# PH253 Lecture 2: relativity <br> Time and length in different reference frames 

P. LeClair

Department of Physics \& Astronomy The University of Alabama

Spring 2020

## Outline

(1) Observers in relative motion
(2) No absolute frame of reference
(3) Consequences of Relativity
(4) Quick problems
(5) Summary

## Outline

(1) Observers in relative motion

## 2 No absolute frame of reference

(3) Consequences of Relativity

44 Quick problems
(5) Summary

## Observers in relative motion

O frame: girl on ground, $\mathrm{O}^{\prime}$ frame: bully on skateboard relative velocity between the two is $v_{\text {bully }}$


- What is the velocity of the dart according to each observer?


## Observers in relative motion

O frame: girl on ground, $\mathrm{O}^{\prime}$ frame: bully on skateboard relative velocity between the two is $v_{\text {bully }}$


- What is the velocity of the dart according to each observer?
- $v_{\text {bully }}^{\mathrm{O}}=$ velocity of bully measured from the ground $\equiv v_{\text {bully }}$


## Observers in relative motion

O frame: girl on ground, $\mathrm{O}^{\prime}$ frame: bully on skateboard relative velocity between the two is $v_{\text {bully }}$


- What is the velocity of the dart according to each observer?
- $v_{\text {bully }}^{\mathrm{O}}=$ velocity of bully measured from the ground $\equiv v_{\text {bully }}$
- $v_{\text {dart }}^{\mathrm{O}^{\prime}}=$ velocity of dart measured from the skateboard $\equiv v_{\text {dart }}^{\prime}$


## Observers in relative motion

O frame: girl on ground, $\mathrm{O}^{\prime}$ frame: bully on skateboard relative velocity between the two is $v_{\text {bully }}$


- What is the velocity of the dart according to each observer?
- $v_{\text {bully }}^{\mathrm{O}}=$ velocity of bully measured from the ground $\equiv v_{\text {bully }}$
- $v_{\text {dart }}^{\mathrm{O}^{\prime}}=$ velocity of dart measured from the skateboard $\equiv v_{\text {dart }}^{\prime}$
- $v_{\text {dart }}^{\mathrm{O}}=$ velocity of the dart measured by the girl $\equiv v_{\text {dart }}$


## Observers in relative motion 2



- Neither rocket accelerating, both think they are at rest and other one is moving


## Observers in relative motion 2



- Neither rocket accelerating, both think they are at rest and other one is moving
- Only agree that they have a displacement $\Delta x$


## Observers in relative motion 2



- Neither rocket accelerating, both think they are at rest and other one is moving
- Only agree that they have a displacement $\Delta x$
- And that it reduces as $\Delta x=\left(v_{1}-v_{2}\right) \Delta t$ in some time $\Delta t$


## Observers in relative motion 2



- Neither rocket accelerating, both think they are at rest and other one is moving
- Only agree that they have a displacement $\Delta x$
- And that it reduces as $\Delta \mathrm{x}=\left(v_{1}-v_{2}\right) \Delta \mathrm{t}$ in some time $\Delta \mathrm{t}$
"Who is moving" is a relative notion!


## Outline

(1) Observers in relative motion
(2) No absolute frame of reference
(3) Consequences of Relativity

4 Quick problems
(5) Summary

## No absolute frame of reference

## Principle of relativity:

All laws of nature are the same in all uniformly moving (non-accelerating) frames of reference. No frame is preferred or special.

## No absolute frame of reference

If there were some preferred frame in space, the speed of light should vary seasonally.


## No absolute frame of reference

If there were some preferred frame in space, the speed of light should vary seasonally.


It doesn't.

## No absolute frame of reference

More to the point: if the speed of light was relative to some background medium, what happens when we change direction?


## No absolute frame of reference

More to the point: if the speed of light was relative to some background medium, what happens when we change direction?


Experiments: same velocity in all directions - there is no medium, and no preferred frame.

## Invariance of the speed of light

## Invariance of the speed of light:

The speed of light in free space c is independent of the motion of the source or observer. It is an invariant constant.

$$
\mathrm{c} \equiv 299,792,458 \mathrm{~m} / \mathrm{s} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (fixed value in the SI system). }
$$

## Invariance of the speed of light

## Invariance of the speed of light:

The speed of light in free space c is independent of the motion of the source or observer. It is an invariant constant.

$$
\mathrm{c} \equiv 299,792,458 \mathrm{~m} / \mathrm{s} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (fixed value in the SI system). }
$$

Why?

## Invariance of the speed of light

## Invariance of the speed of light:

The speed of light in free space c is independent of the motion of the source or observer. It is an invariant constant.

$$
\mathrm{c} \equiv 299,792,458 \mathrm{~m} / \mathrm{s} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (fixed value in the SI system). }
$$

Why? It is experimentally so.

