PH253 Lecture 15: Schrödinger's equation. Still. 1-D potentials

P. LeClair

Department of Physics \& Astronomy
The University of Alabama
Spring 2020

Image of the day

High-resolution electron microscope image of a $\mathrm{Co}_{1.5} \mathrm{Ti}_{0.5} \mathrm{FeGe}$ alloy sample. The bright dots are individual atoms. The inset is a Fourier transform of the image, indicating the hexagonal symmetry.

Figure: UA Physics / LeClair group / Phys. Rev. Materials 3, 114406 (2019)

Outline

(1) Potential step

(2) Particle in a box

(3) Observables and operators

Potential step from last time

Potential step from last time

$$
\begin{aligned}
\psi(x)_{I} & =e^{i k x}+R e^{-i k x} \quad \psi(x)_{I I}=T e^{i q x} \\
R & =\frac{k-q}{k+q} \quad T=\frac{2 k}{k+q} \quad k^{2}=\frac{2 m E}{\hbar^{2}} \quad q^{2}=\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}}
\end{aligned}
$$

Potential step from last time

$$
\begin{gathered}
\psi(x)_{I}=e^{i k x}+R e^{-i k x} \quad \psi(x)_{I I}=T e^{i q x} \\
R=\frac{k-q}{k+q} \quad T=\frac{2 k}{k+q} \quad k^{2}=\frac{2 m E}{\hbar^{2}} \quad q^{2}=\frac{2 m\left(E-V_{0}\right)}{\hbar^{2}} \\
P_{\text {refl }}=\left(\frac{k-q}{k+q}\right)^{2} \quad \text { reflection } \\
\\
P_{\text {trans }}=\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} \quad \text { transmission }
\end{gathered}
$$

Transmission is highly energy-dependent

$$
\begin{array}{rll}
P_{\text {refl }} & =\left(\frac{k-q}{k+q}\right)^{2} & \text { reflection } \\
P_{\text {trans }} & =\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} & \text { transmission }
\end{array}
$$

Transmission is highly energy-dependent

$$
\begin{array}{rlr}
P_{\text {refl }} & =\left(\frac{k-q}{k+q}\right)^{2} & \text { reflection } \\
P_{\text {trans }} & =\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} & \text { transmission }
\end{array}
$$

(1) Degree of transmission depends on k, q, i.e., E compared to V_{o}

Transmission is highly energy-dependent

$$
\begin{array}{rlr}
P_{\text {refl }} & =\left(\frac{k-q}{k+q}\right)^{2} & \text { reflection } \\
P_{\text {trans }} & =\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} & \text { transmission }
\end{array}
$$

(1) Degree of transmission depends on k, q, i.e., E compared to V_{o}
(2) High energy: $k \sim q$ gives $P_{\text {refl }} \sim 0, P_{\text {trans }} \sim 1$

Transmission is highly energy-dependent

$$
\begin{array}{rlr}
P_{\text {refl }} & =\left(\frac{k-q}{k+q}\right)^{2} & \text { reflection } \\
P_{\text {trans }} & =\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} & \text { transmission }
\end{array}
$$

(1) Degree of transmission depends on k, q, i.e., E compared to V_{o}
(2) High energy: $k \sim q$ gives $P_{\text {refl }} \sim 0, P_{\text {trans }} \sim 1$
(3) Low energy: $k \gg q$ gives significant $P_{\text {refl }}$

Transmission is highly energy-dependent

$$
\begin{array}{rlr}
P_{\text {refl }} & =\left(\frac{k-q}{k+q}\right)^{2} & \text { reflection } \\
P_{\text {trans }} & =\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} & \text { transmission }
\end{array}
$$

(1) Degree of transmission depends on k, q, i.e., E compared to V_{o}
(2) High energy: $k \sim q$ gives $P_{\text {refl }} \sim 0, P_{\text {trans }} \sim 1$
(3) Low energy: $k \gg q$ gives significant $P_{\text {refl }}$
(4) Check: $k=q, P_{\text {trans }}=1$ - there is no step!

Transmission is highly energy-dependent

$$
\begin{array}{rlr}
P_{\text {refl }} & =\left(\frac{k-q}{k+q}\right)^{2} & \text { reflection } \\
P_{\text {trans }} & =\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} & \text { transmission }
\end{array}
$$

(1) Degree of transmission depends on k, q, i.e., E compared to V_{o}
(2) High energy: $k \sim q$ gives $P_{\text {refl }} \sim 0, P_{\text {trans }} \sim 1$
(3) Low energy: $k \gg q$ gives significant $P_{\text {refl }}$
(4) Check: $k=q, P_{\text {trans }}=1$ - there is no step!
(6) Check: $q=0, P_{\text {trans }}=0$ - zero energy in II!

