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Exam 2 is Monday, and here are hints

e Know how to find probability a particle is within some region.
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e Know how to find probability a particle is within some region.
@ Know how to normalize a wavefunction
@ Know how to find (x) and (x?)
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Exam 2 is Monday, and here are hints

e Know how to find probability a particle is within some region.

@ Know how to normalize a wavefunction
@ Know how to find (x) and (x?)

e Given a wavefunction i and potential V' (x), use the
time-independent Schrodinger equation to find the energy
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Exam 2 is Monday, and here are hints

e Know how to find probability a particle is within some region.
@ Know how to normalize a wavefunction
@ Know how to find (x) and (x?)

e Given a wavefunction i and potential V' (x), use the
time-independent Schrodinger equation to find the energy

@ Study the particle in a box problem
e HW2: Compton effect, photoelectric effect. All problems similar.
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Exam 2 is Monday, and here are hints

e Know how to find probability a particle is within some region.
@ Know how to normalize a wavefunction
@ Know how to find (x) and (x?)

e Given a wavefunction i and potential V' (x), use the
time-independent Schrodinger equation to find the energy

@ Study the particle in a box problem
e HW2: Compton effect, photoelectric effect. All problems similar.

e HW2: Know how to use the uncertainty principle, particularly for
microscope resolution.
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Outline

@ Now in 3D
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How do we use Schrodinger’s equation in 3D?
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How do we use Schrodinger’s equation in 3D?

e Start simple. Expect ground state is spherically symmetric.
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How do we use Schrodinger’s equation in 3D?

e Start simple. Expect ground state is spherically symmetric.
e How to use that?
e How to handle real Coulomb interaction of p* and e~ ?
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How do we use Schrodinger’s equation in 3D?

e Start simple. Expect ground state is spherically symmetric.
e How to use that?

e How to handle real Coulomb interaction of p* and e~ ?

o First: presume p™* fixed (m, ~ 1800m,). Easy to correct later.
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How do we use Schrodinger’s equation in 3D?

Start simple. Expect ground state is spherically symmetric.

How to use that?

First: presume p* fixed (1, ~ 1800m,). Easy to correct later.

°
°
e How to handle real Coulomb interaction of p* and e~ ?
°
°

Origin at p™ position, e~ at . In 1D:
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How do we use Schrodinger’s equation in 3D?

Start simple. Expect ground state is spherically symmetric.

How to use that?

First: presume p* fixed (1, ~ 1800m,). Easy to correct later.

°
°
e How to handle real Coulomb interaction of p* and e~ ?
°
°

Origin at p™ position, e~ at . In 1D:
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How do we use Schrodinger’s equation in 3D?

e Start simple. Expect ground state is spherically symmetric.
e How to use that?

e How to handle real Coulomb interaction of p* and e~ ?

o First: presume p™* fixed (m, ~ 1800m,). Easy to correct later.
@ Origin at p* position, e~ atr. In 1D:

.
o L J
pt e
e? ke?
vir) = Cdmer 1
n 9%y W Py e?
Tomow2 TVYTO 0 om 2m8x2+<47r€0r_E>¢_0
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How do we use Schrodinger’s equation in 3D?
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@ In 3D? Not just a derivative anymore, replace 9%/9x? with
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How do we use Schrodinger’s equation in 3D?
@ In 3D? Not just a derivative anymore, replace 9%/9x? with

ai2_>872+872+aizzvz
ox? ~ ox?  dy> 9z
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How do we use Schrodinger’s equation in 3D?
@ In 3D? Not just a derivative anymore, replace 9%/9x? with

872%372+872+872:v2
ox? ~ ox?  dy> 9z

@ lLe, just take derivatives for each rectangular coordinate.
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How do we use Schrodinger’s equation in 3D?
@ In 3D? Not just a derivative anymore, replace 9%/9x? with

872%372+872+872:v2
ox? ~ ox?  dy> 9z

@ lLe, just take derivatives for each rectangular coordinate.

