PH253 Lecture 4: relativity
 Lorentz Transformations, Dynamics

P. LeClair

Department of Physics \& Astronomy The University of Alabama

Spring 2020

Outline

(1) Lorentz Transformations

(2) Doppler shift

(3) Momentum
(4) Energy

Outline

(1) Lorentz Transformations

(2) Doppler shift

(3) Momentum

4 Energy

Lorentz transformations between coordinate systems

$$
\begin{align*}
& \mathrm{x}^{\prime}=\gamma(\mathrm{x}-v \mathrm{t}) \quad \text { or } \quad \mathrm{x}=\gamma\left(\mathrm{x}^{\prime}+v \mathrm{t}^{\prime}\right) \tag{1}\\
& \mathrm{y}^{\prime}=\mathrm{y} \tag{2}\\
& z^{\prime}=z \tag{3}\\
& \mathrm{t}^{\prime}=\gamma\left(\mathrm{t}-\frac{v \mathrm{x}}{\mathrm{c}^{2}}\right) \quad \text { or } \quad \mathrm{t}=\gamma\left(\mathrm{t}^{\prime}+\frac{v x^{\prime}}{\mathrm{c}^{2}}\right) \tag{4}
\end{align*}
$$

Here (x, y, z, t) is the position and time of an event as measured by an observer in O stationary to it. A second observer in O^{\prime}, moving at velocity v along the x axis, measures the same event to be at position and time ($x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$).

Velocity Addition

We have an observer in a frame O , and a second observer in another frame O^{\prime} who are moving relative to each other at a velocity v. Both observers measure the velocity of another object in their own frames (v_{obj} and $v_{\mathrm{obj}}^{\prime}$). We can relate the velocities measured in the different frames as follows:

$$
\begin{equation*}
v_{\mathrm{obj}}=\frac{v+v_{\mathrm{obj}}^{\prime}}{1+\frac{v v_{\mathrm{obj}}^{\prime}}{\mathrm{c}^{2}}} \quad v_{\mathrm{obj}}^{\prime}=\frac{v_{\mathrm{obj}}-v}{1-\frac{v v_{\mathrm{obj}}}{\mathrm{c}^{2}}} \tag{5}
\end{equation*}
$$

Again, v_{obj} is the object's velocity as measured from the O reference frame, and $v_{\text {obj }}$ is its velocity as measured from the O^{\prime} reference frame.

Velocity Addition

We have an observer in a frame O , and a second observer in another frame O^{\prime} who are moving relative to each other at a velocity v. Both observers measure the velocity of another object in their own frames (v_{obj} and $v_{\mathrm{obj}}^{\prime}$). We can relate the velocities measured in the different frames as follows:

$$
\begin{equation*}
v_{\mathrm{obj}}=\frac{v+v_{\mathrm{obj}}^{\prime}}{1+\frac{v v_{\mathrm{obj}}^{\prime}}{\mathrm{c}^{2}}} \quad v_{\mathrm{obj}}^{\prime}=\frac{v_{\mathrm{obj}}-v}{1-\frac{v v_{\mathrm{obj}}}{\mathrm{c}^{2}}} \tag{5}
\end{equation*}
$$

Again, $v_{\text {obj }}$ is the object's velocity as measured from the O reference frame, and $v_{\text {obj }}$ is its velocity as measured from the O^{\prime} reference frame.

Decide if you should add or subtract velocities, then pick the formula.

Velocity Transformations?

- What about velocities along y and z ?

Velocity Transformations?

- What about velocities along y and z ?
- Relative motion is along x, so y and z coordinates not contracted

Velocity Transformations?

- What about velocities along y and z ?
- Relative motion is along x, so y and z coordinates not contracted
- But, we still have time dilation

Velocity Transformations?

- What about velocities along y and z ?
- Relative motion is along x, so y and z coordinates not contracted
- But, we still have time dilation

$$
\begin{equation*}
v_{y}^{\prime}=\frac{d y^{\prime}}{d t^{\prime}}=\frac{d y^{\prime} / d t}{d t^{\prime} / d t} \tag{6}
\end{equation*}
$$

Velocity Transformations?

