PH253 Lecture 18: Hydrogen atom

 excited spherically-symmetric statesP. LeClair

Department of Physics \& Astronomy The University of Alabama

Spring 2020

Outline

(1) What did we miss?

2 Classical 2 body systems
(3) Schrödinger in 3D
(1) Solving it
(5) Solutions: s states
(6) What's left?

So far

- Ground state (1s) wavefunction found
- Assumed spherical symmetry, but only aimed to find ground state
- Thereby accidentally neglected angular momentum
- Need a full solution with all radial and angular parts
- First: go back to mechanics to see what we missed!
- Specifically: look at a rotating classical system

Outline

(1) What did we miss?

(2) Classical 2 body systems
(3) Schrödinger in 3D

4 Solving it
(c) Solutions: s states
(6) What's left?

Rotating classical system

- Point mass m rotating with angular velocity ω at r
- Energy: translational + rotational/centrifugal + potential
- Circular motion: angular momentum $L=m v r=m \omega r^{2}$

$$
E=\frac{p^{2}}{2 m}+\frac{L^{2}}{2 m r^{2}}+V(r)=\frac{1}{2} m v^{2}+\frac{1}{2} m r^{2} \omega^{2}+V(r)
$$

Any 2 body system

- If PE depends only on relative position, that's all you need
- Origin irrelevant: $V\left(\vec{r}_{1}, \vec{r}_{2}\right) \rightarrow V_{\text {eff }}\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)$
- Can then simplify in terms of center of mass

$$
E=K_{\mathrm{CM}}+K_{\text {rel. }}+V_{\text {eff }}(\vec{r})
$$

- Define relative v, position: $\vec{v}=\vec{v}_{1}-\vec{v}_{2}, \vec{r}=\vec{r}_{1}-\vec{r}_{2}$
- And reduced mass: $\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$ (note if $m_{1} \gg m_{2}, \mu \approx m_{2}$)

Any 2 body system

$$
\vec{v}=\vec{v}_{1}-\vec{v}_{2} \quad \vec{r}=\vec{r}_{1}-\vec{r}_{2} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

- Now the two-body problem can be written as an equivalent one-body problem, because $V_{\text {eff }}$ depends on 1 variable.
- Need relative v, relative position, and reduced mass.
- After transforming KE terms, have relative motion as 1D problem

$$
E_{\text {rel }}=\frac{p^{2}}{2 \mu}+V_{\mathrm{eff}}(\vec{r}) \quad \vec{p}=\mu \vec{v}
$$

- $V_{\text {eff }}$ does contain info about rotation
- If $m_{1} \gg m_{2}$: approximately same as fixing position of $m_{1}, \mu \approx m_{2}$
- Just need to transform to radial coordinates now
- Basically, now two 1D problems: motion of whole system and relative motion. First one not interesting.

Motion in radial coordinates reminder

$$
E=\frac{1}{2} \mu\left[\left(\frac{d r}{d t}\right)^{2}+r^{2}\left(\frac{d \theta}{d t}\right)^{2}\right]+V_{\mathrm{eff}}(\vec{r})=\frac{1}{2} \mu v_{r}^{2}+\frac{1}{2} \mu r^{2} \omega^{2}+V_{\mathrm{eff}}(\vec{r})
$$

- For mass $\mu: d r / d t$ radial velocity, $d \theta / d t=\omega$ angular velocity.
- Now: linear KE + rotational KE + potential
- No rotation: $d \theta / d t=0$, linear motion.
- Circular/simple harmonic motion: $d r / d t=0$
- Look at rotational term, and note $L=|\vec{r} \times \vec{p}|=m \omega r^{2}$
- $\frac{1}{2} \mu r^{2} \omega^{2}=\frac{1}{2} L \omega=\frac{1}{2}|\vec{r} \times \vec{p}| \omega$ - zero if $\vec{r} \| \vec{p}$
- I.e., zero if radially symmetric. Angular momentum comes from angular dependence!

Outline

(1) What did we miss?

2 Classical 2 body systems

(3) Schrödinger in 3D
(4) Solving it
(5) Solutions: s states
(6) What's left?

