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Image of the day

High-resolution electron microscope image of a Co1.5Ti0.5FeGe alloy
sample. The bright dots are individual atoms. The inset is a Fourier
transform of the image, indicating the hexagonal symmetry.

Figure: UA Physics / LeClair group / Phys. Rev. Materials 3, 114406 (2019)
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3 Observables and operators
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Transmission is highly energy-dependent

Prefl =

(
k− q
k + q

)2

reflection

Ptrans =
4kq

(k + q)2 =

√
E−V0

E
|T|2 transmission

1 Degree of transmission depends on k, q, i.e., E compared to Vo

2 High energy: k ∼ q gives Prefl ∼ 0, Ptrans ∼ 1
3 Low energy: k� q gives significant Prefl

4 Check: k = q, Ptrans = 1 – there is no step!
5 Check: q = 0, Ptrans = 0 – zero energy in II!
6 E = V0? Ptrans = 0, perfect reflection
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Transmission is highly energy-dependent
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Some interesting aspects

1 Classical: go over step, slow down to conserve E, never reflect

2 Quantum: chance of reflection, even if E high enough.
3 If E < V0, q is imaginary – oscillation becomes decay!

ψI I = Te−|q|x T =
2k

k + i|q| 6= 0 (E < V0)

Figure: http://www.met.reading.ac.uk/pplato2/h-flap/phys11_1.html
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Particle in a box

1 Potential zero inside, infinite outside
2 Like book derivation of blackbody radiation
3 Can also imagine charged plates + e−

4 Clearly particle is stuck
5 Implies boundary condition ψ(0) = ψ(L) = 0!

0 L x
V = 0

V = ∞
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Particle in a box

1 Wave can’t penetrate boundary, so ψ goes to zero there
2 Spoiler alert: standing waves
3 Inside the box? No potential, just as free particle!

E =
p2

2m
=

h̄2k2

2m

Now set up Schrödinger’s equation in box + boundary conditions.

0 L x
V = 0

V = ∞
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Boundary conditions are key

Schrödinger equation with V = 0:

d2ψ

dx2 = −
(

2mE
h̄2

)
ψ = −k2ψ

(
with k2 =

2mE
h̄2

)

We already know the solution

ψ(x) = C1eikx + C2e−ikx

How to find constants? Boundary conditions! ψ(0) = ψ(L) = 0

0 L x
V = 0

V = ∞
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Boundary conditions are key

ψ(x) = C1eikx + C2e−ikx

ψ(0) = C1 + C2 = 0 =⇒ C1 = −C2

ψ(x) = C1eikx − C1e−ikx

Note eikx − e−ikx ∝ sin kx =⇒ ψ(x) = C sin kx.
Recall: bound states have ψ purely real

0 L x
V = 0

V = ∞
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Discrete energies

ψ(L) = C sin kL = 0

1 Only true when kL = nπ, n = {1, 2, 3, . . .}.
2 Means only certain k values (& therefore λ) allowed!
3 n is like a harmonic, how many half λ’s fit in box
4 kn = nπ

L , or n λ
2 = L. Implies discrete energies too. . .

5 Basically: modes of a string. C might depend on n?

En =
h̄2k2

n
2m

=
h̄2π2n2

2mL2 =
n2h2

8mL2

Figure: Krane, Modern Physics. Solid: ψ. Dashed: |ψ|2 .
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Discrete energies

ψ(x) =

{
Cn sin

( nπx
L

)
0 ≤ x ≥ L

0 x < 0, x > L

1 Since V is independent of time, time variation is e−iEnt/h̄

2 Big picture: confinement leads to quantized energy levels.
3 Where we went wrong with free particle: no boundary conditions
4 What are the Cn? We have not normalized the wave function . . .

Figure: Krane, Modern Physics. Solid: ψ. Dashed: |ψ|2 .
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Always normalize

ψ(x) =

{
Cn sin

( nπx
L

)
0 ≤ x ≥ L

0 x < 0, x > L

1 What are the Cn? We have not normalized the wave function . . .
2 Enforce

∫ ∞
−∞ |ψ(x)|2 dx = 1

3 Integrand only nonzero from 0 to L though!

1 =

L∫
0

|ψ(x)|2 dx =

L∫
0

C2
n sin2

(nπx
L

)
dx

= C2
n

[
x
2
− 4L

nπ
sin
(

2
nπx

L

)] ∣∣∣∣L
0
= C2

n
L
2
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Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)
3 Recall probability in an interval [a, b] is P(in [a, b]) =

b∫
a

P(x) dx

4 E.g., what is the probability particle is in middle half of box?
5 What about position? Momentum?
6 So far we can get energy from the Schrödinger equation
7 We figured out the momentum operator last time, p = −ih̄ ∂

∂x
8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)