WP 0F | P e
2m<8x2+8y2+82>¢+<4n601’_E)¢_0

-or- £v2+ C =0
or 4 4rte,r V=
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How do we use Schrodinger’s equation in 3D?
@ In 3D? Not just a derivative anymore, replace 9%/9x? with

872%372+872+872:v2
ox? ~ ox?  dy> 9z

@ lLe, just take derivatives for each rectangular coordinate.

oot 92 o2 e?
2m<8x2+8y2+82>¢+<4n601’_E)¢:0

-or- £v2+ 2—E =0
© ¥ 47Te,r ¥=

@ See the problem?
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How do we use Schrodinger’s equation in 3D?
@ In 3D? Not just a derivative anymore, replace 9%/9x? with

872%872+872+872:v2
ox? ~ ox?  dy> 9z

@ lLe, just take derivatives for each rectangular coordinate.

oot 92 o2 e2
m(a#*aw*z)z)“(meor*)“":o

-or- £v2+ 2—E =0
© ¥ 47Te,r ¥=

@ See the problem?
@ Rectangular coordinate system, radial potential = pain
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Exploit/enforce radial symmetry
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Exploit/enforce radial symmetry

@ Rectangular coordinate, radial potential = pain
o Transformation of coordinates also annoying
@ Assume lowest energy (ground) state depends only on

@ lLe, spherically symmetric, independent of 0, ¢
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Exploit/enforce radial symmetry

Rectangular coordinate, radial potential = pain
Transformation of coordinates also annoying
Assume lowest energy (ground) state depends only on r

Le., spherically symmetric, independent of 6, ¢

Potential only depends on r
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Assume lowest energy (ground) state depends only on r
Le., spherically symmetric, independent of 6, ¢
Potential only depends on r

If this works, go back and include angular parts
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Exploit/enforce radial symmetry

Rectangular coordinate, radial potential = pain
Transformation of coordinates also annoying

Assume lowest energy (ground) state depends only on r
Le., spherically symmetric, independent of 6, ¢
Potential only depends on r

If this works, go back and include angular parts

First: transform to radial coordinates
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Exploit/enforce radial symmetry

Rectangular coordinate, radial potential = pain
Transformation of coordinates also annoying

Assume lowest energy (ground) state depends only on r
Le., spherically symmetric, independent of 6, ¢
Potential only depends on r

If this works, go back and include angular parts

First: transform to radial coordinates

Second: presume ¥ (7,60, ¢) = f(6, ¢)p(r) — separable
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Exploit/enforce radial symmetry

Rectangular coordinate, radial potential = pain
Transformation of coordinates also annoying

Assume lowest energy (ground) state depends only on r
Le., spherically symmetric, independent of 6, ¢
Potential only depends on r

If this works, go back and include angular parts

First: transform to radial coordinates

Second: presume ¥ (7,60, ¢) = f(6, ¢)p(r) — separable

Should work for ground state since V independent of 6, ¢
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Exploit/enforce radial symmetry

Rectangular coordinate, radial potential = pain
Transformation of coordinates also annoying
Assume lowest energy (ground) state depends only on r

Le., spherically symmetric, independent of 6, ¢

°
°

°

°

@ Potential only depends on r
o If this works, go back and include angular parts

e First: transform to radial coordinates

@ Second: presume ¥ (7,0, ¢) = (6, ¢)p(r) — separable

@ Should work for ground state since V independent of 6, ¢

@ Just like we did to separate time-dependent Schrodinger ...
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Radial coordinates
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Radial coordinates

e Still a 1D problem then, since (6, ¢) are ignored
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Radial coordinates

e Still a 1D problem then, since (6, ¢) are ignored
@ Coordinate transform: chain rule madness.
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e Still a 1D problem then, since (6, ¢) are ignored
@ Coordinate transform: chain rule madness.

o _aroy_ara
ox Jdxdr  Oxor
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Radial coordinates

e Still a 1D problem then, since (6, ¢) are ignored
@ Coordinate transform: chain rule madness.

o _aroy_ara
ox Jdxdr  Oxor

Py _ 9 (dpor
0x2  9x \ or ox
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Radial coordinates

e Still a 1D problem then, since (6, ¢) are ignored
@ Coordinate transform: chain rule madness.

o _aroy_ara

ox Jdxdr  Oxor
Py _ o (apor
0x2  9x \ or ox

aip_gg 81/) ar+81/182
0x2  9xdr \ or / ox = 9r 9x?
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Radial coordinates

e Still a 1D problem then, since (6, ¢) are ignored
@ Coordinate transform: chain rule madness.