Radial Schrödinger equation

$$
\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}\right)+\left(E+\frac{e^{2}}{4 \pi \epsilon_{0} r}\right) \psi=0
$$

- Expect translational + rotational/centrifugal + potential?
- What is the quantum analogue of L ?
- What are $\frac{1}{r} \frac{\partial \psi}{\partial r}$ terms? Relate to L !
- Assuming spherical symmetry misses states with $L \neq 0$
- Spherically symmetric atom \neq spherically symmetric solution.
- E.g., vibrating drum head - excited states have different shapes.
- Go back to the radial equation and be more careful

Schrödinger in 3D again

$$
\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r^{2}}\right) \psi
$$

- This is still right. In $x-y-z$ system, $\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}$
- The correct way is to translate ∇^{2} into spherical polar coordinates
- $(x, y, z) \rightarrow(r, \theta, \varphi)$
- It is a mess, but it has been done already.

$$
\nabla^{2} f=(\underbrace{\frac{\partial^{2} f}{\partial r^{2}}+\frac{2}{r} \frac{\partial f}{\partial r}}_{\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}})
$$

Schrödinger in 3D again

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial r^{2}}+\frac{2}{r} \frac{\partial f}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \varphi^{2}}
$$

- We can plug this mess into the Schrödinger equation
- It makes a bigger mess! But! r and (φ, θ) terms separate!
- Really three separate equations: radial and two angular
- I.e., can write $\psi(r, \theta, \varphi)=R(r) Y(\theta, \varphi)$
- Tackle the radial part first and see what we missed
- More general approach - get excited states we missed (e.g., $2 s$)

$$
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi)+\frac{1}{r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial r^{2}}\right]=-\frac{2 m}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}}\right)
$$

Schrödinger in 3D again

$$
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi)+\frac{1}{r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial r^{2}}\right]=-\frac{2 m}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r^{2}}\right)
$$

- Sanity check: should get back previous radial equation
- Let $\partial \psi / \partial \theta=\partial \psi / \partial \varphi=0$

$$
\begin{aligned}
\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi) & =-\frac{2 m}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r^{2}}\right) \psi \\
\text {-or- } \quad \frac{\partial^{2}}{\partial r^{2}}(r \psi) & =-\frac{2 m}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \epsilon_{o} r^{2}}\right)(r \psi)
\end{aligned}
$$

-note- $\quad \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}(r \psi)=\frac{\partial^{2} \psi}{\partial r^{2}}+\frac{2}{r} \frac{\partial \psi}{\partial r}$ and it is the same as before

Simplifying

$$
\frac{\partial^{2}}{\partial r^{2}}(r \psi)=-\frac{2 m}{\hbar^{2}}\left(E+\frac{e^{2}}{4 \pi \epsilon_{0} r^{2}}\right)(r \psi)
$$

- Look for solutions again, but don't just guess this time.
- Prev: 1 constant for 2 nd order equation, missed something!
- Clean it up a bit: make some definitions.

$$
\text { let } \quad \rho=\frac{k m e^{2}}{\hbar^{2}} r=\frac{r}{a_{0}} \quad \text {-and- } \quad \epsilon=\frac{2 \hbar^{2}}{m e^{4} k} E=\frac{E}{E_{o}}
$$

- Defines natural dimensionless distances, energies
- Measure in units of Bohr radius a_{0}, ground state energy E_{0}
- Best: less symbols to deal with

Simplifying

$$
\frac{d^{2}(\rho \psi)}{d \rho^{2}}=-\left(\epsilon+\frac{2}{\rho}\right) \rho \psi
$$

- Substituting, now simpler-looking equation
- Still second order equation. One more: let $f=\rho \psi$

$$
\frac{d^{2} f}{d \rho^{2}}=-\left(\epsilon+\frac{2}{\rho}\right) f
$$

- Previous solution (ground state) is $\psi=e^{-\alpha \rho}$ or $f=\rho e^{-\alpha \rho}$, $\alpha=$ constant.
- Next: factor out the known solution, see what's left.

Outline

(1) What did we miss?

2 Classical 2 body systems
(3) Schrödinger in 3D

4 Solving it
(5) Solutions: s states
(6) What's left?

Simplifying

$$
\frac{d^{2} f}{d \rho^{2}}=-\left(\epsilon+\frac{2}{\rho}\right) f
$$

- Know $f=e^{-\alpha \rho}$ is a solution. Look for new ones with $f=e^{-\alpha \rho} g(\rho)$
- With $g(\rho)=\rho$, original solution. Other forms for g ?
- (Already know g depends only on ρ.)
- Plug in this form for f, what's left depends only on g

$$
\frac{d^{2} g}{d \rho^{2}}-2 \alpha \frac{d g}{d \rho}+\left(\frac{2}{\rho}+\epsilon+\alpha^{2}\right) g=0
$$

- But α is just a constant - choice of origin/units.
- Choose for convenience! Let's pick $\alpha^{2}=-\epsilon$

Power series solution

$$
\frac{d^{2} g}{d \rho^{2}}-2 \alpha \frac{d g}{d \rho}+\frac{2}{\rho} g=0
$$

- Clever choice of constant α to simplify.
- Solve this, get all spherically-symmetric solutions (s states)
- Not just the ground state. But how?
- You can always brute force it with a power series.
- We will get lucky in the end. Trial solution:

$$
g(\rho)=\sum_{k=1}^{\infty} a_{k} \rho^{k}
$$

- Here a_{k} is just a polynomial coefficient
- Find a_{k}, work backwards to get ψ, done.

