bit,

E[ψ] =

∫
ψ∗HψdV∫
|ψ|2 dV

=
π

16a3

(
λ+

7 h2

2ma6

)
· 16a

7

5π
=
a4

5

(
λ+

7 h2

2ma6

)
=

1

5
a4λ+

7 h2

10ma2
(1.76)

To minimize the energy with this wavefunction, we require dE/da=0.

dE

da
=

4

5
a3λ−

7 h2

5ma3
(1.77)

=⇒ a =
6

√
7 h2

4mλ
(1.78)

Inserting this into our energy expression, we have the minimum energy

Emin =
1

5
a4λ+

7 h2

10ma2
=
λ

5

(
7 h2

4mλ

)2/3

+
7 h2

10m

(
4mλ

7 h2

)1/3

(1.79)

= λ1/3
(

 h2

2m

)2/3
[
1

5

(
7

2

)2/3

+
7

10

(
16

7

)1/3
]
= λ1/3

(
 h2

2m

)2/3
[
3

5

(
7

2

)2/3
]

(1.80)

≈ 1.38λ1/3
(

 h2

2m

)2/3

(1.81)

This trial wave function is off by about 30%, not nearly as good as just using the harmonic oscillator
solution as our guess. Still, it is amazing we can get that close with a guess based only on a few
simple symmetry arguments.
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