## Invariance of the speed of light

## Invariance of the speed of light:

The speed of light in free space c is independent of the motion of the source or observer. It is an invariant constant.

$$
\mathrm{c} \equiv 299,792,458 \mathrm{~m} / \mathrm{s} \approx 3 \times 10^{8} \mathrm{~m} / \mathrm{s} \text { (fixed value in the SI system). }
$$

Why? It is experimentally so.
If it weren't, causality would be violated. More on this later.

## Summary: Principles of Special Relativity

## Principles of Special Relativity:

(1) Special principle of relativity: Laws of physics look the same in all inertial (non-accelerating) reference frames. There are no preferred inertial frames of reference.

## Summary: Principles of Special Relativity

## Principles of Special Relativity:

(1) Special principle of relativity: Laws of physics look the same in all inertial (non-accelerating) reference frames. There are no preferred inertial frames of reference.
(2) Invariance of c: The speed of light in a vacuum is a universal constant, $c$, independent of the motion of the source or observer.

## Outline

## (1) Observers in relative motion

## (2) No absolute frame of reference

## (3) Consequences of Relativity

## 4 Quick problems

(5) Summary

## Failure to agree on simultaneity

- Speed of light is finite and constant


## Failure to agree on simultaneity

- Speed of light is finite and constant
- Will prove later: it is a cosmic speed limit - nothing faster


## Failure to agree on simultaneity

- Speed of light is finite and constant
- Will prove later: it is a cosmic speed limit - nothing faster
- Results:


## Failure to agree on simultaneity

- Speed of light is finite and constant
- Will prove later: it is a cosmic speed limit - nothing faster
- Results:
- delay to find out about separated events, depends on location


## Failure to agree on simultaneity

- Speed of light is finite and constant
- Will prove later: it is a cosmic speed limit - nothing faster
- Results:
- delay to find out about separated events, depends on location
- two events may appear simultaneous for one but not another


## Failure to agree on simultaneity

- Speed of light is finite and constant
- Will prove later: it is a cosmic speed limit - nothing faster
- Results:
- delay to find out about separated events, depends on location
- two events may appear simultaneous for one but not another

Everyday analogy (inexact): see lightening before thunder due to propagation delay

## Failure of simultaneity example


$O{ }^{y} \bigsqcup_{x} \quad \dot{x}^{\text {Moe }}$

- Moe on ground (reference frame O)


## Failure of simultaneity example



$$
O^{y} \bigsqcup_{x} \quad \stackrel{8}{x} \text { Moe }
$$

- Moe on ground (reference frame O )
- Joe in ship at $v=0.9 \mathrm{c}$ relative to Moe (frame $\mathrm{O}^{\prime}$ )


## Failure of simultaneity example



$$
O{ }^{y} \bigsqcup_{x} \text { 옻 Moe }
$$

- Moe on ground (reference frame O )
- Joe in ship at $v=0.9 \mathrm{c}$ relative to Moe (frame $\mathrm{O}^{\prime}$ )
- Joe turns on a light in center of the ship at $t=0$


## Failure of simultaneity example



$$
O{ }^{y} \bigsqcup_{x} \text { 옻 Moe }
$$

- Moe on ground (reference frame O )
- Joe in ship at $v=0.9 \mathrm{c}$ relative to Moe (frame $\mathrm{O}^{\prime}$ )
- Joe turns on a light in center of the ship at $t=0$

Joe sees light rays hit back \& front of the ship simultaneously.

## Failure of simultaneity example



$$
O{ }^{y} \bigsqcup_{x} \text { 옻 Moe }
$$

- Moe on ground (reference frame O)
- Joe in ship at $v=0.9$ c relative to Moe (frame $\mathrm{O}^{\prime}$ )
- Joe turns on a light in center of the ship at $t=0$

Joe sees light rays hit back \& front of the ship simultaneously. What does Moe see?

## Failure of simultaneity example



$$
O y \uparrow \underset{x}{\longrightarrow} \stackrel{9}{\leftarrow} \text { Moe }
$$

- Moe: ship moved forward after light was created!


## Failure of simultaneity example



$$
O^{v} \bigsqcup_{x} \quad \neq \mathrm{Moe}
$$

- Moe: ship moved forward after light was created!
- Light rays move out radially from bulb at instant of creation, but ship keeps going.


## Failure of simultaneity example



$$
O^{v} \bigsqcup_{x} \quad \neq \mathrm{Moe}
$$

- Moe: ship moved forward after light was created!
- Light rays move out radially from bulb at instant of creation, but ship keeps going.
- Ship runs away from beams, so they hit the back first!


## Failure of simultaneity example


$O^{n}{\underset{x}{x}}^{f}$ Moe

- Moe: ship moved forward after light was created!
- Light rays move out radially from bulb at instant of creation, but ship keeps going.
- Ship runs away from beams, so they hit the back first!