w _oraw_ oo

ox dxdr  IxIr
Py _ 9 (dpor
0x2  9Jx \ or ox

8271/)_%2 81/) ar+81/182
0x2  9xdr \ or / ox = 9r 9x?
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Radial coordinates

e Still a 1D problem then, since (6, ¢) are ignored
@ Coordinate transform: chain rule madness.

o _orow_ oo
ox Jxdr  JxoIr

— 92 or \orox

Py 0 (i)
ox or ] ox ' or 0x2

Ry oo (ap)or  ayorr
2 9xd

2y Ry [ar\® 9y &
= &ﬂ_a(a>'+waﬂ
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Radial coordinates
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Radial coordinates

@ Can do the same for y and z
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Radial coordinates

@ Can do the same for y and z
@ Just need terms like or/9dx and 9%r/9x?
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Radial coordinates

@ Can do the same for y and z
@ Just need terms like or/9dx and 9%r/9x?

r = /x2_|_y2+22
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Radial coordinates

@ Can do the same for y and z
@ Just need terms like or/9dx and 9%r/9x?

r = /x2_|_y2+22

or x X
r

C N v
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Radial coordinates

@ Can do the same for y and z
@ Just need terms like or/9dx and 9%r/9x?

r = /x2_|_y2+22

X

w2 ryt2 7

e Putitall together, note r = \/x? + y? + 22

or x
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Radial coordinates

@ Can do the same for y and z
@ Just need terms like or/9dx and 9%r/9x?

r=y/x2+y2+22

or X X ?r 1 x?

N = wz
e Putitall together, note r = \/x? + y? + 22

V2 — 821p<x +y? +z> 81/)( x2+y2+zz>

or? r2 or r3
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Radial coordinates

@ Can do the same for y and z
@ Just need terms like or/9dx and 9%r/9x?

- /x2+y2—i—22

or X X ?r 1 x?

xS 2 7 a2 A
e Putitall together, note r = \/x? + y? + 22
821p<x +y? + 22 ) 81/)( x2+y2+zz>

2
Vip = or? r2 or r3

Y 20y
2 =
— v¢_8r2+rar
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Radially-symmetric Schrodinger
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Radially-symmetric Schrodinger

no(%p 200 e2
2m <ar2+rar> i <E+4neor>lp—0
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Radially-symmetric Schrodinger

2 2
h<a‘”+za‘”>+(E+

2m \ or2 ' r or

@ Just a slightly different 1D equation.
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Radially-symmetric Schrodinger

no(%p 200 e2
m <ar2+r8r> i <E+4neor>lp—0

@ Just a slightly different 1D equation.
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Radially-symmetric Schrodinger

no(%p 200 e2
m <ar2+r8r> i (E+4neor>‘/’—°

@ Just a slightly different 1D equation.

@ Need the function and first two derivatives of same form
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Radially-symmetric Schrodinger

no(%p 200 e2
m <ar2+r8r> i (E+4neor>‘/’—°

@ Just a slightly different 1D equation.

@ Need the function and first two derivatives of same form

@ Need bound state (known), so purely real function
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Radially-symmetric Schrodinger

no(%p 200 e2
m <ar2+rar> i (E+4neor>‘/’—°

@ Just a slightly different 1D equation.

@ Need the function and first two derivatives of same form
@ Need bound state (known), so purely real function
@ Like damped harmonic oscillator, but sign change ...
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Radially-symmetric Schrodinger

no(%p 200 e2
m <ar2+rar> i <E+4neor>‘/’—°

@ Just a slightly different 1D equation.

@ Need the function and first two derivatives of same form
@ Need bound state (known), so purely real function
@ Like damped harmonic oscillator, but sign change ...

@ 2nd order equation, 2 arbitrary constants
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Radially-symmetric Schrodinger

no(%p 200 e2
m <ar2+rar> i <E+4neor>‘/’—°

@ Just a slightly different 1D equation.

@ Need the function and first two derivatives of same form
@ Need bound state (known), so purely real function

@ Like damped harmonic oscillator, but sign change ...

