PH253 Lecture 18: Hydrogen atom excited spherically-symmetric states

P. LeClair

Department of Physics & Astronomy The University of Alabama

Spring 2020

LeClair, Patrick (UA)

PH253 Lecture 18

Outline

What did we miss?

- 2 Classical 2 body systems
- 3 Schrödinger in 3D
- 4 Solving it
- 5 Solutions: *s* states
- 6 What's left?

- Ground state (1s) wavefunction found
- Assumed spherical symmetry, but only aimed to find ground state
- Thereby accidentally neglected angular momentum
- Need a full solution with all radial and angular parts
- First: go back to mechanics to see what we missed!
- Specifically: look at a rotating classical system

Outline

What did we miss?

- 2 Classical 2 body systems
 - 3 Schrödinger in 3D
 - 4 Solving it
 - 5 Solutions: *s* states
 - 6 What's left?

Rotating classical system

- Point mass *m* rotating with angular velocity ω at *r*
- Energy: translational + rotational/centrifugal + potential
- Circular motion: angular momentum $L = mvr = m\omega r^2$

$$E = \frac{p^2}{2m} + \frac{L^2}{2mr^2} + V(r) = \frac{1}{2}mv^2 + \frac{1}{2}mr^2\omega^2 + V(r)$$

Any 2 body system

- If PE depends only on relative position, that's all you need
- Origin irrelevant: $V(\vec{r}_1, \vec{r}_2) \rightarrow V_{\text{eff}}(|\vec{r}_1 \vec{r}_2|)$
- Can then simplify in terms of center of mass

$$E = K_{\rm CM} + K_{\rm rel.} + V_{\rm eff}(\vec{r})$$

- Define relative v, position: $\vec{v} = \vec{v}_1 \vec{v}_2$, $\vec{r} = \vec{r}_1 \vec{r}_2$
- And reduced mass: $\mu = \frac{m_1 m_2}{m_1 + m_2}$ (note if $m_1 \gg m_2$, $\mu \approx m_2$)

Any 2 body system

$$\vec{v} = \vec{v}_1 - \vec{v}_2$$
 $\vec{r} = \vec{r}_1 - \vec{r}_2$ $\mu = \frac{m_1 m_2}{m_1 + m_2}$

- Now the two-body problem can be written as an equivalent one-body problem, because *V*_{eff} depends on 1 variable.
- Need relative *v*, relative position, and reduced mass.
- After transforming KE terms, have relative motion as 1D problem

$$E_{\rm rel} = rac{p^2}{2\mu} + V_{\rm eff}(\vec{r}) \qquad \vec{p} = \mu \vec{v}$$

- *V*_{eff} does contain info about rotation
- If $m_1 \gg m_2$: approximately same as fixing position of m_1 , $\mu \approx m_2$
- Just need to transform to radial coordinates now
- Basically, now two 1D problems: motion of whole system and *relative motion*. First one not interesting.

LeClair, Patrick (UA)

PH253 Lecture 18

Motion in radial coordinates reminder

$$E = \frac{1}{2}\mu \left[\left(\frac{dr}{dt}\right)^2 + r^2 \left(\frac{d\theta}{dt}\right)^2 \right] + V_{\text{eff}}(\vec{r}) = \frac{1}{2}\mu v_r^2 + \frac{1}{2}\mu r^2 \omega^2 + V_{\text{eff}}(\vec{r})$$

- For mass μ : dr/dt radial velocity, $d\theta/dt = \omega$ angular velocity.
- Now: linear KE + rotational KE + potential
- No rotation: $d\theta/dt = 0$, linear motion.
- Circular/simple harmonic motion: dr/dt = 0
- Look at rotational term, and note $L = |\vec{r} \times \vec{p}| = m\omega r^2$
- $\frac{1}{2}\mu r^2\omega^2 = \frac{1}{2}L\omega = \frac{1}{2}|\vec{r}\times\vec{p}|\omega$ zero if $\vec{r}\parallel\vec{p}$
- I.e., zero if radially symmetric. Angular momentum comes from angular dependence!

Outline

What did we miss?

- 2 Classical 2 body systems
- Schrödinger in 3D
 - 4 Solving it
 - 5 Solutions: *s* states
 - 6 What's left?