Transmission is highly energy-dependent

$$
\begin{aligned}
P_{\text {refl }} & =\left(\frac{k-q}{k+q}\right)^{2} & \text { reflection } \\
P_{\text {trans }} & =\frac{4 k q}{(k+q)^{2}}=\sqrt{\frac{E-V_{0}}{E}}|T|^{2} & \text { transmission }
\end{aligned}
$$

(1) Degree of transmission depends on k, q, i.e., E compared to V_{o}
(2) High energy: $k \sim q$ gives $P_{\text {refl }} \sim 0, P_{\text {trans }} \sim 1$
(3) Low energy: $k \gg q$ gives significant $P_{\text {refl }}$
(4) Check: $k=q, P_{\text {trans }}=1$ - there is no step!
(6) Check: $q=0, P_{\text {trans }}=0$ - zero energy in II!
(6) $E=V_{0}$? $P_{\text {trans }}=0$, perfect reflection

Transmission is highly energy-dependent

Some interesting aspects

(1) Classical: go over step, slow down to conserve E, never reflect

Some interesting aspects

(1) Classical: go over step, slow down to conserve E, never reflect
(2) Quantum: chance of reflection, even if E high enough.

Some interesting aspects

(1) Classical: go over step, slow down to conserve E, never reflect
(2) Quantum: chance of reflection, even if E high enough.
(3) If $E<V_{0}, q$ is imaginary - oscillation becomes decay!

Some interesting aspects

(1) Classical: go over step, slow down to conserve E, never reflect
(2) Quantum: chance of reflection, even if E high enough.
(3) If $E<V_{0}, q$ is imaginary - oscillation becomes decay!

$$
\psi_{I I}=T e^{-|q| x} \quad T=\frac{2 k}{k+i|q|} \neq 0 \quad\left(E<V_{0}\right)
$$

Some interesting aspects

(1) Classical: go over step, slow down to conserve E, never reflect
(2) Quantum: chance of reflection, even if E high enough.
(3) If $E<V_{0}, q$ is imaginary - oscillation becomes decay!

$$
\psi_{I I}=T e^{-|q| x} \quad T=\frac{2 k}{k+i|q|} \neq 0 \quad\left(E<V_{0}\right)
$$

Figure: http://www.met.reading.ac.uk/pplato2/h-flap/phys11_1.html

Outline

(1) Potential step

(2) Particle in a box

(3) Observables and operators

Particle in a box

Particle in a box

(1) Potential zero inside, infinite outside

Particle in a box

(1) Potential zero inside, infinite outside

Particle in a box

(1) Potential zero inside, infinite outside
(2) Like book derivation of blackbody radiation

Particle in a box

(1) Potential zero inside, infinite outside
(2) Like book derivation of blackbody radiation
(3) Can also imagine charged plates $+e^{-}$

Particle in a box

(1) Potential zero inside, infinite outside
(2) Like book derivation of blackbody radiation
(3) Can also imagine charged plates $+e^{-}$
(9) Clearly particle is stuck

Particle in a box

(1) Potential zero inside, infinite outside
(2) Like book derivation of blackbody radiation
(3) Can also imagine charged plates $+e^{-}$
(9) Clearly particle is stuck
(5) Implies boundary condition $\psi(0)=\psi(L)=0$!

Particle in a box

Particle in a box

(1) Wave can't penetrate boundary, so ψ goes to zero there

Particle in a box

(1) Wave can't penetrate boundary, so ψ goes to zero there
(2) Spoiler alert: standing waves

Particle in a box

(1) Wave can't penetrate boundary, so ψ goes to zero there
(2) Spoiler alert: standing waves
(3) Inside the box? No potential, just as free particle!

Particle in a box

(1) Wave can't penetrate boundary, so ψ goes to zero there
(2) Spoiler alert: standing waves
(3) Inside the box? No potential, just as free particle!

$$
E=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}
$$

Particle in a box

(1) Wave can't penetrate boundary, so ψ goes to zero there
(2) Spoiler alert: standing waves
(3) Inside the box? No potential, just as free particle!

$$
E=\frac{p^{2}}{2 m}=\frac{\hbar^{2} k^{2}}{2 m}
$$

Now set up Schrödinger's equation in box + boundary conditions.

$$
V=\infty
$$

Boundary conditions are key

Schrödinger equation with $V=0$:

$$
\frac{d^{2} \psi}{d x^{2}}=-\left(\frac{2 m E}{\hbar^{2}}\right) \psi=-k^{2} \psi \quad\left(\text { with } k^{2}=\frac{2 m E}{\hbar^{2}}\right)
$$

Boundary conditions are key

Schrödinger equation with $V=0$:

$$
\frac{d^{2} \psi}{d x^{2}}=-\left(\frac{2 m E}{\hbar^{2}}\right) \psi=-k^{2} \psi \quad\left(\text { with } k^{2}=\frac{2 m E}{\hbar^{2}}\right)
$$

We already know the solution

Boundary conditions are key

Schrödinger equation with $V=0$:

$$
\frac{d^{2} \psi}{d x^{2}}=-\left(\frac{2 m E}{\hbar^{2}}\right) \psi=-k^{2} \psi \quad\left(\text { with } k^{2}=\frac{2 m E}{\hbar^{2}}\right)
$$

