PH253 Lecture 17: Hydrogen atom ground state

P. LeClair

Department of Physics \& Astronomy
The University of Alabama
Spring 2020

Exam 2 is Monday, and here are hints

- Know how to find probability a particle is within some region.

Exam 2 is Monday, and here are hints

- Know how to find probability a particle is within some region.
- Know how to normalize a wavefunction

Exam 2 is Monday, and here are hints

- Know how to find probability a particle is within some region.
- Know how to normalize a wavefunction
- Know how to find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$

Exam 2 is Monday, and here are hints

- Know how to find probability a particle is within some region.
- Know how to normalize a wavefunction
- Know how to find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$
- Given a wavefunction ψ and potential $V(x)$, use the time-independent Schrödinger equation to find the energy

Exam 2 is Monday, and here are hints

- Know how to find probability a particle is within some region.
- Know how to normalize a wavefunction
- Know how to find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$
- Given a wavefunction ψ and potential $V(x)$, use the time-independent Schrödinger equation to find the energy
- Study the particle in a box problem

Exam 2 is Monday, and here are hints

- Know how to find probability a particle is within some region.
- Know how to normalize a wavefunction
- Know how to find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$
- Given a wavefunction ψ and potential $V(x)$, use the time-independent Schrödinger equation to find the energy
- Study the particle in a box problem
- HW2: Compton effect, photoelectric effect. All problems similar.

Exam 2 is Monday, and here are hints

- Know how to find probability a particle is within some region.
- Know how to normalize a wavefunction
- Know how to find $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$
- Given a wavefunction ψ and potential $V(x)$, use the time-independent Schrödinger equation to find the energy
- Study the particle in a box problem
- HW2: Compton effect, photoelectric effect. All problems similar.
- HW2: Know how to use the uncertainty principle, particularly for microscope resolution.

Outline

(1) Now in 3D

How do we use Schrödinger's equation in 3D?

How do we use Schrödinger's equation in 3D?

- Start simple. Expect ground state is spherically symmetric.

How do we use Schrödinger's equation in 3D?

- Start simple. Expect ground state is spherically symmetric.
- How to use that?

How do we use Schrödinger's equation in 3D?

- Start simple. Expect ground state is spherically symmetric.
- How to use that?
- How to handle real Coulomb interaction of p^{+}and e^{-}?

How do we use Schrödinger's equation in 3D?

- Start simple. Expect ground state is spherically symmetric.
- How to use that?
- How to handle real Coulomb interaction of p^{+}and e^{-}?
- First: presume p^{+}fixed ($m_{p} \sim 1800 m_{e}$). Easy to correct later.

How do we use Schrödinger's equation in 3D?

- Start simple. Expect ground state is spherically symmetric.
- How to use that?
- How to handle real Coulomb interaction of p^{+}and e^{-}?
- First: presume p^{+}fixed ($m_{p} \sim 1800 m_{e}$). Easy to correct later.
- Origin at p^{+}position, e^{-}at r. In 1D:

How do we use Schrödinger's equation in 3D?

- Start simple. Expect ground state is spherically symmetric.
- How to use that?
- How to handle real Coulomb interaction of p^{+}and e^{-}?
- First: presume p^{+}fixed ($m_{p} \sim 1800 m_{e}$). Easy to correct later.
- Origin at p^{+}position, e^{-}at r. In 1D:

$$
V(r)=-\frac{e^{2}}{4 \pi \epsilon_{0} r}=-\frac{k e^{2}}{r}
$$

How do we use Schrödinger's equation in 3D?

- Start simple. Expect ground state is spherically symmetric.
- How to use that?
- How to handle real Coulomb interaction of p^{+}and e^{-}?
- First: presume p^{+}fixed ($m_{p} \sim 1800 m_{e}$). Easy to correct later.
- Origin at p^{+}position, e^{-}at r. In 1D:

$$
\begin{gathered}
\stackrel{p^{+}}{e^{-}} \\
V(r)=-\frac{e^{2}}{4 \pi \epsilon_{o} r}=-\frac{k e^{2}}{r} \\
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+V \psi=0 \quad \text {-or- } \frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\left(\frac{e^{2}}{4 \pi \epsilon_{o} r}-E\right) \psi=0
\end{gathered}
$$

How do we use Schrödinger's equation in 3D?

How do we use Schrödinger's equation in 3D?

- In 3D? Not just a derivative anymore, replace $\partial^{2} / \partial x^{2}$ with

How do we use Schrödinger's equation in 3D?

- In 3D? Not just a derivative anymore, replace $\partial^{2} / \partial x^{2}$ with

$$
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \equiv \nabla^{2}
$$

How do we use Schrödinger's equation in 3D?

- In 3D? Not just a derivative anymore, replace $\partial^{2} / \partial x^{2}$ with

$$
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \equiv \nabla^{2}
$$

- I.e., just take derivatives for each rectangular coordinate.

How do we use Schrödinger's equation in 3D?

- In 3D? Not just a derivative anymore, replace $\partial^{2} / \partial x^{2}$ with

$$
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \equiv \nabla^{2}
$$

- I.e., just take derivatives for each rectangular coordinate.

$$
\begin{aligned}
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi+\left(\frac{e^{2}}{4 \pi \epsilon_{o} r}-E\right) \psi & =0 \\
\text {-or- } \quad \frac{\hbar^{2}}{2 m} \nabla^{2} \psi+\left(\frac{e^{2}}{4 \pi \epsilon_{o} r}-E\right) \psi & =0
\end{aligned}
$$

How do we use Schrödinger's equation in 3D?