- What about velocities along y and z ?
- Relative motion is along x, so y and z coordinates not contracted
- But, we still have time dilation

$$
\begin{equation*}
v_{y}^{\prime}=\frac{d y^{\prime}}{d t^{\prime}}=\frac{d y^{\prime} / d t}{d t^{\prime} / d t} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d y^{\prime}}{d t}=\frac{d y}{d t}=v_{y} \quad \text { no length contraction } \tag{7}
\end{equation*}
$$

Velocity Transformations?

- What about velocities along y and z ?
- Relative motion is along x, so y and z coordinates not contracted
- But, we still have time dilation

$$
\begin{gather*}
v_{y}^{\prime}=\frac{d y^{\prime}}{d t^{\prime}}=\frac{d y^{\prime} / d t}{d t^{\prime} / d t} \tag{6}\\
\frac{d y^{\prime}}{d t}=\frac{d y}{d t}=v_{y} \quad \text { no length contraction } \tag{7}\\
\frac{d t^{\prime}}{d t}=\frac{d}{d t}\left(\gamma\left(t-\frac{v x}{c^{2}}\right)\right)=\gamma\left(1-\frac{v v_{x}}{c^{2}}\right) \tag{8}
\end{gather*}
$$

Velocity Transformations?

Put it together:

$$
\begin{equation*}
v_{y}^{\prime}=\frac{v_{y}}{\gamma\left(1-\frac{v v_{x}}{c^{2}}\right)} \tag{9}
\end{equation*}
$$

Velocity Transformations?

Put it together:

$$
\begin{equation*}
v_{y}^{\prime}=\frac{v_{y}}{\gamma\left(1-\frac{v v_{x}}{c^{2}}\right)} \tag{9}
\end{equation*}
$$

Transverse velocities do change! Similar expression along z.
This is a homework problem.

Outline

(1) Lorentz Transformations

(2) Doppler shift

(3) Momentum

4 Energy

Doppler shift?

- Classically: sound frequency higher for approaching source, lower for receding.

Doppler shift?

- Classically: sound frequency higher for approaching source, lower for receding.
- With wave speed v, source speed v_{s}, and receiver speed v_{r} :

Doppler shift?

- Classically: sound frequency higher for approaching source, lower for receding.
- With wave speed v, source speed v_{s}, and receiver speed v_{r} :

$$
\begin{equation*}
\mathrm{f}^{\prime}=\mathrm{f}_{\mathrm{o}}\left(\frac{v+v_{\mathrm{r}}}{v-v_{\mathrm{s}}}\right) \tag{10}
\end{equation*}
$$

Doppler shift?

- Classically: sound frequency higher for approaching source, lower for receding.
- With wave speed v, source speed ν_{s}, and receiver speed v_{r} :

$$
\begin{equation*}
\mathrm{f}^{\prime}=\mathrm{f}_{\mathrm{o}}\left(\frac{v+v_{\mathrm{r}}}{v-v_{\mathrm{s}}}\right) \tag{10}
\end{equation*}
$$

Important when source/receiver speed is in the same range as wave speed.

Doppler shift?

- Classically: sound frequency higher for approaching source, lower for receding.
- With wave speed v, source speed ν_{s}, and receiver speed v_{r} :

$$
\begin{equation*}
\mathrm{f}^{\prime}=\mathrm{f}_{\mathrm{o}}\left(\frac{v+v_{\mathrm{r}}}{v-v_{\mathrm{s}}}\right) \tag{10}
\end{equation*}
$$

Important when source/receiver speed is in the same range as wave speed.

Expect this for light, but $v_{\text {light }} \gg v_{\text {sound }} \ldots$ harder to observe

Doppler shift?

- For light at speed c? Wave crests appear to pile up and get compressed moving toward source!

Doppler shift?

- For light at speed c? Wave crests appear to pile up and get compressed moving toward source!
- Does not violate relativity - length contraction squashes waves moving toward you.

Doppler shift?

- For light at speed c? Wave crests appear to pile up and get compressed moving toward source!
- Does not violate relativity - length contraction squashes waves moving toward you.
- Wavelength appears different!