@ 2nd order equation, 2 arbitrary constants

o Try Ae™“" —fits all conditions
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Guessing the solution for the win
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Guessing the solution for the win

o Try ¢(r) = e~ — can fix overall constant A with normalization
later
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Guessing the solution for the win

o Try ¢(r) = e~ — can fix overall constant A with normalization

later

aalf = —ce "= —cyp
2
aaTlf — CZefcr — C21/)
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Guessing the solution for the win

o Try ¢(r) = e~ — can fix overall constant A with normalization

later

aalf = —ce "= —cyp
2
aaTlf — CZefcr — C21/)

@ Can already see exponentials will turn our diff. eq. into algebra ...

February 21, 2020
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Guessing the solution for the win

2
aa—lf =—ce " =—cy ) =t =2y

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 12/22




Guessing the solution for the win

2
aa—lf =—ce " =—cy ) =t =2y

n Ry 209 e2
2m (a#*m) + <E+4neor>¢—0
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Guessing the solution for the win

a¢_ —cr __ azlp_ 2 —cr __ 2
g_—ce = —cy W—ce =cy
n Ry 209 e2
M(aﬂ+rar>+<E+4neor>¢_o
hz 2 —cr 2 —cr 62 —cr
2m[ce +;(—ce )]+<E+4neor>e =0
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Guessing the solution for the win

a¢_ —cr _ T 2
5 = ce " = —cy =ce " =cY

n Ry 209 e?
2m (a#*m) + <E+4neor>¢—0

hz 2 —cr 2 —cr 62 -
- — (— E cr — 0
2m [c ¢ r (mee™) ] +{EB+ 47te,r ¢

e Exponential terms irrelevant, ignore them.
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Guessing the solution for the win

?971’: = _ce " = —Cl/) —F5 =C°€ = Czl/J

n Ry 209 e2
2m (a#*m) + <E+4neor>¢—0

hz 2 —cr 2 —cr 62 —
- — (— E cr — 0
2m [c ¢ r (mee™) ] +{EB+ 47te,r ¢

e Exponential terms irrelevant, ignore them.

e Valid for all r? Then r, 1/r, constant terms equate separately
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Guessing the solution for the win

nc2  nr2 e?
— Z(= E =
2m +2mr (=e)+ < +47reor) 0
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Guessing the solution for the win

nc2 2 e?
— — E =
2m +2mr (=e)+ < +47reor) 0

o Equate coefficients of 1/ terms, must cancel on LHS:
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Guessing the solution for the win

nc2 1’2 e?
—_— R E =
2m +2mr (=e)+ < +47reor) 0

o Equate coefficients of 1/ terms, must cancel on LHS:
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Guessing the solution for the win

nc2 1’2 e?
—_— R E =
2m +2mr (=e)+ < +47t€01’) 0

o Equate coefficients of 1/ terms, must cancel on LHS:

e 2 e’m 1
- =0 -0r- (= —%=—
m  4mne, 4re h o
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Guessing the solution for the win

nc2 1’2 e?
(= E =
2m +2mr (o) + < +4m—:0r) 0

o Equate coefficients of 1/ terms, must cancel on LHS:

e 2 e’m 1
- =0 -0r- (= —%5=—
m  4mne, 4re h o

@ Decay constant is Bohr radius a,!  ¢(r) = e~"/%
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Guessing the solution for the win

nc2 1’2 e?
(= E =
2m +2mr (o) + < +4m—:0r) 0

o Equate coefficients of 1/ terms, must cancel on LHS:

e 2 e’m 1
- =0 -0r- (= —%5=—
m  4mne, 4re h o

@ Decay constant is Bohr radius a,!  ¢(r) = e~"/%
@ Equate constant terms
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Guessing the solution for the win

nc2 12 e?
(= E =
2m +2mr (o) + < +4m—:0r) 0

o Equate coefficients of 1/ terms, must cancel on LHS:

e 2 e’m 1
- =0 -0r- (= —%5=—
m  4mne, 4re h o

@ Decay constant is Bohr radius a,!  ¢(r) = e~"/%
@ Equate constant terms
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Guessing the solution for the win

nc2 12 e?
—_— R E =
2m +2mr (o) + < +4m—:0r) 0

o Equate coefficients of 1/ terms, must cancel on LHS:

e 2 e’m 1
- =0 -0r- (= —%=—
m  4mne, 4re h o

@ Decay constant is Bohr radius a,!  ¢(r) = e~"/%
@ Equate constant terms

h?c2 me*
= _ﬂ -0r- E = —W = En:l,Bohr
0
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So what
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So what

@ Energy is negative, bound state. Atom is stable!