Power series solution

$$
0=\frac{d^{2} g}{d \rho^{2}}-2 \alpha \frac{d g}{d \rho}+\frac{2}{\rho} g \quad g(\rho)=\sum_{k=1}^{\infty} a_{k} \rho^{k}
$$

- Start by writing down the derivatives we'll need.

$$
\begin{gathered}
\frac{d g}{d \rho}=\sum_{k=1}^{\infty} k a_{k} \rho^{k-1} \\
\frac{d^{2} g}{d \rho^{2}}=\sum_{k=1}^{\infty} k(k-1) a_{k} \rho^{k-2}=\sum_{k=1}^{\infty}(k+1) k a_{k+1} \rho^{k-1}
\end{gathered}
$$

- $\frac{d^{2} g}{d \rho^{2}}$: first term is zero, can shift the sum by one!
- Just keep index correct. Makes all terms have same power of ρ
- Plug into equation at top, collect terms. Cross fingers.

Power series solution

Just grind through it.

$$
\begin{gathered}
\sum_{k=1}^{\infty}(k+1) k a_{k+1} \rho^{k-1}-\sum_{k=1}^{\infty} 2 \alpha k a_{k} \rho^{k-1}+\sum_{k=1}^{\infty} 2 a_{k} \rho^{k-1}=0 \\
\sum_{k=1}^{\infty}\left[(k+1) k a_{k+1}-2 \alpha k a_{k}+2 a_{k}\right] \rho^{k-1}=0
\end{gathered}
$$

- Only true for all ρ if term in brackets is zero! Thus,

$$
(k+1) k a_{k+1}-2 \alpha k a_{k}+2 a_{k}=0 \quad \text {-or- } \quad a_{k+1}=\frac{2(\alpha k-1)}{k(k+1)} a_{k}
$$

- Recursion relationship! Find a_{1} by normalizing, have the rest.

Putting it together

$$
\begin{gathered}
\psi_{\text {full }}=\sum \psi_{n} \quad \text { full solution }=\text { sum of all states } \\
\psi_{k}=\frac{f_{k}(\rho)}{\rho}=\frac{e^{-\alpha \rho}}{\rho} g_{k}(\rho) \quad \text { states with particular solution factored } \\
g_{k}(\rho)=\sum_{k=1}^{\infty} a_{k} \rho^{k} \quad \text { remaining function distinguishing states }
\end{gathered}
$$

- What are the meaning of α, k ? Look back at ground state.
- Recall $\epsilon=E / E_{o}=-\alpha^{2}$. To agree with prior results/expts.?
- $E / E_{o}=-\frac{1}{n^{2}}=-\alpha^{2}$, or $\alpha=1 / n$ with $n=$ integer
- Thus, $1 / \alpha$ is just an integer indexing a state/energy level

Putting it together

$$
a_{k+1}(n)=\frac{2\left(\frac{k}{n}-1\right)}{k(k+1)} a_{k} \quad g(\rho)=\sum_{k=1}^{\infty} a_{k} \rho^{k} \quad \psi_{k}=\frac{e^{-\alpha \rho}}{\rho} g_{k}(\rho)
$$

- $k=$ degree of polynomial in each solution
- $n=$ energy level, as in Bohr model/Balmer equation $=1 / \alpha$
- Notice: if $k=n, a_{k+1}=0$, as are all higher terms $k>n$
- Thus, state n has $\left(\frac{e^{-\alpha \rho}}{\rho}\right)$ (polynomial in ρ of order n)
- Simplify: (polynomial of order $n-1) \times$ (overall $e^{-\rho / n}$ decay)
- Fixing n determines range of $k, 0<k \leq n$

$$
\psi_{1}=\frac{e^{-\rho / n}}{\rho}\left(a_{1} \rho\right)=e^{-\rho / n} a_{1} \quad \psi_{2}=\frac{e^{-\alpha \rho}}{\rho}\left(a_{1} \rho+a_{2} \rho^{2}\right)=e^{-\rho / n}\left(a_{1}+a_{2} \rho\right)
$$