Doppler shift?

- For light at speed c? Wave crests appear to pile up and get compressed moving toward source!
- Does not violate relativity - length contraction squashes waves moving toward you.
- Wavelength appears different!
- In stationary frame (e.g., next to light source), period is $T=\frac{\lambda}{c}$

Doppler shift?

- For light at speed c? Wave crests appear to pile up and get compressed moving toward source!
- Does not violate relativity - length contraction squashes waves moving toward you.
- Wavelength appears different!
- In stationary frame (e.g., next to light source), period is $T=\frac{\lambda}{c}$
- In frame approaching light source at $v_{0}, \mathrm{~T}^{\prime}=\gamma \mathrm{T}$

Doppler shift?

- For light at speed c? Wave crests appear to pile up and get compressed moving toward source!
- Does not violate relativity - length contraction squashes waves moving toward you.
- Wavelength appears different!
- In stationary frame (e.g., next to light source), period is $T=\frac{\lambda}{c}$
- In frame approaching light source at $v_{0}, \mathrm{~T}^{\prime}=\gamma \mathrm{T}$
- And, crests of waves are coming faster: $v_{w}^{\prime}=v_{w}+v_{0}$

Doppler shift?

- In source frame, $\lambda=v_{w} \top$

Doppler shift?

- In source frame, $\lambda=v_{w} T$
- In moving frame, $\lambda^{\prime}=v_{w}^{\prime} T^{\prime}=\left(v_{w}+v_{0}\right) \gamma T=\frac{\left(v_{w}+v_{0}\right) T}{\sqrt{1-v_{0}^{2} / \mathrm{c}^{2}}}$

Doppler shift?

- In source frame, $\lambda=v_{w} T$
- In moving frame, $\lambda^{\prime}=v_{w}^{\prime} T^{\prime}=\left(v_{w}+v_{0}\right) \gamma T=\frac{\left(v_{w}+v_{o}\right) T}{\sqrt{1-v_{0}^{2} / c^{2}}}$
- Algebra ... noting $v_{w}=\mathrm{c}$ for all observers and $\lambda^{\prime}=\mathrm{cT}^{\prime}$:

Doppler shift?

- In source frame, $\lambda=v_{w} \top$
- In moving frame, $\lambda^{\prime}=v_{w}^{\prime} \top^{\prime}=\left(v_{w}+v_{0}\right) \gamma T=\frac{\left(v_{w}+v_{o}\right) T}{\sqrt{1-v_{0}^{2} / c^{2}}}$
- Algebra.. noting $v_{w}=\mathrm{c}$ for all observers and $\lambda^{\prime}=\mathrm{cT}^{\prime}$:

$$
\begin{equation*}
\lambda^{\prime}=\lambda \sqrt{\frac{c+v_{o}}{c-v_{o}}} \tag{11}
\end{equation*}
$$

Doppler shift?

- In source frame, $\lambda=v_{w} \top$
- In moving frame, $\lambda^{\prime}=v_{w}^{\prime} \top^{\prime}=\left(v_{w}+v_{0}\right) \gamma T=\frac{\left(v_{w}+v_{o}\right) T}{\sqrt{1-v_{0}^{2} / c^{2}}}$
- Algebra ... noting $v_{w}=\mathrm{c}$ for all observers and $\lambda^{\prime}=\mathrm{c} \mathrm{T}^{\prime}$:

$$
\begin{equation*}
\lambda^{\prime}=\lambda \sqrt{\frac{c+v_{o}}{c-v_{o}}} \tag{11}
\end{equation*}
$$

Moving toward source at v_{o} shortens wavelength λ toward blue

Doppler shift?