Simultaneous events for Joe but not Moe - relative!

## Failure of simultaneity example


$O^{n} \underline{x}_{x} \quad{ }_{x}$ Moe

- Moe: ship moved forward after light was created!
- Light rays move out radially from bulb at instant of creation, but ship keeps going.
- Ship runs away from beams, so they hit the back first!

Simultaneous events for Joe but not Moe - relative! Spatially separated events + relative motion key.

## Consequence of an invariant speed of light

Consequence of an invariant speed of light:
Events that are simultaneous in one reference frame are not simultaneous in another reference frame moving relative to it - and no particular frame is preferred. Simultaneity is not an absolute concept.

## Consequence of an invariant speed of light

## Consequence of an invariant speed of light:

Events that are simultaneous in one reference frame are not simultaneous in another reference frame moving relative to it - and no particular frame is preferred. Simultaneity is not an absolute concept.

If the events are happing in your frame, stationary relative to you, there is no problem. Spatial separation and relative motion are crucial.

## Time dilation



Next thought experiment: passage of time is also relative!

## Time dilation



Next thought experiment: passage of time is also relative!

- Const. speed of light is all we can rely on - use it to make a clock.


## Time dilation



Next thought experiment: passage of time is also relative!

- Const. speed of light is all we can rely on - use it to make a clock.
- Bounce light beam between mirrors separated by d.


## Time dilation



Next thought experiment: passage of time is also relative!

- Const. speed of light is all we can rely on - use it to make a clock.
- Bounce light beam between mirrors separated by d.
- One round trip is one 'tick' of our clock.


## Time dilation



- Joe is stationary with respect to clock (frame $\mathrm{O}^{\prime}$ )


## Time dilation



$$
y \uparrow \bigcirc \underset{x}{\uparrow} \stackrel{\uparrow}{ \pm} \text { Moe }
$$

- Joe is stationary with respect to clock (frame $\mathrm{O}^{\prime}$ )
- Moe observes from frame O, but in motion relative to clock


## Time dilation



$$
y \uparrow \bigcirc \underset{x}{\uparrow} \stackrel{\uparrow}{ \pm} \text { Moe }
$$

- Joe is stationary with respect to clock (frame $\mathrm{O}^{\prime}$ )
- Moe observes from frame O, but in motion relative to clock
- Relative velocity $v$ between the two


## Time dilation



$$
y \uparrow \bigcirc \underset{x}{\uparrow} \stackrel{\uparrow}{\sim} \text { Moe }
$$

- Joe is stationary with respect to clock (frame $\mathrm{O}^{\prime}$ )
- Moe observes from frame O, but in motion relative to clock
- Relative velocity $v$ between the two

What's the difference?

## Time dilation

For Joe in the car, light travels 2 d in one round trip at speed c .

## Time dilation

For Joe in the car, light travels 2 d in one round trip at speed c .
He is stationary with respect to the clock, nothing strange happens.

## Time dilation

For Joe in the car, light travels 2 d in one round trip at speed c .
He is stationary with respect to the clock, nothing strange happens.
Thus, the time he measures is:

## Time dilation

For Joe in the car, light travels 2 d in one round trip at speed c .
He is stationary with respect to the clock, nothing strange happens.
Thus, the time he measures is:

$$
\begin{equation*}
\Delta \mathrm{t}_{\mathrm{Joe}}^{\prime}=\frac{2 \mathrm{~d}}{\mathrm{c}} \tag{1}
\end{equation*}
$$

## Time dilation

For Joe in the car, light travels 2 d in one round trip at speed c .
He is stationary with respect to the clock, nothing strange happens.
Thus, the time he measures is:

$$
\begin{equation*}
\Delta \mathrm{t}_{\mathrm{Joe}}^{\prime}=\frac{2 \mathrm{~d}}{\mathrm{c}} \tag{1}
\end{equation*}
$$

No problem. How about Moe?

## Time dilation



- Moe's view: also horizontal motion, but must preserve causality.


## Time dilation



$$
{ }^{{ }^{n} \dagger}{ }_{x}^{O} \quad \nsubseteq \text { Moe }
$$

- Moe's view: also horizontal motion, but must preserve causality.
- He must see light hit both mirrors as Joe does.


## Time dilation



$$
{ }^{{ }^{n} \dagger}{ }_{x}^{O} \quad \nsubseteq \text { Moe }
$$

- Moe's view: also horizontal motion, but must preserve causality.
- He must see light hit both mirrors as Joe does.
- Light has to zig-zag, but speed is the same.


## Time dilation



$$
{ }^{y} \dagger_{x}^{\mathrm{O}} \stackrel{\&}{\mathrm{M} \text { Moe }}
$$

- Moe's view: also horizontal motion, but must preserve causality.
- He must see light hit both mirrors as Joe does.
- Light has to zig-zag, but speed is the same.
- He sees light travel farther at same speed, implying longer time!