3 Recall probability in an interval [a, b] is P(in [a, b]) =
b∫

a
P(x) dx

4 E.g., what is the probability particle is in middle half of box?
5 What about position? Momentum?
6 So far we can get energy from the Schrödinger equation
7 We figured out the momentum operator last time, p = −ih̄ ∂

∂x
8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)
3 Recall probability in an interval [a, b] is P(in [a, b]) =

b∫
a

P(x) dx

4 E.g., what is the probability particle is in middle half of box?
5 What about position? Momentum?
6 So far we can get energy from the Schrödinger equation
7 We figured out the momentum operator last time, p = −ih̄ ∂

∂x
8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)
3 Recall probability in an interval [a, b] is P(in [a, b]) =

b∫
a

P(x) dx

4 E.g., what is the probability particle is in middle half of box?

5 What about position? Momentum?
6 So far we can get energy from the Schrödinger equation
7 We figured out the momentum operator last time, p = −ih̄ ∂

∂x
8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)
3 Recall probability in an interval [a, b] is P(in [a, b]) =

b∫
a

P(x) dx

4 E.g., what is the probability particle is in middle half of box?
5 What about position? Momentum?

6 So far we can get energy from the Schrödinger equation
7 We figured out the momentum operator last time, p = −ih̄ ∂

∂x
8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)
3 Recall probability in an interval [a, b] is P(in [a, b]) =

b∫
a

P(x) dx

4 E.g., what is the probability particle is in middle half of box?
5 What about position? Momentum?
6 So far we can get energy from the Schrödinger equation

7 We figured out the momentum operator last time, p = −ih̄ ∂
∂x

8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)
3 Recall probability in an interval [a, b] is P(in [a, b]) =

b∫
a

P(x) dx

4 E.g., what is the probability particle is in middle half of box?
5 What about position? Momentum?
6 So far we can get energy from the Schrödinger equation
7 We figured out the momentum operator last time, p = −ih̄ ∂

∂x

8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Always normalize

1 C2
n(L/2) = 1, so Cn =

√
2/L for all n

2 Within the box, ψn(x) =
√

2
L sin

( nπx
L

)
3 Recall probability in an interval [a, b] is P(in [a, b]) =

b∫
a

P(x) dx

4 E.g., what is the probability particle is in middle half of box?
5 What about position? Momentum?
6 So far we can get energy from the Schrödinger equation
7 We figured out the momentum operator last time, p = −ih̄ ∂

∂x
8 What about position, and how to use these new operators?

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 16 / 26



Outline

1 Potential step

2 Particle in a box

3 Observables and operators
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Observables

1 We can calculate expectation values for any observable

2 With many measurements, what would you expect on average?
3 Like moments of a probability distribution (mean, std. dev)
4 Generic form for observable A is 〈A〉 =

∫
ψ∗Aopψ dx

5 The position operator is simple, it is just x
6 Expectation value of position is then:

〈x〉 =
+∞∫
−∞

ψ∗xψ dx =

+∞∫
−∞

x|ψ(x)|2 dx =

+∞∫
−∞

xP(x), dx
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Position

1 Mostly stats – uncertainty from probability distribution.

2 (∆x)2 = 〈x2〉 − 〈x〉2
3 The same ∆x from the uncertainty principle
4 Find 〈x2〉 almost as easily: 2nd moment of distribution
5 Total probability (1) = 0th mode, mean = 1st, variance = 2nd

1 =

+∞∫
−∞

P(x), dx

〈x〉 =
+∞∫
−∞

xP(x), dx

〈x2〉 =
+∞∫
−∞

x2P(x), dx

(∆x)2 = 〈x2〉 − 〈x〉2
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Other operators

1 Potential energy is easy: operator is just V(x).

2 〈U〉 =
∫

V(x)|ψ(x)|2 dx
3 Momentum is less nice. For operators, order matters in general

poper =
h̄
i

∂

∂x
p2

oper = −h̄2 ∂2

∂x2

〈p〉 =
+∞∫
−∞

ψ∗(x)
h̄
i

∂

∂x
ψ(x) dx

〈p2〉 =
+∞∫
−∞

ψ∗(x)
(
−h̄2 ∂2

∂x2

)
ψ(x) dx

(∆p)2 = 〈p2〉 − 〈p〉2

But! Can now formalize uncertainty principle & actually calculate.

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 20 / 26



Other operators

1 Potential energy is easy: operator is just V(x).
2 〈U〉 =

∫
V(x)|ψ(x)|2 dx

3 Momentum is less nice. For operators, order matters in general

poper =
h̄
i

∂

∂x
p2

oper = −h̄2 ∂2

∂x2

〈p〉 =
+∞∫
−∞

ψ∗(x)
h̄
i

∂

∂x
ψ(x) dx

〈p2〉 =
+∞∫
−∞

ψ∗(x)
(
−h̄2 ∂2

∂x2

)
ψ(x) dx

(∆p)2 = 〈p2〉 − 〈p〉2

But! Can now formalize uncertainty principle & actually calculate.