- In source frame, $\lambda=v_{w} \top$
- In moving frame, $\lambda^{\prime}=v_{w}^{\prime} T^{\prime}=\left(v_{w}+v_{0}\right) \gamma T=\frac{\left(v_{w}+v_{o}\right) T}{\sqrt{1-v_{0}^{2} / c^{2}}}$
- Algebra ... noting $v_{w}=\mathrm{c}$ for all observers and $\lambda^{\prime}=\mathrm{cT}^{\prime}$:

$$
\begin{equation*}
\lambda^{\prime}=\lambda \sqrt{\frac{c+v_{o}}{c-v_{o}}} \tag{11}
\end{equation*}
$$

Moving toward source at v_{o} shortens wavelength λ toward blue
Similarly, moving away source at ν_{o} lengthens wavelength λ toward red $\left(v_{0}<0\right)$

Doppler shift?

Red shift: ratio of shifted wavelength to what a stationary observer sees:

$$
\begin{equation*}
z=\frac{\lambda^{\prime}}{\lambda}=\sqrt{\frac{c+v_{0}}{c-v_{0}}} \tag{12}
\end{equation*}
$$

- $v_{0}>0$ when approaching, $v_{0}<0$ when receding.

Doppler shift?

Red shift: ratio of shifted wavelength to what a stationary observer sees:

$$
\begin{equation*}
z=\frac{\lambda^{\prime}}{\lambda}=\sqrt{\frac{c+v_{0}}{c-v_{0}}} \tag{12}
\end{equation*}
$$

- $v_{0}>0$ when approaching, $v_{0}<0$ when receding.
- only depends on relative velocity ν_{0} and c !

Doppler shift?

Red shift: ratio of shifted wavelength to what a stationary observer sees:

$$
\begin{equation*}
z=\frac{\lambda^{\prime}}{\lambda}=\sqrt{\frac{c+v_{0}}{c-v_{0}}} \tag{12}
\end{equation*}
$$

- $v_{0}>0$ when approaching, $v_{0}<0$ when receding.
- only depends on relative velocity ν_{0} and c !
- critical for astronomy - measure velocity of objects relative to earth remotely

Doppler shift?

Red shift: ratio of shifted wavelength to what a stationary observer sees:

$$
\begin{equation*}
z=\frac{\lambda^{\prime}}{\lambda}=\sqrt{\frac{c+v_{0}}{c-v_{0}}} \tag{12}
\end{equation*}
$$

- $v_{0}>0$ when approaching, $v_{0}<0$ when receding.
- only depends on relative velocity ν_{0} and c !
- critical for astronomy - measure velocity of objects relative to earth remotely

Relativity principle: makes no difference if source or observer is moving.

Outline

(1) Lorentz Transformations

(2) Doppler shift

3 Momentum

Momentum

- How to conserve p in all frames? Whose velocity, whose time?

Momentum

- How to conserve p in all frames? Whose velocity, whose time?
- Conservation laws apply to all observers

Momentum

- How to conserve p in all frames? Whose velocity, whose time?
- Conservation laws apply to all observers
- All agree on c and proper time

Momentum

- How to conserve p in all frames? Whose velocity, whose time?
- Conservation laws apply to all observers
- All agree on c and proper time
- Correct velocity to use is

Momentum

- How to conserve p in all frames? Whose velocity, whose time?
- Conservation laws apply to all observers
- All agree on c and proper time
- Correct velocity to use is
proper velocity $=\eta=\left(\frac{\text { rate of change of posn. in observer's frame }}{\text { proper time measured by moving observer }}\right)$

Momentum

$$
\begin{align*}
\eta & =\frac{d l}{d t_{p}}=\frac{d l / d t}{d t_{p} / d t}=\frac{v}{d t_{p} / d t} \tag{13}\\
\frac{d t_{p}}{d t} & =\frac{d}{d t}(t / \gamma)=\frac{1}{\gamma} \tag{14}\\
\Rightarrow \eta & =\frac{v}{\sqrt{1-v^{2} / c^{2}}}=\gamma \nu \tag{15}
\end{align*}
$$

Momentum

$$
\begin{align*}
\eta & =\frac{d l}{d t_{p}}=\frac{d l / d t}{d t_{p} / d t}=\frac{v}{d t_{p} / d t} \tag{13}\\
\frac{d t_{p}}{d t} & =\frac{d}{d t}(t / \gamma)=\frac{1}{\gamma} \tag{14}\\
\Longrightarrow \eta & =\frac{v}{\sqrt{1-v^{2} / c^{2}}}=\gamma \nu \tag{15}
\end{align*}
$$