## Time dilation



$$
{ }^{{ }^{n} \dagger}{ }_{x}^{O} \quad \nsubseteq \text { Moe }
$$

- Moe's view: also horizontal motion, but must preserve causality.
- He must see light hit both mirrors as Joe does.
- Light has to zig-zag, but speed is the same.
- He sees light travel farther at same speed, implying longer time!
- Moe is the moving observer since he moves with respect to clock.


## Time dilation



Consider half a round trip, time $\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}$ (since it is Moe's measurement we worry about here).

## Time dilation



Consider half a round trip, time $\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}$ (since it is Moe's measurement we worry about here).

- Same vertical distance, but car travels $v\left(\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}\right)$ forward


## Time dilation



Consider half a round trip, time $\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}$ (since it is Moe's measurement we worry about here).

- Same vertical distance, but car travels $v\left(\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}\right)$ forward
- In half a round trip, the pulse travels $\mathfrak{c}\left(\frac{1}{2} \Delta t_{\text {Moe }}\right)$


## Time dilation



Consider half a round trip, time $\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}$ (since it is Moe's measurement we worry about here).

- Same vertical distance, but car travels $v\left(\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}\right)$ forward
- In half a round trip, the pulse travels $\mathfrak{c}\left(\frac{1}{2} \Delta t_{\text {Moe }}\right)$
(light beam distance observed by Moe) $)^{2}=d^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}$


## Time dilation



Consider half a round trip, time $\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}$ (since it is Moe's measurement we worry about here).

- Same vertical distance, but car travels $v\left(\frac{1}{2} \Delta \mathrm{t}_{\text {Moe }}\right)$ forward
- In half a round trip, the pulse travels $\mathfrak{c}\left(\frac{1}{2} \Delta t_{\text {Moe }}\right)$
(light beam distance observed by Moe) $)^{2}=d^{2}+\left(\frac{1}{2} v \Delta t_{\text {Moe }}\right)^{2}$ But we know from Joe that $\mathrm{d}=\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\mathrm{Joe}}^{\prime}$.


## Time dilation

Put it together:

$$
\left(\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\text {Moe }}\right)^{2}=\mathrm{d}^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}=\left(\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\text {Joe }}^{\prime}\right)^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}
$$

Solve for $\Delta \mathrm{t}_{\text {Moe }}$, we can relate the two times:

## Time dilation

Put it together:

$$
\left(\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\text {Moe }}\right)^{2}=\mathrm{d}^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}=\left(\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\text {Joe }}^{\prime}\right)^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}
$$

Solve for $\Delta \mathrm{t}_{\text {Moe }}$, we can relate the two times:

$$
\Delta t_{\mathrm{Moe}}=\Delta \mathrm{t}_{\mathrm{Joe}}^{\prime} \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \equiv \Delta \mathrm{t}_{\mathrm{Joe}}^{\prime} \gamma
$$

## Time dilation

Put it together:

$$
\left(\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\text {Moe }}\right)^{2}=\mathrm{d}^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}=\left(\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\text {Joe }}^{\prime}\right)^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}
$$

Solve for $\Delta \mathrm{t}_{\mathrm{Moe}}$, we can relate the two times:

$$
\Delta t_{\mathrm{Moe}}=\Delta \mathrm{t}_{\mathrm{Joe}}^{\prime} \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \equiv \Delta \mathrm{t}_{\mathrm{Joe}}^{\prime} \gamma
$$

Here $\gamma=1 / \sqrt{1-v^{2} / \mathrm{c}^{2}} \geq 1$, so Moe always measures a longer time than Joe for the same events!

## Time dilation

Put it together:

$$
\left(\frac{1}{2} c \Delta t_{\text {Moe }}\right)^{2}=\mathrm{d}^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}=\left(\frac{1}{2} \mathrm{c} \Delta \mathrm{t}_{\text {Joe }}^{\prime}\right)^{2}+\left(\frac{1}{2} v \Delta \mathrm{t}_{\text {Moe }}\right)^{2}
$$

Solve for $\Delta t_{\text {Moe }}$, we can relate the two times:

$$
\Delta \mathrm{t}_{\mathrm{Moe}}=\Delta \mathrm{t}_{\mathrm{Joe}}^{\prime} \frac{1}{\sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}} \equiv \Delta \mathrm{t}_{\mathrm{Joe}}^{\prime} \gamma
$$

Here $\gamma=1 / \sqrt{1-v^{2} / c^{2}} \geq 1$, so Moe always measures a longer time than Joe for the same events!

Time is dilated (stretched out) for moving observers!
Only agree if $v=0$.