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020 14 /22



So what

@ Energy is negative, bound state. Atom is stable!

@ Only assumption was spherical symmetry, no hand-waving!
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So what

o Energy is negative, bound state. Atom is stable!
@ Only assumption was spherical symmetry, no hand-waving!

@ E exactly as Bohr model n = 1 & experiment ground state
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So what

@ Energy is negative, bound state. Atom is stable!

@ Only assumption was spherical symmetry, no hand-waving!
@ E exactly as Bohr model n = 1 & experiment ground state

@ Length scale is 4, as before ...
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So what

Energy is negative, bound state. Atom is stable!

Only assumption was spherical symmetry, no hand-waving!
E exactly as Bohr model n = 1 & experiment ground state
Length scale is 4, as before ...

...but not an orbit, just a characteristic distance
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So what

Energy is negative, bound state. Atom is stable!

Only assumption was spherical symmetry, no hand-waving!
E exactly as Bohr model n = 1 & experiment ground state
Length scale is 4, as before ...

...but not an orbit, just a characteristic distance

n = 1 ground state is the 1s orbital, spoiler alert
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So what

Energy is negative, bound state. Atom is stable!
Only assumption was spherical symmetry, no hand-waving!

E exactly as Bohr model n = 1 & experiment ground state

...but not an orbit, just a characteristic distance

°
°

°

@ Length scale is 4, as before ...

°

e n = 1 ground state is the 1s orbital, spoiler alert
°

So what? Now we use all those things we learned to do with ¢
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So what

Energy is negative, bound state. Atom is stable!
Only assumption was spherical symmetry, no hand-waving!

E exactly as Bohr model n = 1 & experiment ground state

...but not an orbit, just a characteristic distance
n = 1 ground state is the 1s orbital, spoiler alert

°
°

°

@ Length scale is 4, as before ...

°

°

@ So what? Now we use all those things we learned to do with ¢
°

Normalize, (r), and so on
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Normalize 3
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Normalize 3

@ We ignored this. Should say ¢(r) = Ae™"/%, and then ...
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Normalize 3

@ We ignored this. Should say ¢(r) = Ae™"/%, and then ...

e Enforce probability sanity condition.
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Normalize 3

@ We ignored this. Should say ¢(r) = Ae™"/%, and then ...

e Enforce probability sanity condition.

o0

1= [ lp()Pav

—o0
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Normalize 3

@ We ignored this. Should say ¢(r) = Ae™"/%, and then ...

e Enforce probability sanity condition.

o0

1= [ lp()Pav

—o0

o Integrate over “all space” — spherical shells! (still ignoring ¢, 0)
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Normalize 3

@ We ignored this. Should say ¢(r) = Ae™"/%, and then ...

e Enforce probability sanity condition.

o0

1= [ lp()Pav

—o0

o Integrate over “all space” — spherical shells! (still ignoring ¢, 0)

@ That means dV = (surface area)(thickness) = 4772 dr; 7 : 0 — o0
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Normalize 3

@ We ignored this. Should say ¢(r) = Ae™"/%, and then ...

e Enforce probability sanity condition.

o0

1= [ lp()Pav

—o0

o Integrate over “all space” — spherical shells! (still ignoring ¢, 0)

@ That means dV = (surface area)(thickness) = 4772 dr; 7 : 0 — o0

o]

1= / [ (r)[2dV = /e’zr/”“4m’2dr

—00
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Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”"élmfzdr

—0o0
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Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”"élmfzdr

—0o0

@ Super tedious. Let u = 2r/a,, repeated integration by parts.
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Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”ﬂélmfzdr

—0o0

@ Super tedious. Let u = 2r/a,, repeated integration by parts.

@ Need this more often ...basic form is f0°° x"e ™ dy = nl/g"t1
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Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”ﬂélmfzdr

—0o0

@ Super tedious. Let u = 2r/a,, repeated integration by parts.
@ Need this more often ...basic form is [~ x"e " dx = n!/a"™!