- In 3D? Not just a derivative anymore, replace $\partial^{2} / \partial x^{2}$ with

$$
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \equiv \nabla^{2}
$$

- I.e., just take derivatives for each rectangular coordinate.

$$
\begin{aligned}
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi+\left(\frac{e^{2}}{4 \pi \epsilon_{o} r}-E\right) \psi & =0 \\
\text {-or- } \quad \frac{\hbar^{2}}{2 m} \nabla^{2} \psi+\left(\frac{e^{2}}{4 \pi \epsilon_{o} r}-E\right) \psi & =0
\end{aligned}
$$

- See the problem?

How do we use Schrödinger's equation in 3D?

- In 3D? Not just a derivative anymore, replace $\partial^{2} / \partial x^{2}$ with

$$
\frac{\partial^{2}}{\partial x^{2}} \rightarrow \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \equiv \nabla^{2}
$$

- I.e., just take derivatives for each rectangular coordinate.

$$
\begin{aligned}
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right) \psi+\left(\frac{e^{2}}{4 \pi \epsilon_{o} r}-E\right) \psi & =0 \\
\text {-or- } \quad \frac{\hbar^{2}}{2 m} \nabla^{2} \psi+\left(\frac{e^{2}}{4 \pi \epsilon_{o} r}-E\right) \psi & =0
\end{aligned}
$$

- See the problem?
- Rectangular coordinate system, radial potential = pain

Exploit/enforce radial symmetry

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r
- I.e., spherically symmetric, independent of θ, φ

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r
- I.e., spherically symmetric, independent of θ, φ
- Potential only depends on r

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r
- I.e., spherically symmetric, independent of θ, φ
- Potential only depends on r
- If this works, go back and include angular parts

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r
- I.e., spherically symmetric, independent of θ, φ
- Potential only depends on r
- If this works, go back and include angular parts
- First: transform to radial coordinates

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r
- I.e., spherically symmetric, independent of θ, φ
- Potential only depends on r
- If this works, go back and include angular parts
- First: transform to radial coordinates
- Second: presume $\Psi(r, \theta, \varphi)=f(\theta, \varphi) \psi(r)$ - separable

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r
- I.e., spherically symmetric, independent of θ, φ
- Potential only depends on r
- If this works, go back and include angular parts
- First: transform to radial coordinates
- Second: presume $\Psi(r, \theta, \varphi)=f(\theta, \varphi) \psi(r)$ - separable
- Should work for ground state since V independent of θ, φ

Exploit/enforce radial symmetry

- Rectangular coordinate, radial potential = pain
- Transformation of coordinates also annoying
- Assume lowest energy (ground) state depends only on r
- I.e., spherically symmetric, independent of θ, φ
- Potential only depends on r
- If this works, go back and include angular parts
- First: transform to radial coordinates
- Second: presume $\Psi(r, \theta, \varphi)=f(\theta, \varphi) \psi(r)$ - separable
- Should work for ground state since V independent of θ, φ
- Just like we did to separate time-dependent Schrödinger ...

Radial coordinates

Radial coordinates

- Still a 1D problem then, since (θ, φ) are ignored

Radial coordinates

- Still a 1D problem then, since (θ, φ) are ignored
- Coordinate transform: chain rule madness.

Radial coordinates

- Still a 1D problem then, since (θ, φ) are ignored
- Coordinate transform: chain rule madness.

$$
\frac{\partial \psi}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial \psi}{\partial r}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r} \psi
$$

Radial coordinates

- Still a 1D problem then, since (θ, φ) are ignored
- Coordinate transform: chain rule madness.

$$
\begin{gathered}
\frac{\partial \psi}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial \psi}{\partial r}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r} \psi \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}\right)
\end{gathered}
$$

Radial coordinates

- Still a 1D problem then, since (θ, φ) are ignored
- Coordinate transform: chain rule madness.

$$
\begin{gathered}
\frac{\partial \psi}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial \psi}{\partial r}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r} \psi \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}\right) \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r}\left(\frac{\partial \psi}{\partial r}\right) \frac{\partial r}{\partial x}+\frac{\partial \psi}{\partial r} \frac{\partial^{2} r}{\partial x^{2}}
\end{gathered}
$$

Radial coordinates

- Still a 1D problem then, since (θ, φ) are ignored
- Coordinate transform: chain rule madness.

$$
\begin{gathered}
\frac{\partial \psi}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial \psi}{\partial r}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r} \psi \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}\right) \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r}\left(\frac{\partial \psi}{\partial r}\right) \frac{\partial r}{\partial x}+\frac{\partial \psi}{\partial r} \frac{\partial^{2} r}{\partial x^{2}}
\end{gathered}
$$

Radial coordinates

- Still a 1D problem then, since (θ, φ) are ignored
- Coordinate transform: chain rule madness.