## Time dilation

## Time dilation:

Two events take place at the same location. The time interval $\Delta t$ between the events as measured by an observer moving with respect to the events is always larger than that measured by an observer who is stationary with respect to the events. The 'proper' time $\Delta t_{p}$ is that measured by the stationary observer.

$$
\begin{equation*}
\Delta \mathrm{t}_{\text {moving }}^{\prime}=\gamma \Delta \mathrm{t}_{\text {stationary }}=\gamma \Delta \mathrm{t}_{\mathrm{p}} \quad \text { where } \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}} \tag{2}
\end{equation*}
$$

In other words, time is stretched out for a moving observer compared to one at rest.

## Time dilation

## Time dilation:

Two events take place at the same location. The time interval $\Delta t$ between the events as measured by an observer moving with respect to the events is always larger than that measured by an observer who is stationary with respect to the events. The 'proper' time $\Delta t_{p}$ is that measured by the stationary observer.

$$
\begin{equation*}
\Delta \mathrm{t}_{\text {moving }}^{\prime}=\gamma \Delta \mathrm{t}_{\text {stationary }}=\gamma \Delta \mathrm{t}_{\mathrm{p}} \quad \text { where } \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}} \tag{2}
\end{equation*}
$$

In other words, time is stretched out for a moving observer compared to one at rest.

The times agree only if $v=0$, i.e., no relative motion of observers.

## Time dilation

## Caveat for time dilation

The analysis above used to derive the time dilation formula relies on both observers measuring the same events taking place at the same physical location at the same time, such as two observers measuring the same light pulses. When timing between spatially separated events or dealing with questions of simultaneity, we must follow the formulas developed

## Time dilation


#### Abstract

Caveat for time dilation The analysis above used to derive the time dilation formula relies on both observers measuring the same events taking place at the same physical location at the same time, such as two observers measuring the same light pulses. When timing between spatially separated events or dealing with questions of simultaneity, we must follow the formulas developed


## General caveat

The principles of special relativity we have been discussing are only valid in inertial or non-accelerating reference frames. When accelerated motion occurs, a more complex analysis must be used (general relativity).

## Lorentz factor $\gamma$

Degree of time dilation - strong function of speed:
$\Delta t_{\text {moving }}^{\prime}=\gamma \Delta t_{\text {stationary }}$
with

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \geq 1
$$

For $v \ll \mathrm{c}$ (all everyday stuff), $\gamma \approx 1$ and the difference is negligible, but it is measurable. Key for GPS!


| $\nu[\mathrm{m} / \mathrm{s}]$ | $\nu / \mathrm{c}$ | $\gamma$ | $1 / \gamma$ |
| ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | $\infty$ |
| $3 \times 10^{6}$ | 0.01 | 1.00005 | 0.99995 |
| $3 \times 10^{7}$ | 0.1 | 1.005 | 0.995 |
| $6 \times 10^{7}$ | 0.2 | 1.02 | 0.980 |
| $1.5 \times 10^{8}$ | 0.5 | 1.16 | 0.866 |
| $2.25 \times 10^{8}$ | 0.75 | 1.51 | 0.661 |
| $2.7 \times 10^{8}$ | 0.9 | 2.29 | 0.436 |
| $2.85 \times 10^{8}$ | 0.95 | 3.20 | 0.312 |
| $2.97 \times 10^{8}$ | 0.99 | 7.09 | 0.141 |
| $2.995 \times 10^{8}$ | 0.999 | 22.4 | 0.0447 |
| $2.998 \times 10^{8}$ | 0.9999 | 70.7 | 0.0141 |
| c | 1 | $\infty$ | 0 |

## Lorentz factor $\gamma$

Degree of time dilation - strong function of speed:
$\Delta t_{\text {moving }}^{\prime}=\gamma \Delta t_{\text {stationary }}$
with

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \geq 1
$$

For $v \ll \mathrm{c}$ (all everyday stuff), $\gamma \approx 1$ and the difference is negligible, but it is measurable. Key for GPS!


| $v[\mathrm{~m} / \mathrm{s}]$ | $v / \mathrm{c}$ | $\gamma$ | $1 / \gamma$ |
| ---: | ---: | ---: | ---: |
| 0 | 0 | 0 | $\infty$ |
| $3 \times 10^{6}$ | 0.01 | 1.00005 | 0.99995 |
| $3 \times 10^{7}$ | 0.1 | 1.005 | 0.995 |
| $6 \times 10^{7}$ | 0.2 | 1.02 | 0.980 |
| $1.5 \times 10^{8}$ | 0.5 | 1.16 | 0.866 |
| $2.25 \times 10^{8}$ | 0.75 | 1.51 | 0.661 |
| $2.7 \times 10^{8}$ | 0.9 | 2.29 | 0.436 |
| $2.85 \times 10^{8}$ | 0.95 | 3.20 | 0.312 |
| $2.97 \times 10^{8}$ | 0.99 | 7.09 | 0.141 |
| $2.995 \times 10^{8}$ | 0.999 | 22.4 | 0.0447 |
| $2.998 \times 10^{8}$ | 0.9999 | 70.7 | 0.0141 |
| c | 1 | $\infty$ | 0 |

(Note $1 \mathrm{~m} / \mathrm{s} \sim 2 \mathrm{mph}$ for the SI-impaired. Even $v=0.01 \mathrm{c}$ is stupid fast.)

