PH253 Lecture 14: Schrödinger's equation mechanics with matter waves

P. LeClair

Department of Physics & Astronomy The University of Alabama

Spring 2020

LeClair, Patrick (UA)

PH253 Lecture 14

February 12, 2020 1 / 29

electron waves are a thing

Single atoms of Co on a Cu single crystal surface. Due to the differing number of electrons per atom, the Co atoms create a standing wave disturbance on the Cu surface. Courtesy O. Kurnosikov (unpublished, ca. 2001)

Outline

2 Free particles

LeClair, Patrick (UA)

Outline

2 Free particles

LeClair, Patrick (UA)

PH253 Lecture 14

February 12, 2020 4 / 29

Time-dependent version:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = i\hbar\frac{\partial\psi}{\partial t}$$

- $\psi(x, t)$ = wavefunction for object, the "amplitude"
- ② This equation gives the time evolution of system, given $\psi(x, t = 0)$
- Ist order in time, evolution of amplitude deterministic
- Write out for discrete time steps $(\partial \psi / \partial t \rightarrow \Delta \psi / \Delta t)$

$$\Delta \psi = \psi(x, t + \Delta t) - \psi(x, t) = \frac{i\hbar}{2m} \frac{\partial^2 \psi(x, t)}{\partial x^2} \Delta t$$

Time-independent version:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = E\psi$$

- Time-independent version gives $\psi(t = 0)$ and energy
- **2** Given potential V(x, t) can find ψ
- **③** Typically: consider static cases, V = V(x)
- What does the wave function tell us?

Properties of ψ

- ψ gives probabilities: $|\psi(x, t)|^2 dx = P(x, t) dx$
- 2 Probability particle is in [x, x + dx] at time t
- Solution: particle is somewhere: $\int_{-\infty}^{\infty} P(x) dx = 1.$
- ψ is in general complex: $\psi = a + bi$ or $\psi = Ae^{iB}$
- Operation of a state of a stat
- $\psi_{\text{tot}} = a\psi_1 + b\psi_2$, but $|\psi_{\text{tot}}|^2 \neq |\psi_1|^2 + |\psi_1|^2$
- ② Single particle or bound state no interference, ψ can be real.

Time dependence

- Let's say V(x) is independent of time (static environment)
- Interpretation of the second secon

3 I.e.,
$$\Psi(x,t) = \psi(x)\varphi(t)$$

- *V* indep. of time required for conservative forces (see ph301/2)
- Mostly what we will worry about anyway
- If this is the case, plug into time-dep. Schrödinger
- One side has only *x*, the other only *t* dependence

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

Time dependence

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V(x)\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

• $\Psi(x, t) = \psi(x)\varphi(t)$. One side has only *x*, the other only *t*.

Seach side must then be separately equal to the same constant E

$$i\hbar\frac{\partial\varphi}{\partial t} = E\varphi$$

Now separate & integrate (recall 1/i = -i):

$$rac{\partial arphi}{arphi} = -rac{iE}{\hbar} \, \partial t \qquad \Longrightarrow \qquad arphi = e^{iEt/\hbar}$$

With $E = \hbar \omega$, $\varphi = e^{-i\omega t}$ – simple oscillation; *E* is energy!

Spatial dependence

1 If *V* independent of time, amplitude oscillates with frequency ω

2 Then
$$\Psi(x,t) = \psi(x)e^{-iEt/\hbar}$$

Spatial part from time-independent equation - 2nd half of separation

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = E\psi$$

Can we make this look like something more familiar?

What is this equation?

Do some factoring. Treat $\partial^2 / \partial x^2$ as an *operator*.

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right)\psi = E\psi$$

Looks a little like
$$K + V = E$$

Let $\mathbf{p} = -i\hbar \frac{\partial}{\partial x}$. Then $\mathbf{p}^2 = -\hbar^2 \frac{\partial^2}{\partial x^2} \dots$
$$\left(\frac{\mathbf{p}^2}{2m} + V\right) \psi = E\psi$$

The time-independent equation is just conservation of energy! Must be so: *V* independent of *t* requires conservative forces. Classical *analogy*: $\mathbf{p} = m \frac{d}{dt}$, $\mathbf{p}x = p$ would give momentum.