@ Post tedium,
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Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”ﬂélmfzdr

—0o0

@ Super tedious. Let u = 2r/a,, repeated integration by parts.

@ Need this more often ...basic form is f0°° x"e ™ dy = nl/g"t1

@ Post tedium,

1
p) = el
7ta

S W
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Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”ﬂélmfzdr

—0o0

@ Super tedious. Let u = 2r/a,, repeated integration by parts.
@ Need this more often ...basic form is [~ x"e " dx = n!/a"™!

@ Post tedium,

Y = e
7ta

S W

e With ¢(r) properly normalized, we can get P(r) and move on.

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020



Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”ﬂélmfzdr

—0o0

Super tedious. Let u = 2r/a,, repeated integration by parts.
n+1

Need this more often ...basic form is fooo x"e" " dx =n'/a

Post tedium,

1
p) = el
7ta

S W

P(x)dx — P(r,0,¢)dV now
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Normalize 3

[ee]

1= / lp(r)|?dV = /ezr/”ﬂélmfzdr

—0o0

Super tedious. Let u = 2r/a,, repeated integration by parts.

Need this more often ...basic form is fooo xe~ ™ dx = n!/q"t!

Post tedium,

1
p) = el
7ta

S W

P(x)dx — P(r,0,¢)dV now
This is the hydrogen 1s state. What about 2, and p, d, f?
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Probability distribution

4
P(r) = |y(r)P4rr® = ‘ e /0| dmr? = %6*21‘/&0
ta, ay

0.6
- 04
g 02

0 : : : ]

r/a,
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Probability distribution

2 2
4
P(r) = |y(r)P4rr® = ‘ e /0| dmr? = %6721’/&10

ta, ay
0.6
_ oaf
= 02}

o : 2‘ ——
r/a,

@ There is a most probable radius, but clearly not an orbit!
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Probability distribution

2 2
4
P(r) = |y(r)P4rr® = ‘ e /0| dmr? = %6721’/&10

7Tﬂo go
0.6
- 04
g 0.2

o : 2‘ ——

r/a,

@ There is a most probable radius, but clearly not an orbit!
@ Clearly e~ confined near proton, as required
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Probability distribution

4
P(r) = |y(r)P4rr® = ‘ e /0| dmr? = %e*Zr/ao
ta, ay
0.6
- 04|
g 02}
o : 2‘ ——

r/a,

@ There is a most probable radius, but clearly not an orbit!
@ Clearly e~ confined near proton, as required
@ Most probable radius? When dP/dr = 0
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Probability distribution

0.6

0.4

P(r)y(r)

021

@ There is a most probable radius, but clearly not an orbit!

@ Clearly e~ confined near proton, as required

@ Most probable radius? When dP/dr = 0

e This happens at r = a,, semi-classical orbit radius from Bohr
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Probability distribution
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Probability distribution

e Picture: e is a fuzzy “cloud” distributed about p*
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Probability distribution

e Picture: e is a fuzzy “cloud” distributed about p*

@ Probability zero at r = 0, max at r = a,. Smoothly to zero at large r
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Probability distribution

e Picture: e is a fuzzy “cloud” distributed about p*
@ Probability zero at r = 0, max at r = a,. Smoothly to zero at large r

@ Peak probability at r = a,, semi-classical orbit radius from Bohr
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Probability distribution

e Picture: e is a fuzzy “cloud” distributed about p*
@ Probability zero at r = 0, max at r = a,. Smoothly to zero at large r
@ Peak probability at r = a,, semi-classical orbit radius from Bohr

@ What is the expected position? Not a,, asymmetric distribution!
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Probability distribution

Picture: e~ is a fuzzy “cloud” distributed about p™
Probability zero at r = 0, max at r = a,. Smoothly to zero at large r
Peak probability at r = a,, semi-classical orbit radius from Bohr

What is the expected position? Not a,, asymmetric distribution!

Asymmetric means mean # most likely. Need to calculate it.
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Probability distribution

Picture: e~ is a fuzzy “cloud” distributed about p™

Probability zero at r = 0, max at r = a,. Smoothly to zero at large r
Peak probability at r = a,, semi-classical orbit radius from Bohr
What is the expected position? Not a,, asymmetric distribution!
Asymmetric means mean # most likely. Need to calculate it.