$$
\begin{gathered}
\frac{\partial \psi}{\partial x}=\frac{\partial r}{\partial x} \frac{\partial \psi}{\partial r}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r} \psi \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial \psi}{\partial r} \frac{\partial r}{\partial x}\right) \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial r}{\partial x} \frac{\partial}{\partial r}\left(\frac{\partial \psi}{\partial r}\right) \frac{\partial r}{\partial x}+\frac{\partial \psi}{\partial r} \frac{\partial^{2} r}{\partial x^{2}} \\
\Longrightarrow \quad \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{\partial^{2} \psi}{\partial r^{2}}\left(\frac{\partial r}{\partial x}\right)^{2}+\frac{\partial \psi}{\partial r} \frac{\partial^{2} r}{\partial x^{2}}
\end{gathered}
$$

Radial coordinates

Radial coordinates

- Can do the same for y and z

Radial coordinates

- Can do the same for y and z
- Just need terms like $\partial r / \partial x$ and $\partial^{2} r / \partial x^{2}$

Radial coordinates

- Can do the same for y and z
- Just need terms like $\partial r / \partial x$ and $\partial^{2} r / \partial x^{2}$

$$
r=\sqrt{x^{2}+y^{2}+z^{2}}
$$

Radial coordinates

- Can do the same for y and z
- Just need terms like $\partial r / \partial x$ and $\partial^{2} r / \partial x^{2}$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r} \quad \frac{\partial^{2} r}{\partial x^{2}}=\frac{1}{r}-\frac{x^{2}}{r^{3}}
\end{gathered}
$$

Radial coordinates

- Can do the same for y and z
- Just need terms like $\partial r / \partial x$ and $\partial^{2} r / \partial x^{2}$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r} \quad \frac{\partial^{2} r}{\partial x^{2}}=\frac{1}{r}-\frac{x^{2}}{r^{3}}
\end{gathered}
$$

- Put it all together, note $r=\sqrt{x^{2}+y^{2}+z^{2}}$

Radial coordinates

- Can do the same for y and z
- Just need terms like $\partial r / \partial x$ and $\partial^{2} r / \partial x^{2}$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r} \quad \frac{\partial^{2} r}{\partial x^{2}}=\frac{1}{r}-\frac{x^{2}}{r^{3}}
\end{gathered}
$$

- Put it all together, note $r=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial r^{2}}\left(\frac{x^{2}+y^{2}+z^{2}}{r^{2}}\right)+\frac{\partial \psi}{\partial r}\left(\frac{3}{r}-\frac{x^{2}+y^{2}+z^{2}}{r^{3}}\right)
$$

Radial coordinates

- Can do the same for y and z
- Just need terms like $\partial r / \partial x$ and $\partial^{2} r / \partial x^{2}$

$$
\begin{gathered}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{x}{r} \quad \frac{\partial^{2} r}{\partial x^{2}}=\frac{1}{r}-\frac{x^{2}}{r^{3}}
\end{gathered}
$$

- Put it all together, note $r=\sqrt{x^{2}+y^{2}+z^{2}}$

$$
\begin{gathered}
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial r^{2}}\left(\frac{x^{2}+y^{2}+z^{2}}{r^{2}}\right)+\frac{\partial \psi}{\partial r}\left(\frac{3}{r}-\frac{x^{2}+y^{2}+z^{2}}{r^{3}}\right) \\
\Longrightarrow \quad \nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}
\end{gathered}
$$

Radially-symmetric Schrödinger

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

- Just a slightly different $1 D$ equation.

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

- Just a slightly different $1 D$ equation.

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+b y=0
$$

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

- Just a slightly different $1 D$ equation.

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+b y=0
$$

- Need the function and first two derivatives of same form

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

- Just a slightly different $1 D$ equation.

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+b y=0
$$

- Need the function and first two derivatives of same form
- Need bound state (known), so purely real function

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

- Just a slightly different $1 D$ equation.

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+b y=0
$$

- Need the function and first two derivatives of same form
- Need bound state (known), so purely real function
- Like damped harmonic oscillator, but sign change ...

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

- Just a slightly different $1 D$ equation.

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+b y=0
$$

- Need the function and first two derivatives of same form
- Need bound state (known), so purely real function
- Like damped harmonic oscillator, but sign change ...
- 2nd order equation, 2 arbitrary constants

Radially-symmetric Schrödinger

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
$$

- Just a slightly different $1 D$ equation.

$$
\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}+b y=0
$$

- Need the function and first two derivatives of same form
- Need bound state (known), so purely real function
- Like damped harmonic oscillator, but sign change ...
- 2nd order equation, 2 arbitrary constants
- Try $A e^{-c r}$ - fits all conditions

Guessing the solution for the win

Guessing the solution for the win

- Try $\psi(r)=e^{-c r}$ - can fix overall constant A with normalization later

Guessing the solution for the win

- Try $\psi(r)=e^{-c r}$ - can fix overall constant A with normalization later

$$
\begin{aligned}
\frac{\partial \psi}{\partial r} & =-c e^{-c r}=-c \psi \\
\frac{\partial^{2} \psi}{\partial r^{2}} & =c^{2} e^{-c r}=c^{2} \psi
\end{aligned}
$$

Guessing the solution for the win

- Try $\psi(r)=e^{-c r}$ - can fix overall constant A with normalization later

$$
\begin{aligned}
\frac{\partial \psi}{\partial r} & =-c e^{-c r}=-c \psi \\
\frac{\partial^{2} \psi}{\partial r^{2}} & =c^{2} e^{-c r}=c^{2} \psi
\end{aligned}
$$

- Can already see exponentials will turn our diff. eq. into algebra...