Outline

2 Free particles

LeClair, Patrick (UA)

PH253 Lecture 14

February 12, 2020 12 / 29

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = E\psi$$

For a free isolated particle, V = 0. Thus,

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} = E\psi \qquad \text{or} \qquad \frac{\partial^2\psi}{\partial x^2} = -\left(\frac{2mE}{\hbar^2}\right)\psi$$

- We know this equation, it is $a = \frac{d^2x}{dt^2} = -k^2x$
- In the solutions are oscillating functions. In general, noting time dependence already found:

$$\psi(x) = e^{-iEt/\hbar} \left(A e^{ikx} + B e^{-ikx} \right)$$

$$\psi(x) = e^{-iEt/\hbar} \left(A e^{ikx} + B e^{-ikx} \right)$$

Sum left- and right-going sinusoidal waves. What is *k*? By analogy:

$$a = \frac{d^2x}{dt^2} = -k^2x$$
 and $\frac{\partial^2\psi}{\partial x^2} = -\left(\frac{2mE}{\hbar^2}\right)\psi$

- This implies $k^2 = 2mE/\hbar^2$, or $E = \hbar^2 k^2/2m$.
- So For a free particle, $E = p^2/2m$, implying $|p| = \hbar k$
- In agreement with de Broglie and classical physics so far
- Since via Planck $E = \hbar \omega$, implies $\hbar \omega = \hbar^2 k^2 / 2m$
- $or \ \omega = \hbar k^2 / 2m$

$$\omega = \frac{\hbar k^2}{2m}$$

• Last time: group velocity of wave packet is $v_{\text{group}} = \partial \omega / \partial k$

(

- Solution Just what we expect for classical particle: p = mv, $E = p^2/2m$
- Stickier question: where is the particle?

1

$$\psi(x) = e^{-iEt/\hbar} \left(A e^{ikx} + B e^{-ikx} \right)$$

- Probability it is in [x, x + dx] is $P(x) dx = |\psi(x)|^2 dx$
- Probability in an interval [a, b]?

$$P(\text{in} [a,b]) = \int_{a}^{b} P(x) \, dx$$

- In our case equivalent to $\int_{-\infty}^{\infty} \cos^2 x \, dx \dots$ not defined
- Ilane wave solution is not *normalizable*, P has no meaning
- Infinite uncertainty in position, because we know k & p precisely!
- Makes sense, empty universe with no constraints. Can be anywhere.

2 Free particles

LeClair, Patrick (UA)

PH253 Lecture 14

February 12, 2020 17 / 29

Slightly less empty universe

Particle of energy *E* > *V*_o coming from left sees step in potential *V*(*x*) = 0 for *x* < 0, *V*(*x*) = *V*_o for *x* ≥ 0

Write down time-independent Schrödinger equation

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = E\psi \quad \text{or} \quad \frac{\partial^2\psi}{\partial x^2} + \frac{2m}{\hbar^2}\left(E - V\right)\psi = 0$$

Solution still traveling waves

- *V* is different in the two regions (I, II), solve separately
- Since $E V_0 > 0$ everywhere, same basic solution though.
- Solution is still traveling waves like free particle

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = E\psi \quad \text{or} \quad \frac{\partial^2\psi}{\partial x^2} + \frac{2m}{\hbar^2}\left(E - V\right)\psi = 0$$

Region I: free particle

• Let $k^2 = 2mE/\hbar^2$, same solution as free particle (ignore $e^{i\omega t}$)

$$\psi_I(x) = e^{ikx} + Re^{-ikx}$$
 for $x < 0$

- Can choose constant of first term to be 1
- Sirst term is right-going wave, second is left-going wave.
- Sight-going wave is the *reflection* of incident wave

Region II: slightly less free particle

- Second region: same! Let $q^2 = 2m(E V_0)/\hbar^2$.
- **2** Need two constants now. (ignore $e^{i\omega t}$ still)

$$\psi_{II}(x) = Te^{iqx} + Ue^{-ikx}$$
 for $x \ge 0$

1 First term: transmitted portion.

Second term? Wave *coming from right* – unphysical, so U = 0

Overall: like any wave: incident = reflected + transmitted

LeClair, Patrick (UA)

