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Exam 2 is Monday, and here are hints

Know how to find probability a particle is within some region.

Know how to normalize a wavefunction
Know how to find 〈x〉 and 〈x2〉
Given a wavefunction ψ and potential V(x), use the
time-independent Schrödinger equation to find the energy
Study the particle in a box problem
HW2: Compton effect, photoelectric effect. All problems similar.
HW2: Know how to use the uncertainty principle, particularly for
microscope resolution.
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Outline

1 Now in 3D
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How do we use Schrödinger’s equation in 3D?

Start simple. Expect ground state is spherically symmetric.
How to use that?
How to handle real Coulomb interaction of p+ and e−?
First: presume p+ fixed (mp ∼ 1800me). Easy to correct later.
Origin at p+ position, e− at r. In 1D:

p+
r

e−

V(r) = − e2

4πεor
= − ke2

r

− h̄2

2m
∂2ψ

∂x2 + Vψ = 0 -or-
h̄2

2m
∂2ψ

∂x2 +

(
e2

4πεor
− E

)
ψ = 0
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How do we use Schrödinger’s equation in 3D?

In 3D? Not just a derivative anymore, replace ∂2/∂x2 with

∂2

∂x2 →
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ≡ ∇
2

I.e., just take derivatives for each rectangular coordinate.

h̄2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ +

(
e2

4πεor
− E

)
ψ = 0

-or-
h̄2

2m
∇2ψ +

(
e2

4πεor
− E

)
ψ = 0

See the problem?
Rectangular coordinate system, radial potential = pain
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Exploit/enforce radial symmetry

Rectangular coordinate, radial potential = pain
Transformation of coordinates also annoying
Assume lowest energy (ground) state depends only on r
I.e., spherically symmetric, independent of θ, ϕ

Potential only depends on r
If this works, go back and include angular parts
First: transform to radial coordinates
Second: presume Ψ(r, θ, ϕ) = f (θ, ϕ)ψ(r) – separable
Should work for ground state since V independent of θ, ϕ

Just like we did to separate time-dependent Schrödinger . . .
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Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored
Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored

Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored
Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored
Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored
Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored
Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored
Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Still a 1D problem then, since (θ, ϕ) are ignored
Coordinate transform: chain rule madness.

∂ψ

∂x
=

∂r
∂x

∂ψ

∂r
=

∂r
∂x

∂

∂r
ψ

=⇒ ∂2ψ

∂x2 =
∂

∂x

(
∂ψ

∂r
∂r
∂x

)

=⇒ ∂2ψ

∂x2 =
∂r
∂x

∂

∂r

(
∂ψ

∂r

)
∂r
∂x

+
∂ψ

∂r
∂2r
∂x2

=⇒ ∂2ψ

∂x2 =
∂2ψ

∂r2

(
∂r
∂x

)2

+
∂ψ

∂r
∂2r
∂x2

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 8 / 22



Radial coordinates

Can do the same for y and z
Just need terms like ∂r/∂x and ∂2r/∂x2

r =
√

x2 + y2 + z2

∂r
∂x

=
x√

x2 + y2 + z2
=

x
r

∂2r
∂x2 =

1
r
− x2

r3

Put it all together, note r =
√

x2 + y2 + z2

∇2ψ =
∂2ψ

∂r2

(
x2 + y2 + z2

r2

)
+

∂ψ

∂r

(
3
r
− x2 + y2 + z2

r3

)

=⇒ ∇2ψ =
∂2ψ

∂r2 +
2
r

∂ψ

∂r
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Radially-symmetric Schrödinger

h̄2

2m

(
∂2ψ

∂r2 +
2
r

∂ψ

∂r

)
+

(
E +

e2

4πεor

)
ψ = 0

Just a slightly different 1D equation.

d2y
dx2 +

a
x

dy
dx

+ by = 0

Need the function and first two derivatives of same form
Need bound state (known), so purely real function
Like damped harmonic oscillator, but sign change . . .
2nd order equation, 2 arbitrary constants
Try Ae−cr – fits all conditions
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Guessing the solution for the win

Try ψ(r) = e−cr – can fix overall constant A with normalization
later

∂ψ

∂r
= −ce−cr = −cψ

∂2ψ

∂r2 = c2e−cr = c2ψ

Can already see exponentials will turn our diff. eq. into algebra . . .