Guessing the solution for the win

$$
\frac{\partial \psi}{\partial r}=-c e^{-c r}=-c \psi \quad \frac{\partial^{2} \psi}{\partial r^{2}}=c^{2} e^{-c r}=c^{2} \psi
$$

Guessing the solution for the win

$$
\begin{gathered}
\frac{\partial \psi}{\partial r}=-c e^{-c r}=-c \psi \quad \frac{\partial^{2} \psi}{\partial r^{2}}=c^{2} e^{-c r}=c^{2} \psi \\
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0
\end{gathered}
$$

Guessing the solution for the win

$$
\begin{gathered}
\frac{\partial \psi}{\partial r}=-c e^{-c r}=-c \psi \quad \frac{\partial^{2} \psi}{\partial r^{2}}=c^{2} e^{-c r}=c^{2} \psi \\
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0 \\
\frac{\hbar^{2}}{2 m}\left[c^{2} e^{-c r}+\frac{2}{r}\left(-c e^{-c r}\right)\right]+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) e^{-c r}=0
\end{gathered}
$$

Guessing the solution for the win

$$
\begin{gathered}
\frac{\partial \psi}{\partial r}=-c e^{-c r}=-c \psi \quad \frac{\partial^{2} \psi}{\partial r^{2}}=c^{2} e^{-c r}=c^{2} \psi \\
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0 \\
\frac{\hbar^{2}}{2 m}\left[c^{2} e^{-c r}+\frac{2}{r}\left(-c e^{-c r}\right)\right]+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) e^{-c r}=0
\end{gathered}
$$

- Exponential terms irrelevant, ignore them.

Guessing the solution for the win

$$
\begin{gathered}
\frac{\partial \psi}{\partial r}=-c e^{-c r}=-c \psi \quad \frac{\partial^{2} \psi}{\partial r^{2}}=c^{2} e^{-c r}=c^{2} \psi \\
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) \psi=0 \\
\frac{\hbar^{2}}{2 m}\left[c^{2} e^{-c r}+\frac{2}{r}\left(-c e^{-c r}\right)\right]+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right) e^{-c r}=0
\end{gathered}
$$

- Exponential terms irrelevant, ignore them.
- Valid for all r ? Then $r, 1 / r$, constant terms equate separately

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right)=0
$$

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right)=0
$$

- Equate coefficients of $1 / r$ terms, must cancel on LHS:

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right)=0
$$

- Equate coefficients of $1 / r$ terms, must cancel on LHS:

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r}\right)=0
$$

- Equate coefficients of $1 / r$ terms, must cancel on LHS:

$$
-\frac{\hbar^{2} c}{m}+\frac{e^{2}}{4 \pi \epsilon_{0}}=0 \quad \text {-or- } \quad c=\frac{e^{2} m}{4 \pi \epsilon_{o} \hbar^{2}}=\frac{1}{a_{0}}
$$

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{0} r}\right)=0
$$

- Equate coefficients of $1 / r$ terms, must cancel on LHS:

$$
-\frac{\hbar^{2} c}{m}+\frac{e^{2}}{4 \pi \epsilon_{o}}=0 \quad \text {-or- } \quad c=\frac{e^{2} m}{4 \pi \epsilon_{0} \hbar^{2}}=\frac{1}{a_{0}}
$$

- Decay constant is Bohr radius a_{0} ! $\quad \psi(r)=e^{-r / a_{0}}$

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{0} r}\right)=0
$$

- Equate coefficients of $1 / r$ terms, must cancel on LHS:

$$
-\frac{\hbar^{2} c}{m}+\frac{e^{2}}{4 \pi \epsilon_{0}}=0 \quad \text { or- } \quad c=\frac{e^{2} m}{4 \pi \epsilon_{0} \hbar^{2}}=\frac{1}{a_{0}}
$$

- Decay constant is Bohr radius $a_{0}!\quad \psi(r)=e^{-r / a_{0}}$
- Equate constant terms

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{0} r}\right)=0
$$

- Equate coefficients of $1 / r$ terms, must cancel on LHS:

$$
-\frac{\hbar^{2} c}{m}+\frac{e^{2}}{4 \pi \epsilon_{0}}=0 \quad \text { or- } \quad c=\frac{e^{2} m}{4 \pi \epsilon_{0} \hbar^{2}}=\frac{1}{a_{0}}
$$

- Decay constant is Bohr radius $a_{0}!\quad \psi(r)=e^{-r / a_{0}}$
- Equate constant terms

Guessing the solution for the win

$$
\frac{\hbar^{2} c^{2}}{2 m}+\frac{\hbar^{2}}{2 m} \frac{2}{r}(-c)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{0} r}\right)=0
$$

- Equate coefficients of $1 / r$ terms, must cancel on LHS:

$$
-\frac{\hbar^{2} c}{m}+\frac{e^{2}}{4 \pi \epsilon_{0}}=0 \quad \text { or- } \quad c=\frac{e^{2} m}{4 \pi \epsilon_{0} \hbar^{2}}=\frac{1}{a_{0}}
$$

- Decay constant is Bohr radius a_{0} ! $\quad \psi(r)=e^{-r / a_{0}}$
- Equate constant terms

$$
E=-\frac{\hbar^{2} c^{2}}{2 m} \quad \text { or- } \quad E=-\frac{m e^{4}}{2\left(4 \pi \epsilon_{o}\right)^{2} \hbar^{2}}=E_{n=1, \mathrm{Bohr}}
$$

So what

So what

- Energy is negative, bound state. Atom is stable!