Most probable ~ mode, (r) ~ average
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Probability distribution

Picture: e~ is a fuzzy “cloud” distributed about p™
Probability zero at r = 0, max at r = a,. Smoothly to zero at large r

Peak probability at r = a,, semi-classical orbit radius from Bohr

Asymmetric means mean # most likely. Need to calculate it.

°
°
°
@ What is the expected position? Not a,, asymmetric distribution!
°
@ Most probable ~ mode, (r) ~ average

°

Again: in spite of distribution, measurement yields 1 e~ at one spot
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Expectation value of e~ position
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Expectation value of e~ position

@ By analogy with 1D definition of (x),
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Expectation value of e~ position

@ By analogy with 1D definition of (x),

(r) = /lp*rlpdV

all
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Expectation value of e~ position

@ By analogy with 1D definition of (x),

(r) = /lp*rlpdV

all

@ Assuming radial symmetry (still) and our ¢,
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Expectation value of e~ position

@ By analogy with 1D definition of (x),

(r) = /lp*rlpdV

all

@ Assuming radial symmetry (still) and our ¢,

r
(r) = /—3 e 2% dy = — /r3e_2r/“° dr
0 %o %o 0
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Expectation value of e~ position

@ By analogy with 1D definition of (x),

") = [yrpav

all

@ Assuming radial symmetry (still) and our ¢,

r
(r) = /—3 e 2% dy = — /r3e_2r/“° dr
0 %o %o 0

e Annoying integral same form as before, [ x"e ™ dx = n!/a"+1
y 0
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Expectation value of e~ position

@ By analogy with 1D definition of (x),

") = [yrpav

all

@ Assuming radial symmetry (still) and our ¢,

r
(r) = /—3 e 2% dy = — /r3e_2r/“° dr
0 %o %o 0

e Annoying integral same form as before, [ x"e ™ dx = n!/a"+1
y 0

4 33
VIS @ 2"
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Expectation value of e~ position
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Expectation value of e~ position

e P(r)is skewed to large r, so expected value > most probable.
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Expectation value of e~ position

e P(r)is skewed to large r, so expected value > most probable.

@ Expect to find it beyond most probable value more often.
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Expectation value of e~ position

e P(r)is skewed to large r, so expected value > most probable.

@ Expect to find it beyond most probable value more often.

e Can similarly show (r?) = 3a2, Ar = \/(12) — (r)2 = a,/3/2
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Expectation value of e~ position

e P(r)is skewed to large r, so expected value > most probable.

@ Expect to find it beyond most probable value more often.
e Can similarly show (r?) = 3a2, Ar = \/(12) — (r)2 = a,/3/2
® OF, Texpected = (1) = Ar = 3a,(1£1/+/3)
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Expectation value of e~ position

e P(r)is skewed to large r, so expected value > most probable.
@ Expect to find it beyond most probable value more often.

e Can similarly show (r?) = 3a2, Ar = \/(12) — (r)2 = a,/3/2
e Or, Texpected = <1’> +Ar = %ao(l + 1/@)

0.6

0.4

0.2

0 : Il Il L Il
0 1 2 3 4
r/a,
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Expectation value of e~ position

e P(r)is skewed to large r, so expected value > most probable.
@ Expect to find it beyond most probable value more often.

e Can similarly show (r?) = 3a2, Ar = \/(12) — (r)2 = a,/3/2

e Or, Texpected = <1’> +Ar = %ao(l * 1/ﬂ)

@ Pretty spread out! No “orbit” indeed; uncertainty in position.

0.6

0.2

0 ! I I ! I

r/a,
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Probability of finding within a region?
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Probability of finding within a region?

@ Between any radii r; and ry:
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Probability of finding within a region?

@ Between any radii r; and ry:

P(rin[ry,m)) = /2|1p(r)\2 - 47r? dr

1
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Probability of finding within a region?

@ Between any radii r; and ry:

P(rin[ry,m)) = / 1w (r)|? - drr? dr

1

@ No analytic solution in general
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Probability of finding within a region?
@ Between any radii rq and r:

P(rin[ry,m)) = /2|1p(r)\2 - 47r? dr

1

@ No analytic solution in general
@ Letu = 2r/a,, gives a simpler (well-known) for Wolfram.
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Probability of finding within a region?