Combining the solutions: continuity

$$\psi_I(x) = e^{ikx} + Re^{-ikx}$$
 $\psi_{II}(x) = Te^{iqx}$

Continuity: match solutions at boundary!
ψ and its derivatives match at x = 0. So does |ψ|²

$$\psi_I(0) = 1 + R = \psi_{II}(0) = T \implies 1 + R = T$$

More continuity

$$\psi_I(x) = e^{ikx} + Re^{-ikx}$$
 $\psi_{II}(x) = Te^{iqx}$

• Also match $\partial \psi / \partial x$ at boundary.

$$\frac{\partial \psi_I}{\partial x}\Big|_0 = \frac{\partial \psi_{II}}{\partial x}\Big|_0$$

$$ike^{ikx} + (-ik)Re^{-ikx} = iqTe^{iqx}$$

at $x = 0$: $ik - ikR = iqT$
 $k(1 - R) = qT$

LeClair, Patrick (UA)

Coefficients for transmission & reflection

$$k(1-R) = qT$$

• Also know $1 + R = T \dots$ algebra \dots

$$R = \frac{k-q}{k+q} \qquad T = \frac{2k}{k+q}$$
$$\psi(x) = \begin{cases} e^{ikx} + \left(\frac{k-q}{k+q}\right)e^{-ikx} & x < 0\\ \left(\frac{2k}{k+q}\right)e^{iqx} & x \ge 0 \end{cases}$$

Reflection & Transmission Probabilities

Probability of reflection? Magnitude of reflected wave! Note $|e^{iA}| = 1$. Reflected wave: $|Re^{-ikx}|^2 = R^2$.

$$P_{\text{refl}} = R^2 = \left(\frac{k-q}{k+q}\right)^2$$
$$P_{\text{trans}} = 1 - P_{\text{refl}}$$
$$\Rightarrow P_{\text{trans}} = \frac{4kq}{(k+q)^2}$$

reflection probability

only 2 things can happen

transmission probability

- Probability of transmission + reflection = 1
- Itike light, some amplitude is reflected and some transmitted
- But not like particle reflection even if you clear the step

_

Transmission is highly energy-dependent

$$P_{\text{refl}} = \left(\frac{k-q}{k+q}\right)^2 \qquad \text{reflection}$$

$$P_{\text{trans}} = \frac{4kq}{(k+q)^2} = \sqrt{\frac{E-V_0}{E}}|T|^2 \quad \text{transmission}$$

- **1** Degree of transmission depends on k, q, i.e., E compared to V_o
- **2** High energy: $k \sim q$ gives $P_{\text{refl}} \sim 0$, $P_{\text{trans}} \sim 1$
- **(a)** Low energy: $k \gg q$ gives significant P_{refl}
- Check: k = q, $P_{\text{trans}} = 1$ there is no step!
- Solution Check: q = 0, $P_{\text{trans}} = 0$ zero energy there!
- $E = V_0$? $P_{\text{trans}} = 0$, perfect reflection

Some interesting aspects

- Classical: go over step, slow down to conserve *E*, never reflect
- Quantum: chance of reflection, even if E high enough.
- Note: we have not considered $E < V_0$.

If *E* < *V*₀? *q* is purely imaginary! Then *iq* is purely real.
Let *iq* = κ.

$$\psi_{II}(x) = Te^{-iqx} = Te^{-\kappa x} \qquad E < V_0 \tag{1}$$

Now exponentially decaying in region II

What comes next

- If $E < V_0$, exponentially decaying in region II
- Ø Meaning there is some penetration of the "particle" into barrier

Figure: http://www.met.reading.ac.uk/pplato2/h-flap/phys11_1.html

What comes next

- Thin barrier? *Tunnel effect -* jumping through walls!
- Incoming wave doesn't have enough energy to go over barrier.
- Decays into "forbidden" region, but if thin enough?
- Some intensity leaks through! Particle goes through barrier.

Figure: LeClair, Moodera, & Swagten in Ultrathin Magnetic Structures III

LeClair, Patrick (UA)