Putting it together

- Since we have to normalize anyway, can just pick $a_{1}=1$
- Generate the rest by recursion

$$
\begin{array}{llll}
\hline n=1 & n=2 & \cdots & n \\
\hline a_{1}=1 & a_{1}=1 & & a_{1}=1 \\
a_{2}=0 & a_{2}=-\frac{1}{2} & & a_{2}=\frac{1}{n}-1 \\
a_{3}=0 & a_{3}=0 & & a_{3}=\frac{1}{3}\left(\frac{2}{n^{2}}-\frac{3}{n}+1\right) \\
\vdots & \vdots & & a_{n+1}=0 \\
\hline
\end{array}
$$

- For a given n, only first n coefficients are non-zero
- Can now also generate $g_{n}(\rho)$ and ψ_{n} functions

Outline

(1) What did we miss?

2 Classical 2 body systems
(3) Schrödinger in 3D
(1) Solving it
(5) Solutions: s states
(6) What's left?

s states of hydrogen

$$
\psi_{n}=\frac{f(\rho)}{\rho}=\frac{e^{-\rho / n}}{\rho} g_{n}(\rho) \quad g_{n}(\rho)=\sum_{k=1}^{\infty} a_{k}(n) \rho^{k}
$$

- Using previous table:
- $g_{1}(\rho)=\rho$
- $g_{2}(\rho)=\rho^{2}\left(\frac{1}{n}-1\right)$
- $g_{3}(\rho)=\frac{1}{3} \rho^{2}\left(\frac{2}{n^{2}}-\frac{3}{n}+1\right)$
- For $n=1$,

$$
\psi_{1}=\frac{e^{-\rho / 1}}{\rho} \rho=e^{-\rho}=e^{-r / a_{0}} \quad \checkmark
$$

- Correctly recover ground state (1s) solution
- ψ_{2} is the $2 s$ excited state \ldots

s states of hydrogen

- With $g_{1}=\rho, g_{2}(\rho)=\rho^{2}\left(\frac{1}{n}-1\right)=-\frac{1}{2} \rho^{2}, n=2$:

$$
\psi_{2}=\frac{e^{-\rho / 2}}{\rho}\left(\rho-\frac{1}{2} \rho^{2}\right)=e^{-\rho / 2}\left(1-\frac{\rho}{2}\right)=e^{-r / 2 a_{o}}\left(1-\frac{r}{2 a_{o}}\right)
$$

- Can keep generating higher order s states now, e.g.

$$
\psi_{3}=e^{-r / 3 a_{0}}\left(1-\frac{2 r}{3 a_{0}}+\frac{2 r^{2}}{27 a_{o}^{2}}\right)
$$

- Decay gets faster, as $e^{-r / n}$. Length scale is a_{o} in general.
- Polynomial of order $n-1$? $n-1$ zero crossings/oscillations for ψ
- Now have all s states. What do they look like?

s states of hydrogen: wave functions

Not normalized, ψ_{2}, ψ_{3} will have lower amplitude - spread out more.

s states of hydrogen

- Now we can do all the things (after normalizing).
- Find $\langle r\rangle, P(r)=4 \pi r^{2}|\psi|^{2}$, etc.
- Energies as before (can plug ψ_{n} into Schrödinger).

$$
E=\epsilon E_{o}=-\alpha^{2} E_{o}=-\frac{E_{o}}{n^{2}} \approx-\frac{13.6 \mathrm{eV}}{n^{2}}
$$

s states of hydrogen: Probability densities

Normalized. Note $\langle r\rangle \uparrow$ as $n \uparrow$

s states of hydrogen

- $1 s:\langle r\rangle=\frac{3 a_{o}}{2}$ as before
- $2 s:\langle r\rangle=6 a_{0}$
- $3 s:\langle r\rangle=\frac{27 a_{0}}{2}$

Figure: https:///chem.1ibretexts.org/Bookshelves/General_Chemistry/Bookk/3A_Chem1_(Lower)/05\%/3A_Atoms_and_ the_Periodic_Table/5.05\%3A_The_Quantum_Atom

$2 s$ state $3-d$ cross section

Solutions so far still have spherical (radial) symmetry

Outline

(1) What did we miss?

2 Classical 2 body systems
(3) Schrödinger in 3D
(1) Solving it
(5) Solutions: s states
(6) What's left?
A

What's left?

- Still only states with $L=0$ - no p, d, f orbitals
- Have to solve angular part for full solution
- Will skip most of the math on that and get to the main results
- With other orbitals: keys to understanding bonding
- Enough knowledge to figure out periodic table
- Energy levels in molecules and solids
- Next time: angular dependence and angular momentum
- Then: multi-electron atoms