We already know the solution

$$
\psi(x)=C_{1} e^{i k x}+C_{2} e^{-i k x}
$$

Boundary conditions are key

Schrödinger equation with $V=0$:

$$
\frac{d^{2} \psi}{d x^{2}}=-\left(\frac{2 m E}{\hbar^{2}}\right) \psi=-k^{2} \psi \quad\left(\text { with } k^{2}=\frac{2 m E}{\hbar^{2}}\right)
$$

We already know the solution

$$
\psi(x)=C_{1} e^{i k x}+C_{2} e^{-i k x}
$$

How to find constants? Boundary conditions! $\psi(0)=\psi(L)=0$

$$
V=\infty
$$

Boundary conditions are key

$$
\psi(x)=C_{1} e^{i k x}+C_{2} e^{-i k x}
$$

Boundary conditions are key

$$
\begin{gathered}
\psi(x)=C_{1} e^{i k x}+C_{2} e^{-i k x} \\
\psi(0)=C_{1}+C_{2}=0 \quad \Longrightarrow \quad C_{1}=-C_{2} \\
\psi(x)=C_{1} e^{i k x}-C_{1} e^{-i k x}
\end{gathered}
$$

Boundary conditions are key

$$
\begin{gathered}
\psi(x)=C_{1} e^{i k x}+C_{2} e^{-i k x} \\
\psi(0)=C_{1}+C_{2}=0 \quad \Longrightarrow \quad C_{1}=-C_{2} \\
\psi(x)=C_{1} e^{i k x}-C_{1} e^{-i k x}
\end{gathered}
$$

Note $e^{i k x}-e^{-i k x} \propto \sin k x \quad \Longrightarrow \quad \psi(x)=C \sin k x$.

Boundary conditions are key

$$
\begin{gathered}
\psi(x)=C_{1} e^{i k x}+C_{2} e^{-i k x} \\
\psi(0)=C_{1}+C_{2}=0 \quad \Longrightarrow \quad C_{1}=-C_{2} \\
\psi(x)=C_{1} e^{i k x}-C_{1} e^{-i k x}
\end{gathered}
$$

Note $e^{i k x}-e^{-i k x} \propto \sin k x \quad \Longrightarrow \quad \psi(x)=C \sin k x$. Recall: bound states have ψ purely real

$$
V=\infty
$$

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

(1) Only true when $k L=n \pi, n=\{1,2,3, \ldots\}$.

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

(1) Only true when $k L=n \pi, n=\{1,2,3, \ldots\}$.
(2) Means only certain k values (\& therefore λ) allowed!

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

(1) Only true when $k L=n \pi, n=\{1,2,3, \ldots\}$.
(2) Means only certain k values ($\&$ therefore λ) allowed!
(O) n is like a harmonic, how many half λ^{\prime} 's fit in box

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

(1) Only true when $k L=n \pi, n=\{1,2,3, \ldots\}$.
(2) Means only certain k values (\& therefore λ) allowed!
(3) n is like a harmonic, how many half λ^{\prime} s fit in box

Figure: Krane, Modern Phusics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

(1) Only true when $k L=n \pi, n=\{1,2,3, \ldots\}$.
(2) Means only certain k values (\& therefore λ) allowed!
(O) n is like a harmonic, how many half λ 's fit in box
(1) $k_{n}=\frac{n \pi}{L}$, or $n \frac{\lambda}{2}=L$. Implies discrete energies too...

Figure: Krane, Modern Phusics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

(1) Only true when $k L=n \pi, n=\{1,2,3, \ldots\}$.
(2) Means only certain k values (\& therefore λ) allowed!
(O n is like a harmonic, how many half λ 's fit in box
(-) $k_{n}=\frac{n \pi}{L}$, or $n \frac{\lambda}{2}=L$. Implies discrete energies too...

- Basically: modes of a string. C might depend on n ?

Figure: Krane, Modern Physics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(L)=C \sin k L=0
$$

(1) Only true when $k L=n \pi, n=\{1,2,3, \ldots\}$.
(2) Means only certain k values ($\&$ therefore λ) allowed!
(O n is like a harmonic, how many half λ 's fit in box

- $k_{n}=\frac{n \pi}{L}$, or $n \frac{\lambda}{2}=L$. Implies discrete energies too...
- Basically: modes of a string. C might depend on n ?

$$
E_{n}=\frac{\hbar^{2} k_{n}^{2}}{2 m}=\frac{\hbar^{2} \pi^{2} n^{2}}{2 m L^{2}}=\frac{n^{2} h^{2}}{8 m L^{2}}
$$

Figure: Krane, Modern Phusics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

Figure: Krane, Modern Physics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) Since V is independent of time, time variation is $e^{-i E_{n} t / \hbar}$

Figure: Krane, Modern Physics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) Since V is independent of time, time variation is $e^{-i E_{n} t / \hbar}$
(2) Big picture: confinement leads to quantized energy levels.