## Length Contraction

Simultaneity and time are now messed up, one has to figure distance is next.

## Length Contraction

Simultaneity and time are now messed up, one has to figure distance is next.

- We can only rely on the speed of light being constant
- This means elapsed time is observer dependent.


## Length Contraction

Simultaneity and time are now messed up, one has to figure distance is next.

- We can only rely on the speed of light being constant
- This means elapsed time is observer dependent.
- We measure distance using velocity and time ...


## Length Contraction

Simultaneity and time are now messed up, one has to figure distance is next.

- We can only rely on the speed of light being constant
- This means elapsed time is observer dependent.
- We measure distance using velocity and time ...
- Longer time for moving observer $\Longrightarrow$ shorter distance!


## Length Contraction



- Basic setup: Ship travels between earth and a star stationary relative to earth


## Length Contraction



- Basic setup: Ship travels between earth and a star stationary relative to earth
- Ship has constant velocity $v$ relative to earth and star


## Length Contraction



- Basic setup: Ship travels between earth and a star stationary relative to earth
- Ship has constant velocity $v$ relative to earth and star
- Ship is in $\mathrm{O}^{\prime}$ system, earth is O


## Length Contraction



- Basic setup: Ship travels between earth and a star stationary relative to earth
- Ship has constant velocity $v$ relative to earth and star
- Ship is in $\mathrm{O}^{\prime}$ system, earth is O
- How long does the trip take?


## Length Contraction



- Basic setup: Ship travels between earth and a star stationary relative to earth
- Ship has constant velocity $v$ relative to earth and star
- Ship is in $\mathrm{O}^{\prime}$ system, earth is O
- How long does the trip take?

By now the answer is probably clear: it depends on who you ask!

## Length Contraction: according to an earth-bound observer



- In O frame, distance is L and speed is $v$


## Length Contraction: according to an earth-bound

 observer

- In O frame, distance is L and speed is $v$
- Therefore, time is $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{\mathrm{v}}$, no trickery.


## Length Contraction: according to an earth-bound observer



- In O frame, distance is L and speed is $v$
- Therefore, time is $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{\mathrm{v}}$, no trickery.
- This is how long the journey takes according to earth-bound observers


## Length Contraction: according to an earth-bound observer



- In O frame, distance is L and speed is $v$
- Therefore, time is $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{v}$, no trickery.
- This is how long the journey takes according to earth-bound observers
- Earth-bound observers are stationary with respect to the star.


## Length Contraction: according to an earth-bound observer



- In $O$ frame, distance is $L$ and speed is $v$
- Therefore, time is $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{\mathrm{v}}$, no trickery.
- This is how long the journey takes according to earth-bound observers
- Earth-bound observers are stationary with respect to the star.
- But, earth-bound observers are in motion relative to the ship!


## Length Contraction: according a ship observer



- Who keeps the "proper" time for the journey? The ship occupants! They are the ones traveling.


## Length Contraction: according a ship observer



- Who keeps the "proper" time for the journey? The ship occupants! They are the ones traveling.
- From their point of view, earth and star move relative to them!


## Length Contraction: according a ship observer



- Who keeps the "proper" time for the journey? The ship occupants! They are the ones traveling.
- From their point of view, earth and star move relative to them!
- The earth-bound observers suffer time dilation: $\Delta t_{\mathrm{E}}=\gamma \Delta \mathrm{t}_{\text {ship }}^{\prime}$


## Length Contraction: according a ship observer



- Who keeps the "proper" time for the journey? The ship occupants! They are the ones traveling.
- From their point of view, earth and star move relative to them!
- The earth-bound observers suffer time dilation: $\Delta t_{E}=\gamma \Delta t_{\text {ship }}^{\prime}$
- Or, $\Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\Delta \mathrm{t}_{\mathrm{E}}}{\gamma}$.