So what

- Energy is negative, bound state. Atom is stable!
- Only assumption was spherical symmetry, no hand-waving!

So what

- Energy is negative, bound state. Atom is stable!
- Only assumption was spherical symmetry, no hand-waving!
- E exactly as Bohr model $n=1 \&$ experiment ground state

So what

- Energy is negative, bound state. Atom is stable!
- Only assumption was spherical symmetry, no hand-waving!
- E exactly as Bohr model $n=1$ \& experiment ground state
- Length scale is a_{0} as before ...

So what

- Energy is negative, bound state. Atom is stable!
- Only assumption was spherical symmetry, no hand-waving!
- E exactly as Bohr model $n=1$ \& experiment ground state
- Length scale is a_{0} as before ...
- ... but not an orbit, just a characteristic distance

So what

- Energy is negative, bound state. Atom is stable!
- Only assumption was spherical symmetry, no hand-waving!
- E exactly as Bohr model $n=1$ \& experiment ground state
- Length scale is a_{0} as before ...
- ... but not an orbit, just a characteristic distance
- $n=1$ ground state is the $1 s$ orbital, spoiler alert

So what

- Energy is negative, bound state. Atom is stable!
- Only assumption was spherical symmetry, no hand-waving!
- E exactly as Bohr model $n=1$ \& experiment ground state
- Length scale is a_{0} as before ...
- ... but not an orbit, just a characteristic distance
- $n=1$ ground state is the 1 s orbital, spoiler alert
- So what? Now we use all those things we learned to do with ψ

So what

- Energy is negative, bound state. Atom is stable!
- Only assumption was spherical symmetry, no hand-waving!
- E exactly as Bohr model $n=1 \&$ experiment ground state
- Length scale is a_{0} as before ...
- ... but not an orbit, just a characteristic distance
- $n=1$ ground state is the 1 s orbital, spoiler alert
- So what? Now we use all those things we learned to do with ψ
- Normalize, $\langle r\rangle$, and so on

Normalize ψ

Normalize ψ

- We ignored this. Should say $\psi(r)=A e^{-r / a_{0}}$, and then \ldots

Normalize ψ

- We ignored this. Should say $\psi(r)=A e^{-r / a_{0}}$, and then \ldots
- Enforce probability sanity condition.

Normalize ψ

- We ignored this. Should say $\psi(r)=A e^{-r / a_{0}}$, and then \ldots
- Enforce probability sanity condition.

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V
$$

Normalize ψ

- We ignored this. Should say $\psi(r)=A e^{-r / a_{0}}$, and then \ldots
- Enforce probability sanity condition.

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V
$$

- Integrate over "all space" - spherical shells! (still ignoring φ, θ)

Normalize ψ

- We ignored this. Should say $\psi(r)=A e^{-r / a_{0}}$, and then \ldots
- Enforce probability sanity condition.

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V
$$

- Integrate over "all space" - spherical shells! (still ignoring φ, θ)
- That means $d V=\left(\right.$ surface area)(thickness) $=4 \pi r^{2} d r ; r: 0 \rightarrow \infty$

Normalize ψ

- We ignored this. Should say $\psi(r)=A e^{-r / a_{0}}$, and then \ldots
- Enforce probability sanity condition.

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V
$$

- Integrate over "all space" - spherical shells! (still ignoring φ, θ)
- That means $d V=($ surface area $)($ thickness $)=4 \pi r^{2} d r ; r: 0 \rightarrow \infty$

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{-2 r / a_{0}} 4 \pi r^{2} d r
$$

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

- Super tedious. Let $u=2 r / a_{0}$, repeated integration by parts.

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

- Super tedious. Let $u=2 r / a_{0}$, repeated integration by parts.
- Need this more often ... basic form is $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

- Super tedious. Let $u=2 r / a_{0}$, repeated integration by parts.
- Need this more often ... basic form is $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$
- Post tedium,

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

- Super tedious. Let $u=2 r / a_{0}$, repeated integration by parts.
- Need this more often ... basic form is $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$
- Post tedium,

$$
\psi(r)=\frac{1}{\sqrt{\pi a_{0}^{3}}} e^{-r / a_{0}}
$$

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

- Super tedious. Let $u=2 r / a_{0}$, repeated integration by parts.
- Need this more often ... basic form is $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$
- Post tedium,

$$
\psi(r)=\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}
$$

- With $\psi(r)$ properly normalized, we can get $P(r)$ and move on.