Figure: Krane, Modern Physics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) Since V is independent of time, time variation is $e^{-i E_{n} t / \hbar}$
(2) Big picture: confinement leads to quantized energy levels.
(3) Where we went wrong with free particle: no boundary conditions

Figure: Krane, Modern Physics. Solid: ψ. Dashed: $|\psi|^{2}$.

Discrete energies

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) Since V is independent of time, time variation is $e^{-i E_{n} t / \hbar}$
(2) Big picture: confinement leads to quantized energy levels.
(3) Where we went wrong with free particle: no boundary conditions
(9) What are the C_{n} ? We have not normalized the wave function ...

Figure: Krane, Modern Physics. Solid: ψ. Dashed: $|\psi|^{2}$.

Always normalize

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

Always normalize

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) What are the C_{n} ? We have not normalized the wave function ...

Always normalize

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) What are the C_{n} ? We have not normalized the wave function...
(2) Enforce $\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1$

Always normalize

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) What are the C_{n} ? We have not normalized the wave function...
(2) Enforce $\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1$
(3) Integrand only nonzero from 0 to L though!

Always normalize

$$
\psi(x)= \begin{cases}C_{n} \sin \left(\frac{n \pi x}{L}\right) & 0 \leq x \geq L \\ 0 & x<0, x>L\end{cases}
$$

(1) What are the C_{n} ? We have not normalized the wave function...
(2) Enforce $\int_{-\infty}^{\infty}|\psi(x)|^{2} d x=1$
(3) Integrand only nonzero from 0 to L though!

$$
\begin{aligned}
1 & =\int_{0}^{L}|\psi(x)|^{2} d x=\int_{0}^{L} C_{n}^{2} \sin ^{2}\left(\frac{n \pi x}{L}\right) d x \\
& =\left.C_{n}^{2}\left[\frac{x}{2}-\frac{4 L}{n \pi} \sin \left(2 \frac{n \pi x}{L}\right)\right]\right|_{0} ^{L}=C_{n}^{2} \frac{L}{2}
\end{aligned}
$$

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n
(2) Within the box, $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n
(2) Within the box, $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$
(3) Recall probability in an interval $[a, b]$ is $P($ in $[a, b])=\int_{a}^{b} P(x) d x$

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n
(2) Within the box, $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$
(3) Recall probability in an interval $[a, b]$ is $P($ in $[a, b])=\int_{a}^{b} P(x) d x$
(9) E.g., what is the probability particle is in middle half of box?

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n
(2) Within the box, $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$
(3) Recall probability in an interval $[a, b]$ is $P($ in $[a, b])=\int_{a}^{b} P(x) d x$
(9) E.g., what is the probability particle is in middle half of box?
(5) What about position? Momentum?

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n
(2) Within the box, $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$
(3) Recall probability in an interval $[a, b]$ is $P($ in $[a, b])=\int_{a}^{b} P(x) d x$
(9) E.g., what is the probability particle is in middle half of box?
(5) What about position? Momentum?
(6) So far we can get energy from the Schrödinger equation

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n
(2) Within the box, $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$
(3) Recall probability in an interval $[a, b]$ is $P($ in $[a, b])=\int_{a}^{b} P(x) d x$
(9) E.g., what is the probability particle is in middle half of box?
(6) What about position? Momentum?
(6) So far we can get energy from the Schrödinger equation
(0) We figured out the momentum operator last time, $p=-i \hbar \frac{\partial}{\partial x}$

Always normalize

(1) $C_{n}^{2}(L / 2)=1$, so $C_{n}=\sqrt{2 / L}$ for all n
(2) Within the box, $\psi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$

- Recall probability in an interval $[a, b]$ is $P($ in $[a, b])=\int_{a}^{b} P(x) d x$
(1 E.g., what is the probability particle is in middle half of box?
© What about position? Momentum?
- So far we can get energy from the Schrödinger equation
- We figured out the momentum operator last time, $p=-i \hbar \frac{\partial}{\partial x}$
- What about position, and how to use these new operators?

Outline

(1) Potential step

(2) Particle in a box

(3) Observables and operators

Observables

(1) We can calculate expectation values for any observable

Observables

(1) We can calculate expectation values for any observable
(2) With many measurements, what would you expect on average?