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 11 / 22



Guessing the solution for the win

Try ψ(r) = e−cr – can fix overall constant A with normalization
later

∂ψ

∂r
= −ce−cr = −cψ

∂2ψ

∂r2 = c2e−cr = c2ψ

Can already see exponentials will turn our diff. eq. into algebra . . .

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 11 / 22



Guessing the solution for the win

Try ψ(r) = e−cr – can fix overall constant A with normalization
later

∂ψ

∂r
= −ce−cr = −cψ

∂2ψ

∂r2 = c2e−cr = c2ψ

Can already see exponentials will turn our diff. eq. into algebra . . .

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 11 / 22



Guessing the solution for the win

Try ψ(r) = e−cr – can fix overall constant A with normalization
later

∂ψ

∂r
= −ce−cr = −cψ

∂2ψ

∂r2 = c2e−cr = c2ψ

Can already see exponentials will turn our diff. eq. into algebra . . .

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 11 / 22



Guessing the solution for the win

∂ψ
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∂2ψ
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2m

(
∂2ψ
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2
r

∂ψ
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(
E +

e2

4πεor

)
ψ = 0

h̄2

2m

[
c2e−cr +

2
r
(
−ce−cr)]+(E +

e2

4πεor

)
e−cr = 0

Exponential terms irrelevant, ignore them.
Valid for all r? Then r, 1/r, constant terms equate separately
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Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



Guessing the solution for the win

h̄2c2

2m
+

h̄2

2m
2
r
(−c) +

(
E +

e2

4πεor

)
= 0

Equate coefficients of 1/r terms, must cancel on LHS:

− h̄2c
m

+
e2

4πεo
= 0 -or- c =

e2m
4πεo h̄2 =

1
ao

Decay constant is Bohr radius ao! ψ(r) = e−r/ao

Equate constant terms

E = − h̄2c2

2m
-or- E = − me4

2 (4πεo)
2 h̄2 = En=1,Bohr

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 13 / 22



So what

Energy is negative, bound state. Atom is stable!
Only assumption was spherical symmetry, no hand-waving!
E exactly as Bohr model n = 1 & experiment ground state
Length scale is ao as before . . .
. . . but not an orbit, just a characteristic distance
n = 1 ground state is the 1s orbital, spoiler alert
So what? Now we use all those things we learned to do with ψ

Normalize, 〈r〉, and so on
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Normalize ψ

We ignored this. Should say ψ(r) = Ae−r/ao , and then . . .
Enforce probability sanity condition.

1 =

∞∫
−∞

|ψ(r)|2dV

Integrate over “all space” – spherical shells! (still ignoring ϕ, θ)
That means dV = (surface area)(thickness) = 4πr2 dr; r : 0→ ∞

1 =

∞∫
−∞

|ψ(r)|2dV =

∞∫
−∞

e−2r/ao 4πr2 dr
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Normalize ψ

1 =

∞∫
−∞

|ψ(r)|2dV =

∞∫
−∞

e2r/ao 4πr2 dr

Super tedious. Let u = 2r/ao, repeated integration by parts.
Need this more often . . . basic form is

∫ ∞
0 xne−ax dx = n!/an+1

Post tedium,

ψ(r) =
1√
πa3

o
e−r/ao

With ψ(r) properly normalized, we can get P(r) and move on.
P(x) dx → P(r, θ, ϕ) dV now
This is the hydrogen 1s state. What about 2, and p, d, f ?
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Probability distribution