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

- Super tedious. Let $u=2 r / a_{0}$, repeated integration by parts.
- Need this more often ... basic form is $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$
- Post tedium,

$$
\psi(r)=\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}
$$

- With $\psi(r)$ properly normalized, we can get $P(r)$ and move on.
- $P(x) d x \rightarrow P(r, \theta, \varphi) d V$ now

Normalize ψ

$$
1=\int_{-\infty}^{\infty}|\psi(r)|^{2} d V=\int_{-\infty}^{\infty} e^{2 r / a_{0}} 4 \pi r^{2} d r
$$

- Super tedious. Let $u=2 r / a_{0}$, repeated integration by parts.
- Need this more often ... basic form is $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$
- Post tedium,

$$
\psi(r)=\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}
$$

- With $\psi(r)$ properly normalized, we can get $P(r)$ and move on.
- $P(x) d x \rightarrow P(r, \theta, \varphi) d V$ now
- This is the hydrogen $1 s$ state. What about 2 , and p, d, f ?

Probability distribution

$$
P(r)=|\psi(r)|^{2} 4 \pi r^{2}=\left|\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}\right|^{2} 4 \pi r^{2}=\frac{4 r^{2}}{a_{0}^{3}} e^{-2 r / a_{o}}
$$

Probability distribution

$$
P(r)=|\psi(r)|^{2} 4 \pi r^{2}=\left|\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}\right|^{2} 4 \pi r^{2}=\frac{4 r^{2}}{a_{0}^{3}} e^{-2 r / a_{o}}
$$

- There is a most probable radius, but clearly not an orbit!

Probability distribution

$$
P(r)=|\psi(r)|^{2} 4 \pi r^{2}=\left|\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}\right|^{2} 4 \pi r^{2}=\frac{4 r^{2}}{a_{0}^{3}} e^{-2 r / a_{o}}
$$

- There is a most probable radius, but clearly not an orbit!
- Clearly e^{-}confined near proton, as required

Probability distribution

$$
P(r)=|\psi(r)|^{2} 4 \pi r^{2}=\left|\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}\right|^{2} 4 \pi r^{2}=\frac{4 r^{2}}{a_{0}^{3}} e^{-2 r / a_{0}}
$$

- There is a most probable radius, but clearly not an orbit!
- Clearly e^{-}confined near proton, as required
- Most probable radius? When $\partial P / \partial r=0$

Probability distribution

$$
P(r)=|\psi(r)|^{2} 4 \pi r^{2}=\left|\frac{1}{\sqrt{\pi a_{o}^{3}}} e^{-r / a_{o}}\right|^{2} 4 \pi r^{2}=\frac{4 r^{2}}{a_{0}^{3}} e^{-2 r / a_{0}}
$$

- There is a most probable radius, but clearly not an orbit!
- Clearly e^{-}confined near proton, as required
- Most probable radius? When $\partial P / \partial r=0$
- This happens at $r=a_{0}$, semi-classical orbit radius from Bohr

Probability distribution

Probability distribution

- Picture: e^{-}is a fuzzy "cloud" distributed about p^{+}

Probability distribution

- Picture: e^{-}is a fuzzy "cloud" distributed about p^{+}
- Probability zero at $r=0, \max$ at $r=a_{0}$. Smoothly to zero at large r

Probability distribution

- Picture: e^{-}is a fuzzy "cloud" distributed about p^{+}
- Probability zero at $r=0, \max$ at $r=a_{0}$. Smoothly to zero at large r
- Peak probability at $r=a_{0}$, semi-classical orbit radius from Bohr

Probability distribution

- Picture: e^{-}is a fuzzy "cloud" distributed about p^{+}
- Probability zero at $r=0, \max$ at $r=a_{0}$. Smoothly to zero at large r
- Peak probability at $r=a_{0}$, semi-classical orbit radius from Bohr
- What is the expected position? Not a_{0}, asymmetric distribution!

Probability distribution

- Picture: e^{-}is a fuzzy "cloud" distributed about p^{+}
- Probability zero at $r=0, \max$ at $r=a_{0}$. Smoothly to zero at large r
- Peak probability at $r=a_{0}$, semi-classical orbit radius from Bohr
- What is the expected position? Not a_{0}, asymmetric distribution!
- Asymmetric means mean \neq most likely. Need to calculate it.

Probability distribution

- Picture: e^{-}is a fuzzy "cloud" distributed about p^{+}
- Probability zero at $r=0, \max$ at $r=a_{0}$. Smoothly to zero at large r
- Peak probability at $r=a_{0}$, semi-classical orbit radius from Bohr
- What is the expected position? Not a_{0}, asymmetric distribution!
- Asymmetric means mean \neq most likely. Need to calculate it.
- Most probable \sim mode, $\langle r\rangle \sim$ average

Probability distribution

- Picture: e^{-}is a fuzzy "cloud" distributed about p^{+}
- Probability zero at $r=0, \max$ at $r=a_{0}$. Smoothly to zero at large r
- Peak probability at $r=a_{0}$, semi-classical orbit radius from Bohr
- What is the expected position? Not a_{0}, asymmetric distribution!
- Asymmetric means mean \neq most likely. Need to calculate it.
- Most probable \sim mode, $\langle r\rangle \sim$ average
- Again: in spite of distribution, measurement yields $1 e^{-}$at one spot