Observables

(1) We can calculate expectation values for any observable
(2) With many measurements, what would you expect on average?
(3) Like moments of a probability distribution (mean, std. dev)

Observables

(1) We can calculate expectation values for any observable
(2) With many measurements, what would you expect on average?
(3) Like moments of a probability distribution (mean, std. dev)
(9) Generic form for observable A is $\langle A\rangle=\int \psi^{*} A_{\mathrm{op}} \psi d x$

Observables

(1) We can calculate expectation values for any observable
(2) With many measurements, what would you expect on average?
(3) Like moments of a probability distribution (mean, std. dev)
(9) Generic form for observable A is $\langle A\rangle=\int \psi^{*} A_{\mathrm{op}} \psi d x$
(5) The position operator is simple, it is just x

Observables

(1) We can calculate expectation values for any observable
(2) With many measurements, what would you expect on average?
(3) Like moments of a probability distribution (mean, std. dev)
(9) Generic form for observable A is $\langle A\rangle=\int \psi^{*} A_{\mathrm{op}} \psi d x$
(5) The position operator is simple, it is just x
(0) Expectation value of position is then:

Observables

(1) We can calculate expectation values for any observable
(2) With many measurements, what would you expect on average?
(3) Like moments of a probability distribution (mean, std. dev)
(9) Generic form for observable A is $\langle A\rangle=\int \psi^{*} A_{\mathrm{op}} \psi d x$
(5) The position operator is simple, it is just x
(6) Expectation value of position is then:

$$
\langle x\rangle=\int_{-\infty}^{+\infty} \psi^{*} x \psi d x=\int_{-\infty}^{+\infty} x|\psi(x)|^{2} d x=\int_{-\infty}^{+\infty} x P(x), d x
$$

Position

(1) Mostly stats - uncertainty from probability distribution.

Position

(1) Mostly stats - uncertainty from probability distribution. (2) $(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$

Position

(1) Mostly stats - uncertainty from probability distribution.
(2) $(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
(3) The same Δx from the uncertainty principle

Position

(1) Mostly stats - uncertainty from probability distribution.
(2) $(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
(3) The same Δx from the uncertainty principle
(9) Find $\left\langle x^{2}\right\rangle$ almost as easily: 2nd moment of distribution

Position

(1) Mostly stats - uncertainty from probability distribution.
(2) $(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
(3) The same Δx from the uncertainty principle
(9) Find $\left\langle x^{2}\right\rangle$ almost as easily: 2nd moment of distribution
(5) Total probability $(1)=0$ th mode, mean $=1$ st, variance $=2$ nd

Position

(1) Mostly stats - uncertainty from probability distribution.
(2) $(\Delta x)^{2}=\left\langle x^{2}\right\rangle-\langle x\rangle^{2}$
(3) The same Δx from the uncertainty principle
(9) Find $\left\langle x^{2}\right\rangle$ almost as easily: 2nd moment of distribution
(5) Total probability $(1)=0$ th mode, mean $=1$ st, variance $=2$ nd

$$
\begin{aligned}
1 & =\int_{-\infty}^{+\infty} P(x), d x \\
\langle x\rangle & =\int_{-\infty}^{+\infty} x P(x), d x \\
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{+\infty} x^{2} P(x), d x \\
(\Delta x)^{2} & =\left\langle x^{2}\right\rangle-\langle x\rangle^{2}
\end{aligned}
$$

Other operators

(1) Potential energy is easy: operator is just $V(x)$.

Other operators

(1) Potential energy is easy: operator is just $V(x)$.
(2) $\langle U\rangle=\int V(x)|\psi(x)|^{2} d x$

Other operators

(1) Potential energy is easy: operator is just $V(x)$.
(2) $\langle U\rangle=\int V(x)|\psi(x)|^{2} d x$
(3) Momentum is less nice. For operators, order matters in general

Other operators

(1) Potential energy is easy: operator is just $V(x)$.
(2) $\langle U\rangle=\int V(x)|\psi(x)|^{2} d x$
(3) Momentum is less nice. For operators, order matters in general

$$
\begin{aligned}
\mathbf{p}_{\text {oper }} & =\frac{\hbar}{i} \frac{\partial}{\partial x} \quad \mathbf{p}_{\text {oper }}^{2}=-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}} \\
\langle p\rangle & =\int_{-\infty}^{+\infty} \psi^{*}(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x) d x \\
\left\langle p^{2}\right\rangle & =\int_{-\infty}^{+\infty} \psi^{*}(x)\left(-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}\right) \psi(x) d x \\
(\Delta p)^{2} & =\left\langle p^{2}\right\rangle-\langle p\rangle^{2}
\end{aligned}
$$

Other operators

(1) Potential energy is easy: operator is just $V(x)$.
(2) $\langle U\rangle=\int V(x)|\psi(x)|^{2} d x$

- Momentum is less nice. For operators, order matters in general

$$
\begin{aligned}
\mathbf{p}_{\text {oper }} & =\frac{\hbar}{i} \frac{\partial}{\partial x} \quad \mathbf{p}_{\text {oper }}^{2}=-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}} \\
\langle p\rangle & =\int_{-\infty}^{+\infty} \psi^{*}(x) \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x) d x \\
\left\langle p^{2}\right\rangle & =\int_{-\infty}^{+\infty} \psi^{*}(x)\left(-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}\right) \psi(x) d x \\
(\Delta p)^{2} & =\left\langle p^{2}\right\rangle-\langle p\rangle^{2}
\end{aligned}
$$

But! Can now formalize uncertainty principle \& actually calculate.