## Length Contraction: according a ship observer



- Who keeps the "proper" time for the journey? The ship occupants! They are the ones traveling.
- From their point of view, earth and star move relative to them!
- The earth-bound observers suffer time dilation: $\Delta t_{E}=\gamma \Delta t_{\text {ship }}^{\prime}$
- Or, $\Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\Delta \mathrm{t}_{\mathrm{E}}}{\gamma}$.
- "Proper" time? Kept by those stationary to events (ship's journey)


## Length Contraction: according a ship observer



- Who keeps the "proper" time for the journey? The ship occupants! They are the ones traveling.
- From their point of view, earth and star move relative to them!
- The earth-bound observers suffer time dilation: $\Delta \mathrm{t}_{\mathrm{E}}=\gamma \Delta \mathrm{t}_{\text {ship }}^{\prime}$
- Or, $\Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\Delta \mathrm{t}_{\mathrm{E}}}{\gamma}$.
- "Proper" time? Kept by those stationary to events (ship's journey)
- Thus, time passes more slowly on earth


## Length Contraction: how far away is the star?



- Since $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{v}, \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\mathrm{L}}{v \gamma}$.


## Length Contraction: how far away is the star?



- Since $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{v}, \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\mathrm{L}}{v \gamma}$.
- Ship measures $d=v \Delta t$, but using quantities from their frame.


## Length Contraction: how far away is the star?



- Since $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{v}, \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\mathrm{L}}{v \gamma}$.
- Ship measures $d=v \Delta t$, but using quantities from their frame.
- According to them, the distance is $\mathrm{L}^{\prime}=v \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{v \Delta \mathrm{t}_{\mathrm{E}}}{\gamma}=\frac{\mathrm{L}}{\gamma} \neq \mathrm{L}$


## Length Contraction: how far away is the star?



- Since $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{v}, \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\mathrm{L}}{v \gamma}$.
- Ship measures $d=v \Delta t$, but using quantities from their frame.
- According to them, the distance is $\mathrm{L}^{\prime}=\nu \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{v \Delta \mathrm{t}_{\mathrm{E}}}{\gamma}=\frac{\mathrm{L}}{\gamma} \neq \mathrm{L}$
- Since $\gamma \geq 1$, the distance according to ship occupants is shorter!


## Length Contraction: how far away is the star?



- Since $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{v}, \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\mathrm{L}}{v \gamma}$.
- Ship measures $d=v \Delta t$, but using quantities from their frame.
- According to them, the distance is $\mathrm{L}^{\prime}=v \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{v \Delta \mathrm{t}_{\mathrm{E}}}{\gamma}=\frac{\mathrm{L}}{\gamma} \neq \mathrm{L}$
- Since $\gamma \geq 1$, the distance according to ship occupants is shorter!
- Shorter distance because their time interval is shorter at same $v$.


## Length Contraction: how far away is the star?



- Since $\Delta \mathrm{t}_{\mathrm{E}}=\frac{\mathrm{L}}{v}, \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{\mathrm{L}}{v \gamma}$.
- Ship measures $d=v \Delta t$, but using quantities from their frame.
- According to them, the distance is $\mathrm{L}^{\prime}=\nu \Delta \mathrm{t}_{\text {ship }}^{\prime}=\frac{v \Delta \mathrm{t}_{\mathrm{E}}}{\gamma}=\frac{\mathrm{L}}{\gamma} \neq \mathrm{L}$
- Since $\gamma \geq 1$, the distance according to ship occupants is shorter!
- Shorter distance because their time interval is shorter at same $v$.

Again: who is the moving observer? The one in motion relative to events of interest.

## Length Contraction

## Length Contraction

The length of an object (or the distance to an object) as measured by an observer in motion is shorter than that measured by an observer at rest by a factor $1 / \gamma$. The proper length, $L_{p}$, is measured at rest with respect to the object.

$$
\begin{equation*}
\mathrm{L}_{\text {moving }}^{\prime}=\frac{\mathrm{L}_{\text {stationary }}}{\gamma}=\frac{\mathrm{L}_{\mathrm{p}}}{\gamma} \tag{3}
\end{equation*}
$$

That is, objects and distances appear shorter by $1 / \gamma$ if you are moving relative to them.

## Length Contraction

## Length Contraction

The length of an object (or the distance to an object) as measured by an observer in motion is shorter than that measured by an observer at rest by a factor $1 / \gamma$. The proper length, $L_{p}$, is measured at rest with respect to the object.

$$
\begin{equation*}
\mathrm{L}_{\text {moving }}^{\prime}=\frac{\mathrm{L}_{\text {stationary }}}{\gamma}=\frac{\mathrm{L}_{\mathrm{p}}}{\gamma} \tag{3}
\end{equation*}
$$

That is, objects and distances appear shorter by $1 / \gamma$ if you are moving relative to them.

## Do I divide or multiply by $\gamma$ ?

Note $\gamma \geq 1$. Think qualitatively about which quantity should be larger or smaller. In this example, we know the spaceship's time interval should be smaller than that measured on earth, so we know we have to divide the earth's time interval by $\gamma$.

## Length Contraction



- Not just distances, but spatial dimensions as well!


## Length Contraction



- Not just distances, but spatial dimensions as well!
- Only happens along the direction of motion!