Radial Schrödinger equation

$$\frac{\hbar^2}{2m} \left(\frac{\partial^2 \psi}{\partial r^2} + \frac{2}{r} \frac{\partial \psi}{\partial r} \right) + \left(E + \frac{e^2}{4\pi\epsilon_o r} \right) \psi = 0$$

- Expect translational + rotational/centrifugal + potential?
- What is the quantum analogue of *L*?
- What are $\frac{1}{r} \frac{\partial \psi}{\partial r}$ terms? Relate to *L*!
- Assuming spherical symmetry misses states with $L \neq 0$
- Spherically symmetric atom \neq spherically symmetric solution.
- E.g., vibrating drum head excited states have different shapes.
- Go back to the radial equation and be more careful

Schrödinger in 3D again

$$rac{\hbar^2}{2m}
abla^2\psi=\left(E+rac{e^2}{4\pi\epsilon_o r^2}
ight)\psi$$

- This is still right. In x y z system, $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$
- The correct way is to translate ∇^2 into spherical polar coordinates
- $(x, y, z) \rightarrow (r, \theta, \varphi)$
- It is a mess, but it has been done already.

$$\nabla^2 f = \left(\underbrace{\frac{\partial^2 f}{\partial r^2} + \frac{2}{r} \frac{\partial f}{\partial r}}_{\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r}\right)} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta}\right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}\right)$$

Schrödinger in 3D again

$$\nabla^2 f = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}$$

- We can plug this mess into the Schrödinger equation
- It makes a bigger mess! But! *r* and (φ, θ) terms separate!
- Really three separate equations: radial and two angular
- I.e., can write $\psi(r, \theta, \varphi) = R(r)Y(\theta, \varphi)$
- Tackle the radial part first and see what we missed
- More general approach get excited states we missed (e.g., 2s)

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}\left(r\psi\right) + \frac{1}{r^2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\psi}{\partial r^2}\right] = -\frac{2m}{\hbar^2}\left(E + \frac{e^2}{4\pi\epsilon_o r^2}\right)$$

Schrödinger in 3D again

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}\left(r\psi\right) + \frac{1}{r^2}\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\psi}{\partial r^2}\right] = -\frac{2m}{\hbar^2}\left(E + \frac{e^2}{4\pi\epsilon_o r^2}\right)$$

Sanity check: should get back previous radial equation
Let ∂ψ/∂θ = ∂ψ/∂φ = 0

$$\frac{1}{r}\frac{\partial^2}{\partial r^2}(r\psi) = -\frac{2m}{\hbar^2}\left(E + \frac{e^2}{4\pi\epsilon_0 r^2}\right)\psi$$

-or-
$$\frac{\partial^2}{\partial r^2}(r\psi) = -\frac{2m}{\hbar^2}\left(E + \frac{e^2}{4\pi\epsilon_0 r^2}\right)(r\psi)$$

A

 $\frac{1}{r}\frac{\partial^2}{\partial r^2}(r\psi) = \frac{\partial^2\psi}{\partial r^2} + \frac{2}{r}\frac{\partial\psi}{\partial r}$ and it is the same as before

Simplifying

$$\frac{\partial^2}{\partial r^2}(r\psi) = -\frac{2m}{\hbar^2} \left(E + \frac{e^2}{4\pi\epsilon_o r^2} \right) (r\psi)$$

- Look for solutions again, but don't just guess this time.
- Prev: 1 constant for 2nd order equation, missed something!
- Clean it up a bit: make some definitions.

let
$$\rho = \frac{kme^2}{\hbar^2}r = \frac{r}{a_o}$$
 -and- $\epsilon = \frac{2\hbar^2}{me^4k}E = \frac{E}{E_o}$

- Defines natural dimensionless distances, energies
- Measure in units of Bohr radius *a*_o, ground state energy *E*_o
- Best: less symbols to deal with

Simplifying

$$rac{d^2\left(
ho\psi
ight)}{d
ho^2}=-\left(arepsilon+rac{2}{
ho}
ight)
ho\psi$$

- Substituting, now simpler-looking equation
- Still second order equation. One more: let $f = \rho \psi$

$$\frac{d^2f}{d\rho^2} = -\left(\epsilon + \frac{2}{\rho}\right)f$$

- Previous solution (ground state) is $\psi = e^{-\alpha\rho}$ or $f = \rho e^{-\alpha\rho}$, $\alpha = \text{constant.}$
- Next: factor out the known solution, see what's left.

Outline

What did we miss?