Particle in a box uncertainty

(1) What is $\langle x\rangle$ for the particle in a box?

Particle in a box uncertainty

(1) What is $\langle x\rangle$ for the particle in a box?
(2) It had better be right in the middle.

Particle in a box uncertainty

(1) What is $\langle x\rangle$ for the particle in a box?
(2) It had better be right in the middle.
(3) But what is the variance if we were to measure?

Particle in a box uncertainty

(1) What is $\langle x\rangle$ for the particle in a box?
(2) It had better be right in the middle.
(3) But what is the variance if we were to measure?

$$
\begin{aligned}
\langle x\rangle & =\int_{-\infty}^{+\infty} x|\psi(x)|^{2} d x=\int_{0}^{L} x \frac{2}{L} \sin ^{2} \frac{n \pi x}{L} d x \quad \text { let } u=n \pi x / L \\
& =\frac{2}{L} \frac{L}{n \pi} \int_{0}^{n \pi} \frac{L}{n \pi} u \sin ^{2} u d u=\frac{2 L}{n^{2} \pi^{2}}\left[\frac{u^{2}}{4}-\frac{1}{4} u \sin 2 u-\frac{1}{8} \cos 2 u\right]_{0}^{n \pi} \\
& =\frac{2 L}{n^{2} \pi^{2}}\left[\frac{n^{2} \pi^{2}}{4}\right]=\frac{L}{2}
\end{aligned}
$$

Particle in a box uncertainty

(1) What is $\langle x\rangle$ for the particle in a box?
(2) It had better be right in the middle.
(3) But what is the variance if we were to measure?

$$
\begin{aligned}
\langle x\rangle & =\int_{-\infty}^{+\infty} x|\psi(x)|^{2} d x=\int_{0}^{L} x \frac{2}{L} \sin ^{2} \frac{n \pi x}{L} d x \quad \text { let } u=n \pi x / L \\
& =\frac{2}{L} \frac{L}{n \pi} \int_{0}^{n \pi} \frac{L}{n \pi} u \sin ^{2} u d u=\frac{2 L}{n^{2} \pi^{2}}\left[\frac{u^{2}}{4}-\frac{1}{4} u \sin 2 u-\frac{1}{8} \cos 2 u\right]_{0}^{n \pi} \\
& =\frac{2 L}{n^{2} \pi^{2}}\left[\frac{n^{2} \pi^{2}}{4}\right]=\frac{L}{2}
\end{aligned}
$$

(1) $\sin 2 u, \cos 2 u$ terms are zero or cancel. Result as expected.

Particle in a box uncertainty

(1) Now we need $\left\langle x^{2}\right\rangle$. Remember $u=n \pi x / L$

Particle in a box uncertainty

(1) Now we need $\left\langle x^{2}\right\rangle$. Remember $u=n \pi x / L$

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{+\infty} x^{2}|\psi(x)|^{2} d x=\int_{0}^{L} x^{2} \frac{2}{L} \sin ^{2} \frac{n \pi x}{L} d x=\frac{2}{L} \frac{L}{n \pi} \frac{L^{2}}{n^{2} \pi^{2}} \int_{0}^{n \pi} u^{2} \sin ^{2} u d u \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left[\frac{u^{3}}{6}+\left(3-6 u^{2}\right) \sin 2 u-6 u \cos 2 u\right]_{0}^{n \pi} \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left(\frac{n^{3} \pi^{3}}{6}\right)=\frac{1}{3} L^{2}
\end{aligned}
$$

Particle in a box uncertainty

(1) Now we need $\left\langle x^{2}\right\rangle$. Remember $u=n \pi x / L$

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{+\infty} x^{2}|\psi(x)|^{2} d x=\int_{0}^{L} x^{2} \frac{2}{L} \sin ^{2} \frac{n \pi x}{L} d x=\frac{2}{L} \frac{L}{n \pi} \frac{L^{2}}{n^{2} \pi^{2}} \int_{0}^{n \pi} u^{2} \sin ^{2} u d u \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left[\frac{u^{3}}{6}+\left(3-6 u^{2}\right) \sin 2 u-6 u \cos 2 u\right]_{0}^{n \pi} \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left(\frac{n^{3} \pi^{3}}{6}\right)=\frac{1}{3} L^{2}
\end{aligned}
$$

(1) $\sin 2 u, \cos 2 u$ terms are zero or cancel.