Expectation value of e^{-}position

Expectation value of e^{-}position

- By analogy with $1 D$ definition of $\langle x\rangle$,

Expectation value of e^{-}position

- By analogy with $1 D$ definition of $\langle x\rangle$,

$$
\langle r\rangle=\int_{\text {all }} \psi^{*} r \psi d V
$$

Expectation value of e^{-}position

- By analogy with $1 D$ definition of $\langle x\rangle$,

$$
\langle r\rangle=\int_{\text {all }} \psi^{*} r \psi d V
$$

- Assuming radial symmetry (still) and our ψ,

Expectation value of e^{-}position

- By analogy with $1 D$ definition of $\langle x\rangle$,

$$
\langle r\rangle=\int_{\text {all }} \psi^{*} r \psi d V
$$

- Assuming radial symmetry (still) and our ψ,

$$
\langle r\rangle=\int_{0}^{\infty} \frac{4 r^{3}}{a_{o}^{3}} e^{-2 r / a_{o}} d r=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a_{o}} d r
$$

Expectation value of e^{-}position

- By analogy with $1 D$ definition of $\langle x\rangle$,

$$
\langle r\rangle=\int_{\text {all }} \psi^{*} r \psi d V
$$

- Assuming radial symmetry (still) and our ψ,

$$
\langle r\rangle=\int_{0}^{\infty} \frac{4 r^{3}}{a_{o}^{3}} e^{-2 r / a_{o}} d r=\frac{4}{a_{0}^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a_{0}} d r
$$

- Annoying integral same form as before, $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$

Expectation value of e^{-}position

- By analogy with $1 D$ definition of $\langle x\rangle$,

$$
\langle r\rangle=\int_{\text {all }} \psi^{*} r \psi d V
$$

- Assuming radial symmetry (still) and our ψ,

$$
\langle r\rangle=\int_{0}^{\infty} \frac{4 r^{3}}{a_{o}^{3}} e^{-2 r / a_{0}} d r=\frac{4}{a_{o}^{3}} \int_{0}^{\infty} r^{3} e^{-2 r / a_{0}} d r
$$

- Annoying integral same form as before, $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1}$

$$
\langle r\rangle=\frac{4}{a_{0}^{3}} \cdot \frac{3!}{\left(2 / a_{0}\right)^{4}}=\frac{3}{2} a_{0}
$$

Expectation value of e^{-}position

Expectation value of e^{-}position

- $P(r)$ is skewed to large r, so expected value $>$ most probable.

Expectation value of e^{-}position

- $P(r)$ is skewed to large r, so expected value $>$ most probable.
- Expect to find it beyond most probable value more often.

Expectation value of e^{-}position

- $P(r)$ is skewed to large r, so expected value $>$ most probable.
- Expect to find it beyond most probable value more often.
- Can similarly show $\left\langle r^{2}\right\rangle=3 a_{o}^{2}, \Delta r=\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}=a_{0} \sqrt{3} / 2$

Expectation value of e^{-}position

- $P(r)$ is skewed to large r, so expected value $>$ most probable.
- Expect to find it beyond most probable value more often.
- Can similarly show $\left\langle r^{2}\right\rangle=3 a_{0}^{2}, \Delta r=\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}=a_{0} \sqrt{3} / 2$
- Or, $r_{\text {expected }}=\langle r\rangle \pm \Delta r=\frac{3}{2} a_{o}(1 \pm 1 / \sqrt{3})$

Expectation value of e^{-}position

- $P(r)$ is skewed to large r, so expected value $>$ most probable.
- Expect to find it beyond most probable value more often.
- Can similarly show $\left\langle r^{2}\right\rangle=3 a_{o}^{2}, \Delta r=\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}=a_{0} \sqrt{3} / 2$
- Or, $r_{\text {expected }}=\langle r\rangle \pm \Delta r=\frac{3}{2} a_{0}(1 \pm 1 / \sqrt{3})$

Expectation value of e^{-}position

- $P(r)$ is skewed to large r, so expected value $>$ most probable.
- Expect to find it beyond most probable value more often.
- Can similarly show $\left\langle r^{2}\right\rangle=3 a_{o}^{2}, \Delta r=\sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}}=a_{0} \sqrt{3} / 2$
- Or, $r_{\text {expected }}=\langle r\rangle \pm \Delta r=\frac{3}{2} a_{o}(1 \pm 1 / \sqrt{3})$
- Pretty spread out! No "orbit" indeed; uncertainty in position.

Probability of finding within a region?

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

$$
P\left(r \text { in }\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}}|\psi(r)|^{2} \cdot 4 \pi r^{2} d r
$$

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

$$
P\left(r \text { in }\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}}|\psi(r)|^{2} \cdot 4 \pi r^{2} d r
$$

- No analytic solution in general

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

$$
P\left(r \text { in }\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}}|\psi(r)|^{2} \cdot 4 \pi r^{2} d r
$$

- No analytic solution in general
- Let $u=2 r / a_{0}$, gives a simpler (well-known) for Wolfram.

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

$$
P\left(r \text { in }\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}}|\psi(r)|^{2} \cdot 4 \pi r^{2} d r
$$

- No analytic solution in general
- Let $u=2 r / a_{0}$, gives a simpler (well-known) for Wolfram.
- So, $r=a_{0}$ means $u=2, r=\frac{3}{2} a_{o}$ means $u=3$, etc.