@ Between any radii rq and r:

P(rin[ry,m)) = / 1w (r)|? - drr? dr

1

@ No analytic solution in general
@ Letu = 2r/a,, gives a simpler (well-known) for Wolfram.

@ So,r=a,meansu =2,r = %ao means u = 3, etc.
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Probability of finding within a region?

@ Between any radii rq and r:
P(rin [r1,12)) /ltp (r)|? - drcr® dr

@ No analytic solution in general

@ Letu = 2r/a,, gives a simpler (well-known) for Wolfram.

@ So,r=a,meansu =2,r = %ao means u = 3, etc.

P(rin [uy, up]) 2/ e “du
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Probability of finding within a region?

@ Between any radii rq and r:
P(rin [r1,12)) /ltp (r)|? - drcr® dr

@ No analytic solution in general

@ Letu = 2r/a,, gives a simpler (well-known) for Wolfram.

@ So,r=a,meansu =2,r = %ao means u = 3, etc.

P(rin [uy, up]) 2/ e “du

@ Check: u = 0 to u = oo, integral is exactly 2, so P =1
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Probability of finding within a region?

@ Between any radii rq and r:
P(rin [r1,12)) /ltp (r)|? - drcr® dr

@ No analytic solution in general
@ Letu = 2r/a,, gives a simpler (well-known) for Wolfram.

@ So,r=a,meansu =2,r = %ao means u = 3, etc.

P(rin [uy, up]) =5 / e “du

@ Check: u = 0 to u = oo, integral is exactly 2, so P =1

@ Once again: f0°° x"e~ % dx = n!/a"+1 ... Ttold you this would keep showing up

LeClair, Patrick (UA) PH253 Lecture 17 February 21, 2020



Probability of finding within a region?
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Probability of finding within a region?

e Specifically, probability e~ is in [0, ,]?
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Probability of finding within a region?

e Specifically, probability e~ is in [0, ,]?
@ Le,, closer than Bohr radius, impossible in Bohr model
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Probability of finding within a region?

e Specifically, probability e~ is in [0, ,]?
@ Le,, closer than Bohr radius, impossible in Bohr model

ao 2
4 1
P(rin [0,a,]) = P /rze_zr/“” dr = E/uze_” du ~
o0
0

1
3
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Probability of finding within a region?

e Specifically, probability e~ is in [0, ,]?
@ Le,, closer than Bohr radius, impossible in Bohr model

ao 2
4 1
P(rin [0,a,]) = P /rze_zr/“” dr = E/uze_” du ~
o0
0

1
3

@ Numerical evaluation is straightforward and well-tabulated
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Probability of finding within a region?

e Specifically, probability e~ is in [0, ,]?
@ Le,, closer than Bohr radius, impossible in Bohr model

ao 2
4 1
P(rin [0,a,]) = P /rze_zr/“” dr = E/uze_” du ~
o0
0

1
3

@ Numerical evaluation is straightforward and well-tabulated
@ Next? Need 0, ¢ dependence for other orbitals (p, d, f orbitals)
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Probability of finding within a region?

e Specifically, probability e~ is in [0, ,]?
@ Le,, closer than Bohr radius, impossible in Bohr model

ao 2
4 1
P(rin [0,a,]) = P /rze_zr/“” dr = E/uze_” du ~
o0
0

1
3

@ Numerical evaluation is straightforward and well-tabulated
@ Next? Need 0, ¢ dependence for other orbitals (p, d, f orbitals)
@ Also excited s states. Need a better approach, but a good start!
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Probability of finding within a region?

Specifically, probability e~ is in [0, 4,]?

@ lLe., closer than Bohr radius, impossible in Bohr model
p
4 7 17 1
P(rin0,a,]) = — [ r2e /% dr == [ wPe M du~ =
a3 2 3
0

Numerical evaluation is straightforward and well-tabulated
Next? Need 0, ¢ dependence for other orbitals (p, d, f orbitals)
Also excited s states. Need a better approach, but a good start!

Need fewer assumptions, better mechanics, more math
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	Now in 3D