Particle in a box uncertainty

(1) Now we need $\left\langle x^{2}\right\rangle$. Remember $u=n \pi x / L$

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{+\infty} x^{2}|\psi(x)|^{2} d x=\int_{0}^{L} x^{2} \frac{2}{L} \sin ^{2} \frac{n \pi x}{L} d x=\frac{2}{L} \frac{L}{n \pi} \frac{L^{2}}{n^{2} \pi^{2}} \int_{0}^{n \pi} u^{2} \sin ^{2} u d u \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left[\frac{u^{3}}{6}+\left(3-6 u^{2}\right) \sin 2 u-6 u \cos 2 u\right]_{0}^{n \pi} \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left(\frac{n^{3} \pi^{3}}{6}\right)=\frac{1}{3} L^{2}
\end{aligned}
$$

(1) $\sin 2 u, \cos 2 u$ terms are zero or cancel.
(2) Then $\Delta x=\sqrt{L^{2} / 3-(L / 2)^{2}}=L / 2 \sqrt{3} \approx L / 3.46$

Particle in a box uncertainty

(1) Now we need $\left\langle x^{2}\right\rangle$. Remember $u=n \pi x / L$

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\int_{-\infty}^{+\infty} x^{2}|\psi(x)|^{2} d x=\int_{0}^{L} x^{2} \frac{2}{L} \sin ^{2} \frac{n \pi x}{L} d x=\frac{2}{L} \frac{L}{n \pi} \frac{L^{2}}{n^{2} \pi^{2}} \int_{0}^{n \pi} u^{2} \sin ^{2} u d u \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left[\frac{u^{3}}{6}+\left(3-6 u^{2}\right) \sin 2 u-6 u \cos 2 u\right]_{0}^{n \pi} \\
& =\frac{2 L^{2}}{n^{3} \pi^{3}}\left(\frac{n^{3} \pi^{3}}{6}\right)=\frac{1}{3} L^{2}
\end{aligned}
$$

(1) $\sin 2 u, \cos 2 u$ terms are zero or cancel.
(2) Then $\Delta x=\sqrt{L^{2} / 3-(L / 2)^{2}}=L / 2 \sqrt{3} \approx L / 3.46$
(3) Measurement? $x_{\text {best }}=\langle x\rangle \pm\left\langle x^{2}\right\rangle=(0.500 \pm 0.289) L$ - broad

Particle in a box uncertainty

(1) How about momentum?

Particle in a box uncertainty

(1) How about momentum?
(2) Don't need math. Just as much time backwards as forward!

Particle in a box uncertainty

(1) How about momentum?
(2) Don't need math. Just as much time backwards as forward!
(3) $\langle p\rangle=0$ by symmetry, just as $\langle x\rangle=L / 2$ must be right

Particle in a box uncertainty

(1) How about momentum?
(2) Don't need math. Just as much time backwards as forward!
(3) $\langle p\rangle=0$ by symmetry, just as $\langle x\rangle=L / 2$ must be right
(4) Formally,

Particle in a box uncertainty

(1) How about momentum?
(2) Don't need math. Just as much time backwards as forward!
(3) $\langle p\rangle=0$ by symmetry, just as $\langle x\rangle=L / 2$ must be right
(4) Formally,

$$
\langle p\rangle=\int_{-\infty}^{+\infty} \psi^{*} \frac{\hbar}{i} \frac{\partial}{\partial x} \psi d x
$$

Particle in a box uncertainty

(1) How about momentum?
(2) Don't need math. Just as much time backwards as forward!
(3) $\langle p\rangle=0$ by symmetry, just as $\langle x\rangle=L / 2$ must be right
(4) Formally,

$$
\langle p\rangle=\int_{-\infty}^{+\infty} \psi^{*} \frac{\hbar}{i} \frac{\partial}{\partial x} \psi d x
$$

(1) Average momentum is zero, uncertainty/spread?

Particle in a box uncertainty

(1) How about momentum?
(2) Don't need math. Just as much time backwards as forward!
(3) $\langle p\rangle=0$ by symmetry, just as $\langle x\rangle=L / 2$ must be right
(4) Formally,

$$
\langle p\rangle=\int_{-\infty}^{+\infty} \psi^{*} \frac{\hbar}{i} \frac{\partial}{\partial x} \psi d x
$$

(1) Average momentum is zero, uncertainty/spread?
(2) Need $\left\langle p^{2}\right\rangle$ for that

Particle in a box uncertainty

(1) How about momentum?
(2) Don't need math. Just as much time backwards as forward!
(3) $\langle p\rangle=0$ by symmetry, just as $\langle x\rangle=L / 2$ must be right
(9) Formally,

$$
\langle p\rangle=\int_{-\infty}^{+\infty} \psi^{*} \frac{\hbar}{i} \frac{\partial}{\partial x} \psi d x
$$

(1) Average momentum is zero, uncertainty/spread?
(2) Need $\left\langle p^{2}\right\rangle$ for that
(3) We know $p^{2}=2 m E$ for a free particle, must be true in box too ...