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 20 / 26



Other operators

1 Potential energy is easy: operator is just V(x).
2 〈U〉 =

∫
V(x)|ψ(x)|2 dx

3 Momentum is less nice. For operators, order matters in general

poper =
h̄
i

∂

∂x
p2

oper = −h̄2 ∂2

∂x2

〈p〉 =
+∞∫
−∞

ψ∗(x)
h̄
i

∂

∂x
ψ(x) dx

〈p2〉 =
+∞∫
−∞

ψ∗(x)
(
−h̄2 ∂2

∂x2

)
ψ(x) dx

(∆p)2 = 〈p2〉 − 〈p〉2

But! Can now formalize uncertainty principle & actually calculate.

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 20 / 26



Other operators

1 Potential energy is easy: operator is just V(x).
2 〈U〉 =

∫
V(x)|ψ(x)|2 dx

3 Momentum is less nice. For operators, order matters in general

poper =
h̄
i

∂

∂x
p2

oper = −h̄2 ∂2

∂x2

〈p〉 =
+∞∫
−∞

ψ∗(x)
h̄
i

∂

∂x
ψ(x) dx

〈p2〉 =
+∞∫
−∞

ψ∗(x)
(
−h̄2 ∂2

∂x2

)
ψ(x) dx

(∆p)2 = 〈p2〉 − 〈p〉2

But! Can now formalize uncertainty principle & actually calculate.

LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 20 / 26



Other operators

1 Potential energy is easy: operator is just V(x).
2 〈U〉 =

∫
V(x)|ψ(x)|2 dx

3 Momentum is less nice. For operators, order matters in general

poper =
h̄
i

∂

∂x
p2

oper = −h̄2 ∂2

∂x2

〈p〉 =
+∞∫
−∞

ψ∗(x)
h̄
i

∂

∂x
ψ(x) dx

〈p2〉 =
+∞∫
−∞

ψ∗(x)
(
−h̄2 ∂2

∂x2

)
ψ(x) dx

(∆p)2 = 〈p2〉 − 〈p〉2

But! Can now formalize uncertainty principle & actually calculate.
LeClair, Patrick (UA) PH253 Lecture 15 February 14, 2020 20 / 26



Particle in a box uncertainty

1 What is 〈x〉 for the particle in a box?

2 It had better be right in the middle.
3 But what is the variance if we were to measure?

〈x〉 =
+∞∫
−∞

x|ψ(x)|2 dx =

L∫
0

x
2
L

sin2 nπx
L

dx let u = nπx/L

=
2
L

L
nπ

nπ∫
0

L
nπ

u sin2 u du =
2L

n2π2

[
u2

4
− 1

4
u sin 2u− 1

8
cos 2u

]nπ

0

=
2L

n2π2

[
n2π2

4

]
=

L
2

1 sin 2u, cos 2u terms are zero or cancel. Result as expected.
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1 sin 2u, cos 2u terms are zero or cancel.
2 Then ∆x =

√
L2/3− (L/2)2 = L/2

√
3 ≈ L/3.46

3 Measurement? xbest = 〈x〉 ± 〈x2〉 = (0.500± 0.289)L – broad
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Particle in a box uncertainty

1 How about momentum?

2 Don’t need math. Just as much time backwards as forward!
3 〈p〉 = 0 by symmetry, just as 〈x〉 = L/2 must be right
4 Formally,

〈p〉 =
+∞∫
−∞

ψ∗
h̄
i

∂

∂x
ψ dx

1 Average momentum is zero, uncertainty/spread?
2 Need 〈p2〉 for that
3 We know p2 = 2mE for a free particle, must be true in box too . . .
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Particle in a box uncertainty

1 Since p2 = 2mE, then 〈p2〉 = 2mEn – know E already

2 Formally, we would do

〈p2〉 =
+∞∫
−∞

ψ∗
(
poper

)2
ψ =

+∞∫
−∞

ψ∗
(
−h̄2 ∂2

∂x2

)
ψ dx

In any case:

∆p =
√
〈p2〉 − 〈p〉2 =

√
2mEn − 0 =

nπh̄
L
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Particle in a box uncertainty

1 Put it together: we know ∆x and ∆p now.

2 Does the uncertainty principle hold?

∆x∆p =

(
L

2
√

3

)(
nπh̄

L

)
=

nπh̄
2
√

3
>

h̄
2

1 Numerical, ∆x∆p ≈ 0.9nh̄ > 0.5h̄
2 Well above 0.5h̄ limit, by factor nπ/

√
3 ≈ 1.81n

3 Not unreasonable: uncertainty up as n (and En) increase
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General procedure

1 Find potential, by region if necessary

2 Write down and solve Schrödinger’s equation for each region
3 Enforce any boundary conditions you know
4 Enforce continuity of ψ and its derivatives at boundaries
5 Find overall constants by normalization
6 Up next: modeling atoms
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