P(r) = |ψ(r)|24πr2 =

∣∣∣∣ 1√
πa3

o
e−r/ao

∣∣∣∣2 4πr2 =
4r2

a3
o

e−2r/ao

0 1 2 3 4
0

0.2

0.4

0.6

r/ao

P
(r
),

ψ
(r
)

There is a most probable radius, but clearly not an orbit!
Clearly e− confined near proton, as required
Most probable radius? When ∂P/∂r = 0
This happens at r = ao, semi-classical orbit radius from Bohr
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Probability distribution

Picture: e− is a fuzzy “cloud” distributed about p+

Probability zero at r = 0, max at r = ao. Smoothly to zero at large r
Peak probability at r = ao, semi-classical orbit radius from Bohr
What is the expected position? Not ao, asymmetric distribution!
Asymmetric means mean 6= most likely. Need to calculate it.
Most probable ∼mode, 〈r〉 ∼ average
Again: in spite of distribution, measurement yields 1 e− at one spot
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Expectation value of e− position

By analogy with 1D definition of 〈x〉,

〈r〉 =
∫
all

ψ∗rψ dV

Assuming radial symmetry (still) and our ψ,

〈r〉 =
∞∫

0

4r3

a3
o

e−2r/ao dr =
4
a3

o

∞∫
0

r3e−2r/ao dr

Annoying integral same form as before,
∫ ∞

0 xne−ax dx = n!/an+1

〈r〉 = 4
a3

o
· 3!
(2/ao)4 =

3
2

ao
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Expectation value of e− position

P(r) is skewed to large r, so expected value > most probable.
Expect to find it beyond most probable value more often.
Can similarly show 〈r2〉 = 3a2

o , ∆r =
√
〈r2〉 − 〈r〉2 = ao

√
3/2

Or, rexpected = 〈r〉 ± ∆r = 3
2 ao(1± 1/

√
3)

Pretty spread out! No “orbit” indeed; uncertainty in position.

0 1 2 3 4
0

0.2

0.4

0.6

r/ao

P
(r
)
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Probability of finding within a region?

Between any radii r1 and r2:

P(r in [r1, r2]) =

r2∫
r1

|ψ(r)|2 · 4πr2 dr

No analytic solution in general
Let u = 2r/ao, gives a simpler (well-known) for Wolfram.
So, r = ao means u = 2, r = 3

2 ao means u = 3, etc.

P(r in [u1, u2]) =
1
2

u2∫
u1

u2e−u du

Check: u = 0 to u = ∞, integral is exactly 2, so P = 1
Once again:

∫ ∞
0 xne−ax dx = n!/an+1 . . . I told you this would keep showing up
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Probability of finding within a region?

Specifically, probability e− is in [0, ao]?
I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated
Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!
Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22



Probability of finding within a region?

Specifically, probability e− is in [0, ao]?

I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated
Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!
Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22



Probability of finding within a region?

Specifically, probability e− is in [0, ao]?
I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated
Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!
Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22



Probability of finding within a region?

Specifically, probability e− is in [0, ao]?
I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated
Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!
Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22



Probability of finding within a region?

Specifically, probability e− is in [0, ao]?
I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated

Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!
Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22



Probability of finding within a region?

Specifically, probability e− is in [0, ao]?
I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated
Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)

Also excited s states. Need a better approach, but a good start!
Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22



Probability of finding within a region?

Specifically, probability e− is in [0, ao]?
I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated
Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!

Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22



Probability of finding within a region?

Specifically, probability e− is in [0, ao]?
I.e., closer than Bohr radius, impossible in Bohr model

P(r in [0, ao]) =
4
a3

o

ao∫
0

r2e−2r/ao dr =
1
2

2∫
0

u2e−u du ≈ 1
3

Numerical evaluation is straightforward and well-tabulated
Next? Need θ, ϕ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!
Need fewer assumptions, better mechanics, more math

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 22 / 22


	Now in 3D