## Length Contraction



- Not just distances, but spatial dimensions as well!
- Only happens along the direction of motion!
- Sphere moving toward you flattens along the direction of motion


## Outline

## (1) Observers in relative motion

## (2) No absolute frame of reference

(3) Consequences of Relativity

## 4 Quick problems

(5) Summary

## Problem

The period of a pendulum is measured to be 3.00 s in its own reference frame. What is the period as measured by an observer moving at a speed of 0.950 c with respect to the pendulum?

## Problem

9.61 sec . The proper time is that measured by in the reference frame of the pendulum itself, $\Delta \mathrm{t}_{\mathrm{p}}=3.00 \mathrm{sec}$.

The moving observer has to observe a longer period for the pendulum, since from the observer's point of view, the pendulum is moving relative to it.

Observers always perceive clocks moving relative to them as running slow. The factor between the two times is just $\gamma$ :

$$
\begin{equation*}
\Delta \mathrm{t}_{\text {moving }}^{\prime}=\gamma \Delta \mathrm{t}_{\mathrm{p}}=\frac{3.0 \mathrm{sec}}{\sqrt{1-\frac{0.95^{2} \mathrm{c}^{2}}{\mathrm{c}^{2}}}}=\frac{3.0 \mathrm{sec}}{\sqrt{1-0.95^{2}}} \approx 9.61 \mathrm{sec} \tag{4}
\end{equation*}
$$

## Problem

If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth? Explain, briefly.

## Problem

no; yes. There is no relative speed between you and your own pulse, since you are in the same reference frame, so there is no difference in your pulse rate (possible space-travel-related anxieties aside).

There is a relative velocity between you and the people back on earth, however, so you would find their pulse rate slower than normal. Similarly, they would find your pulse rate slower than normal, since you are moving relative to them.

Relativistic effects are always attributed to the other party - you are always at rest in your own reference frame.

## Problem

A stick of length $L=1 \mathrm{~m}$ is at rest on one system and is oriented with its length along the $x$ axis. What is the apparent length of this stick as viewed by an observer moving at a speed $v$ with respect to the first system?

## Problem

Along the direction of motion, the moving observer will see contracted lengths. If the relative motion is along the $x$ axis, then the meter stick appears shorter by a factor $\gamma$ for the moving observer:

$$
\mathrm{L}_{\mathrm{obs}}^{\prime}=\frac{1 \mathrm{~m}}{\gamma}=1 \mathrm{~m} \sqrt{1-\frac{v^{2}}{\mathrm{c}^{2}}}
$$

## Outline

## (1) Observers in relative motion

## (2) No absolute frame of reference

(3) Consequences of Relativity

4 Quick problems
(5) Summary

## Summary

## What did we learn?

## Summary

## What did we learn?

- Simultaneity, the passage of time, and lengths are all relative when observers are in motion.


## Summary

## What did we learn?

- Simultaneity, the passage of time, and lengths are all relative when observers are in motion.
- The differences between "moving" and "stationary" observers increases with speed, but is negligible for "everyday" phenomena.


## Summary

## What did we learn?

- Simultaneity, the passage of time, and lengths are all relative when observers are in motion.
- The differences between "moving" and "stationary" observers increases with speed, but is negligible for "everyday" phenomena.
- Who is 'moving" vs. "stationary" depends on what they're looking at


## Summary

What did we learn?

- Simultaneity, the passage of time, and lengths are all relative when observers are in motion.
- The differences between "moving" and "stationary" observers increases with speed, but is negligible for "everyday" phenomena.
- Who is 'moving" vs. "stationary" depends on what they're looking at
- The speed of light is the same for all observers, we rely on it.


## Summary

## What did we learn?

## Summary

## What did we learn?

- lengths/distances in relative motion shorter by a factor $1 / \gamma$


## Summary

What did we learn?

- lengths/distances in relative motion shorter by a factor $1 / \gamma$
- the length contraction is only along the direction of motion


## Summary

What did we learn?

- lengths/distances in relative motion shorter by a factor $1 / \gamma$
- the length contraction is only along the direction of motion
- time measured by an observer in motion longer by a factor $\gamma \ldots$


## Summary

What did we learn?

- lengths/distances in relative motion shorter by a factor $1 / \gamma$
- the length contraction is only along the direction of motion
- time measured by an observer in motion longer by a factor $\gamma \ldots$
- ... compared to an observer stationary to the events of interest


## Summary

What did we learn?

- lengths/distances in relative motion shorter by a factor $1 / \gamma$
- the length contraction is only along the direction of motion
- time measured by an observer in motion longer by a factor $\gamma \ldots$
- ... compared to an observer stationary to the events of interest

Next time: we'll learn how to connect different observers' measurements of time, distance, and velocity in a more general sense. Also: do an illustrative problem or two.