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

$$
P\left(r \text { in }\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}}|\psi(r)|^{2} \cdot 4 \pi r^{2} d r
$$

- No analytic solution in general
- Let $u=2 r / a_{0}$, gives a simpler (well-known) for Wolfram.
- So, $r=a_{0}$ means $u=2, r=\frac{3}{2} a_{0}$ means $u=3$, etc.

$$
P\left(r \text { in }\left[u_{1}, u_{2}\right]\right)=\frac{1}{2} \int_{u_{1}}^{u_{2}} u^{2} e^{-u} d u
$$

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

$$
P\left(r \text { in }\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}}|\psi(r)|^{2} \cdot 4 \pi r^{2} d r
$$

- No analytic solution in general
- Let $u=2 r / a_{0}$, gives a simpler (well-known) for Wolfram.
- So, $r=a_{0}$ means $u=2, r=\frac{3}{2} a_{0}$ means $u=3$, etc.

$$
P\left(r \text { in }\left[u_{1}, u_{2}\right]\right)=\frac{1}{2} \int_{u_{1}}^{u_{2}} u^{2} e^{-u} d u
$$

- Check: $u=0$ to $u=\infty$, integral is exactly 2 , so $P=1$

Probability of finding within a region?

- Between any radii r_{1} and r_{2} :

$$
P\left(r \text { in }\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}}|\psi(r)|^{2} \cdot 4 \pi r^{2} d r
$$

- No analytic solution in general
- Let $u=2 r / a_{0}$, gives a simpler (well-known) for Wolfram.
- So, $r=a_{0}$ means $u=2, r=\frac{3}{2} a_{0}$ means $u=3$, etc.

$$
P\left(r \text { in }\left[u_{1}, u_{2}\right]\right)=\frac{1}{2} \int_{u_{1}}^{u_{2}} u^{2} e^{-u} d u
$$

- Check: $u=0$ to $u=\infty$, integral is exactly 2 , so $P=1$
- Once again: $\int_{0}^{\infty} x^{n} e^{-a x} d x=n!/ a^{n+1} \ldots$ I told you this would keep showing up

Probability of finding within a region?

Probability of finding within a region?

- Specifically, probability e^{-}is in $\left[0, a_{0}\right]$?

Probability of finding within a region?

- Specifically, probability e^{-}is in $\left[0, a_{0}\right]$?
- I.e., closer than Bohr radius, impossible in Bohr model

Probability of finding within a region?

- Specifically, probability e^{-}is in $\left[0, a_{0}\right]$?
- I.e., closer than Bohr radius, impossible in Bohr model

$$
P\left(r \text { in }\left[0, a_{o}\right]\right)=\frac{4}{a_{0}^{3}} \int_{0}^{a_{0}} r^{2} e^{-2 r / a_{o}} d r=\frac{1}{2} \int_{0}^{2} u^{2} e^{-u} d u \approx \frac{1}{3}
$$

Probability of finding within a region?

- Specifically, probability e^{-}is in $\left[0, a_{0}\right]$?
- I.e., closer than Bohr radius, impossible in Bohr model

$$
P\left(r \text { in }\left[0, a_{0}\right]\right)=\frac{4}{a_{0}^{3}} \int_{0}^{a_{0}} r^{2} e^{-2 r / a_{o}} d r=\frac{1}{2} \int_{0}^{2} u^{2} e^{-u} d u \approx \frac{1}{3}
$$

- Numerical evaluation is straightforward and well-tabulated

Probability of finding within a region?

- Specifically, probability e^{-}is in $\left[0, a_{0}\right]$?
- I.e., closer than Bohr radius, impossible in Bohr model

$$
P\left(r \text { in }\left[0, a_{o}\right]\right)=\frac{4}{a_{0}^{3}} \int_{0}^{a_{o}} r^{2} e^{-2 r / a_{o}} d r=\frac{1}{2} \int_{0}^{2} u^{2} e^{-u} d u \approx \frac{1}{3}
$$

- Numerical evaluation is straightforward and well-tabulated
- Next? Need θ, φ dependence for other orbitals (p, d, f orbitals)

Probability of finding within a region?

- Specifically, probability e^{-}is in $\left[0, a_{0}\right]$?
- I.e., closer than Bohr radius, impossible in Bohr model

$$
P\left(r \text { in }\left[0, a_{0}\right]\right)=\frac{4}{a_{0}^{3}} \int_{0}^{a_{0}} r^{2} e^{-2 r / a_{0}} d r=\frac{1}{2} \int_{0}^{2} u^{2} e^{-u} d u \approx \frac{1}{3}
$$

- Numerical evaluation is straightforward and well-tabulated
- Next? Need θ, φ dependence for other orbitals (p, d, f orbitals)
- Also excited s states. Need a better approach, but a good start!

Probability of finding within a region?

- Specifically, probability e^{-}is in $\left[0, a_{0}\right]$?
- I.e., closer than Bohr radius, impossible in Bohr model

$$
P\left(r \text { in }\left[0, a_{0}\right]\right)=\frac{4}{a_{0}^{3}} \int_{0}^{a_{o}} r^{2} e^{-2 r / a_{o}} d r=\frac{1}{2} \int_{0}^{2} u^{2} e^{-u} d u \approx \frac{1}{3}
$$

- Numerical evaluation is straightforward and well-tabulated
- Next? Need θ, φ dependence for other orbitals (p, d, f orbitals)
- Also excited s states. Need a better approach, but a good start!
- Need fewer assumptions, better mechanics, more math