- 2 Classical 2 body systems
- 3 Schrödinger in 3D

6 What's left?

Simplifying

$$\frac{d^2f}{d\rho^2} = -\left(\epsilon + \frac{2}{\rho}\right)f$$

• Know $f = e^{-\alpha \rho}$ is a solution. Look for new ones with $f = e^{-\alpha \rho}g(\rho)$

- With $g(\rho) = \rho$, original solution. Other forms for *g*?
- (Already know *g* depends only on *ρ*.)
- Plug in this form for *f*, what's left depends only on *g*

$$\frac{d^2g}{d\rho^2} - 2\alpha \frac{dg}{d\rho} + \left(\frac{2}{\rho} + \epsilon + \alpha^2\right)g = 0$$

- But α is just a constant choice of origin/units.
- Choose for convenience! Let's pick $\alpha^2 = -\epsilon$

Power series solution

$$\frac{d^2g}{d\rho^2} - 2\alpha \frac{dg}{d\rho} + \frac{2}{\rho}g = 0$$

- Clever choice of constant *α* to simplify.
- Solve this, get *all* spherically-symmetric solutions (*s* states)
- Not just the ground state. But how?
- You can always brute force it with a power series.
- We will get lucky in the end. Trial solution:

$$g(\rho) = \sum_{k=1}^{\infty} a_k \rho^k$$

- Here *a_k* is just a polynomial coefficient
- Find a_k , work backwards to get ψ , done.

Power series solution

$$0 = \frac{d^2g}{d\rho^2} - 2\alpha \frac{dg}{d\rho} + \frac{2}{\rho}g \qquad g(\rho) = \sum_{k=1}^{\infty} a_k \rho^k$$

• Start by writing down the derivatives we'll need.

$$\frac{dg}{d\rho} = \sum_{k=1}^{\infty} k a_k \rho^{k-2}$$

$$\frac{d^2g}{d\rho^2} = \sum_{k=1}^{\infty} k(k-1)a_k \rho^{k-2} = \sum_{k=1}^{\infty} (k+1)ka_{k+1}\rho^{k-1}$$

- $\frac{d^2g}{d\rho^2}$: first term is zero, can shift the sum by one!
- Just keep index correct. Makes all terms have same power of ρ
- Plug into equation at top, collect terms. Cross fingers.

LeClair, Patrick (UA)

PH253 Lecture 18

Power series solution

Just grind through it.

$$\sum_{k=1}^{\infty} (k+1)ka_{k+1}\rho^{k-1} - \sum_{k=1}^{\infty} 2\alpha ka_k \rho^{k-1} + \sum_{k=1}^{\infty} 2a_k \rho^{k-1} = 0$$
$$\sum_{k=1}^{\infty} \left[(k+1)ka_{k+1} - 2\alpha ka_k + 2a_k \right] \rho^{k-1} = 0$$

• Only true for all *ρ* if term in brackets is zero! Thus,

$$(k+1)ka_{k+1} - 2\alpha ka_k + 2a_k = 0$$
 -or- $a_{k+1} = \frac{2(\alpha k - 1)}{k(k+1)}a_k$

• Recursion relationship! Find *a*₁ by normalizing, have the rest.

Putting it together

<u>~</u>~

$$\psi_{\text{full}} = \sum \psi_n$$
 full solution = sum of all states

 $\psi_k = \frac{f_k(\rho)}{\rho} = \frac{e^{-\alpha\rho}}{\rho}g_k(\rho)$ states with particular solution factored

$$g_k(\rho) = \sum_{k=1}^{\infty} a_k \rho^k$$
 remaining function distinguishing states

- What are the meaning of α , k? Look back at ground state.
- Recall $\epsilon = E/E_o = -\alpha^2$. To agree with prior results/expts.?
- $E/E_o = -\frac{1}{n^2} = -\alpha^2$, or $\alpha = 1/n$ with n = integer
- Thus, $1/\alpha$ is just an integer indexing a state/energy level

Putting it together

$$a_{k+1}(n) = \frac{2\left(\frac{k}{n}-1\right)}{k(k+1)}a_k \quad g(\rho) = \sum_{k=1}^{\infty} a_k \rho^k \quad \psi_k = \frac{e^{-\alpha\rho}}{\rho}g_k(\rho)$$

- *k* = degree of polynomial in each solution
- n = energy level, as in Bohr model/Balmer equation = $1/\alpha$
- Notice: if k = n, $a_{k+1} = 0$, as are all higher terms k > n
- Thus, state *n* has $(\frac{e^{-\alpha\rho}}{\rho})$ (polynomial in ρ of order *n*)
- Simplify: (polynomial of order n 1) × (overall $e^{-\rho/n}$ decay)
- Fixing *n* determines range of k, $0 < k \le n$

$$\psi_1 = \frac{e^{-\rho/n}}{\rho} (a_1 \rho) = e^{-\rho/n} a_1 \quad \psi_2 = \frac{e^{-\alpha \rho}}{\rho} (a_1 \rho + a_2 \rho^2) = e^{-\rho/n} (a_1 + a_2 \rho)$$