Particle in a box uncertainty

(1) Since $p^{2}=2 m E$, then $\left\langle p^{2}\right\rangle=2 m E_{n}$ - know E already

Particle in a box uncertainty

(1) Since $p^{2}=2 m E$, then $\left\langle p^{2}\right\rangle=2 m E_{n}$ - know E already
(2) Formally, we would do

Particle in a box uncertainty

(1) Since $p^{2}=2 m E$, then $\left\langle p^{2}\right\rangle=2 m E_{n}-$ know E already
(2) Formally, we would do

$$
\left\langle p^{2}\right\rangle=\int_{-\infty}^{+\infty} \psi^{*}\left(\mathbf{p}_{\text {oper }}\right)^{2} \psi=\int_{-\infty}^{+\infty} \psi^{*}\left(-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}\right) \psi d x
$$

Particle in a box uncertainty

(1) Since $p^{2}=2 m E$, then $\left\langle p^{2}\right\rangle=2 m E_{n}-$ know E already
(2) Formally, we would do

$$
\left\langle p^{2}\right\rangle=\int_{-\infty}^{+\infty} \psi^{*}\left(\mathbf{p}_{\text {oper }}\right)^{2} \psi=\int_{-\infty}^{+\infty} \psi^{*}\left(-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}\right) \psi d x
$$

In any case:

Particle in a box uncertainty

(1) Since $p^{2}=2 m E$, then $\left\langle p^{2}\right\rangle=2 m E_{n}-$ know E already
(2) Formally, we would do

$$
\left\langle p^{2}\right\rangle=\int_{-\infty}^{+\infty} \psi^{*}\left(\mathbf{p}_{\text {oper }}\right)^{2} \psi=\int_{-\infty}^{+\infty} \psi^{*}\left(-\hbar^{2} \frac{\partial^{2}}{\partial x^{2}}\right) \psi d x
$$

In any case:

$$
\Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\sqrt{2 m E_{n}-0}=\frac{n \pi \hbar}{L}
$$

Particle in a box uncertainty

(1) Put it together: we know Δx and Δp now.

Particle in a box uncertainty

(1) Put it together: we know Δx and Δp now.
(2) Does the uncertainty principle hold?

Particle in a box uncertainty

(1) Put it together: we know Δx and Δp now.
(2) Does the uncertainty principle hold?

$$
\Delta x \Delta p=\left(\frac{L}{2 \sqrt{3}}\right)\left(\frac{n \pi \hbar}{L}\right)=\frac{n \pi \hbar}{2 \sqrt{3}}>\frac{\hbar}{2}
$$

Particle in a box uncertainty

(1) Put it together: we know Δx and Δp now.
(2) Does the uncertainty principle hold?

$$
\Delta x \Delta p=\left(\frac{L}{2 \sqrt{3}}\right)\left(\frac{n \pi \hbar}{L}\right)=\frac{n \pi \hbar}{2 \sqrt{3}}>\frac{\hbar}{2}
$$

(1) Numerical, $\Delta x \Delta p \approx 0.9 n \hbar>0.5 \hbar$

Particle in a box uncertainty

(1) Put it together: we know Δx and Δp now.
(2) Does the uncertainty principle hold?

$$
\Delta x \Delta p=\left(\frac{L}{2 \sqrt{3}}\right)\left(\frac{n \pi \hbar}{L}\right)=\frac{n \pi \hbar}{2 \sqrt{3}}>\frac{\hbar}{2}
$$

(1) Numerical, $\Delta x \Delta p \approx 0.9 n \hbar>0.5 \hbar$
(2) Well above $0.5 \hbar$ limit, by factor $n \pi / \sqrt{3} \approx 1.81 n$

Particle in a box uncertainty

(1) Put it together: we know Δx and Δp now.
(2) Does the uncertainty principle hold?

$$
\Delta x \Delta p=\left(\frac{L}{2 \sqrt{3}}\right)\left(\frac{n \pi \hbar}{L}\right)=\frac{n \pi \hbar}{2 \sqrt{3}}>\frac{\hbar}{2}
$$

(1) Numerical, $\Delta x \Delta p \approx 0.9 n \hbar>0.5 \hbar$
(2) Well above $0.5 \hbar$ limit, by factor $n \pi / \sqrt{3} \approx 1.81 n$
(3) Not unreasonable: uncertainty up as n (and E_{n}) increase

General procedure

(1) Find potential, by region if necessary

General procedure

(1) Find potential, by region if necessary
(3) Write down and solve Schrödinger's equation for each region

General procedure

(1) Find potential, by region if necessary
(2) Write down and solve Schrödinger's equation for each region

- Enforce any boundary conditions you know

General procedure

(1) Find potential, by region if necessary
(2) Write down and solve Schrödinger's equation for each region
(3) Enforce any boundary conditions you know
(9) Enforce continuity of ψ and its derivatives at boundaries

General procedure

(1) Find potential, by region if necessary
(2) Write down and solve Schrödinger's equation for each region
(3) Enforce any boundary conditions you know
(9) Enforce continuity of ψ and its derivatives at boundaries
(6) Find overall constants by normalization

General procedure

(1) Find potential, by region if necessary
(2) Write down and solve Schrödinger's equation for each region
(3) Enforce any boundary conditions you know
(9) Enforce continuity of ψ and its derivatives at boundaries
(5) Find overall constants by normalization
(6) Up next: modeling atoms