Putting it together

- Since we have to normalize anyway, can just pick $a_1 = 1$
- Generate the rest by recursion

n = 1	<i>n</i> = 2	•••	п
$a_1 = 1$	$a_1 = 1$		$a_1 = 1$
$a_2 = 0$	$a_2 = -\frac{1}{2}$		$a_2 = \frac{1}{n} - 1$
$a_3 = 0$	$a_3 = 0$		$a_3 = \frac{1}{3} \left(\frac{2}{n^2} - \frac{3}{n} + 1 \right)$
÷	÷		$a_{n+1}=0$

- For a given *n*, only first *n* coefficients are non-zero
- Can now also generate $g_n(\rho)$ and ψ_n functions

Outline

What did we miss?

- 2 Classical 2 body systems
- 3 Schrödinger in 3D
- 4 Solving it

What's left?

s states of hydrogen

$$\psi_n = \frac{f(\rho)}{\rho} = \frac{e^{-\rho/n}}{\rho} g_n(\rho) \qquad g_n(\rho) = \sum_{k=1}^{\infty} a_k(n) \rho^k$$

- Using previous table:
- $g_1(\rho) = \rho$ • $g_2(\rho) = \rho^2(\frac{1}{n} - 1)$ • $g_3(\rho) = \frac{1}{3}\rho^2(\frac{2}{n^2} - \frac{3}{n} + 1)$
- For *n* = 1,

$$\psi_1 = \frac{e^{-\rho/1}}{\rho}\rho = e^{-\rho} = e^{-r/a_o} \quad \checkmark$$

- Correctly recover ground state (1s) solution
- ψ_2 is the 2*s* excited state . . .

LeClair, Patrick (UA)

PH253 Lecture 18

A

s states of hydrogen

• With
$$g_1 = \rho$$
, $g_2(\rho) = \rho^2(\frac{1}{n} - 1) = -\frac{1}{2}\rho^2$, $n = 2$:
 $\psi_2 = \frac{e^{-\rho/2}}{\rho} \left(\rho - \frac{1}{2}\rho^2\right) = e^{-\rho/2} \left(1 - \frac{\rho}{2}\right) = e^{-r/2a_0} \left(1 - \frac{r}{2a_0}\right)$

• Can keep generating higher order *s* states now, e.g.

$$\psi_3 = e^{-r/3a_o} \left(1 - rac{2r}{3a_o} + rac{2r^2}{27a_o^2}
ight)$$

- Decay gets faster, as $e^{-r/n}$. Length scale is a_0 in general.
- Polynomial of order n 1? n 1 zero crossings/oscillations for ψ
- Now have all *s* states. What do they look like?

s states of hydrogen: wave functions

Not normalized, ψ_2 , ψ_3 will have lower amplitude - spread out more.

• Now we can do all the things (after normalizing).

• Find
$$\langle r \rangle$$
, $P(r) = 4\pi r^2 |\psi|^2$, etc.

• Energies as before (can plug ψ_n into Schrödinger).

$$E = \epsilon E_o = -\alpha^2 E_o = -\frac{E_o}{n^2} \approx -\frac{13.6 \,\mathrm{eV}}{n^2}$$

s states of hydrogen: Probability densities

Normalized. Note $\langle r \rangle \uparrow$ as $n \uparrow$

s states of hydrogen

1s: (r) = 3a₀/2 as before
2s: (r) = 6a₀
3s: (r) = 27a₀/2

Figure: https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_Chem1_(Lower)/05%3A_Atoms_and_ the_Periodic_Table/5.05%3A_The_Quantum_Atom

LeClair, Patrick (UA)

PH253 Lecture 18

2s state 3-d cross section

Outline

What did we miss?

- 2 Classical 2 body systems
- 3 Schrödinger in 3D
- 4 Solving it
- 5 Solutions: *s* states

- Still only states with L = 0 no p, d, f orbitals
- Have to solve angular part for full solution
- Will skip most of the math on that and get to the main results
- With other orbitals: keys to understanding bonding
- Enough knowledge to figure out periodic table
- Energy levels in molecules and solids
- Next time: angular dependence and angular momentum
- Then: multi-electron atoms