Long story short: $p=m \eta=\gamma m v$

Momentum

$$
\begin{align*}
\eta & =\frac{d l}{d t_{p}}=\frac{d l / d t}{d t_{p} / d t}=\frac{v}{d t_{p} / d t} \tag{13}\\
\frac{d t_{p}}{d t} & =\frac{d}{d t}(t / \gamma)=\frac{1}{\gamma} \tag{14}\\
\Longrightarrow \eta & =\frac{v}{\sqrt{1-v^{2} / c^{2}}}=\gamma \nu \tag{15}
\end{align*}
$$

Long story short: $p=m \eta=\gamma m \nu$
Maintains p conservation for all observers, e.g., collisions.

Momentum

$$
\begin{align*}
\eta & =\frac{d l}{d t_{p}}=\frac{d l / d t}{d t_{p} / d t}=\frac{v}{d t_{p} / d t} \tag{13}\\
\frac{d t_{p}}{d t} & =\frac{d}{d t}(t / \gamma)=\frac{1}{\gamma} \tag{14}\\
\Longrightarrow \eta & =\frac{v}{\sqrt{1-v^{2} / c^{2}}}=\gamma \nu \tag{15}
\end{align*}
$$

Long story short: $p=m \eta=\gamma m \nu$
Maintains p conservation for all observers, e.g., collisions.
What about mass? Modern view: invariant - all agree on rest mass

Outline

(1) Lorentz Transformations

(2) Doppler shift

4 Energy

Energy

The work-energy theorem relates the change in kinetic energy of a particle to the work done on it by an external force: $\Delta \mathrm{K}=\mathrm{W}=\int \mathrm{Fd} x$. Writing Newton's second law as $\mathrm{F}=\mathrm{dp} / \mathrm{dt}$, show that $W=\int v \mathrm{dp}$ and integrate by parts to obtain the result

$$
K=\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}-m c^{2}
$$

Energy

We are concerned with finding the kinetic energy of a particle accelerated from rest, starting with zero kinetic energy, so we may simply write $K=W=\int F d x$ and drop the Δ. Using what we have, and noting $v=\mathrm{d} x / \mathrm{dt}$:

$$
\begin{equation*}
\mathrm{K}=\int_{v=0}^{v=v} \mathrm{Fd} \mathrm{~d} x=\int_{0}^{v} \frac{\mathrm{dp}}{\mathrm{dt}} \mathrm{~d} x=\int_{0}^{v} \mathrm{~d} p \frac{\mathrm{~d} x}{\mathrm{dt}}=\int_{0}^{v} v \mathrm{~d} p \tag{16}
\end{equation*}
$$

Energy

We can integrate by parts. Let $\mathrm{f}=\mathrm{dp}$ and $\mathrm{g}^{\prime}=\mathrm{dx} / \mathrm{dt}$, and recall integration by parts gives $\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}$.

$$
\begin{equation*}
K=\int_{0}^{v} v \mathrm{~d} p=\left.p v\right|_{0} ^{v}-\int_{0}^{v} p \mathrm{~d} v=p v-\int_{0}^{v} p \mathrm{~d} v \tag{17}
\end{equation*}
$$

Energy

We can integrate by parts. Let $\mathrm{f}=\mathrm{dp}$ and $\mathrm{g}^{\prime}=\mathrm{dx} / \mathrm{dt}$, and recall integration by parts gives $\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}$.

$$
\begin{equation*}
K=\int_{0}^{v} v d p=\left.p v\right|_{0} ^{v}-\int_{0}^{v} p d v=p v-\int_{0}^{v} p d v \tag{17}
\end{equation*}
$$

Noting $p=m v / \sqrt{1-v^{2} / c^{2}}$,

Energy

We can integrate by parts. Let $f=d p$ and $g^{\prime}=d x / d t$, and recall integration by parts gives $\int \mathrm{fg}^{\prime}=\mathrm{fg}-\int \mathrm{f}^{\prime} \mathrm{g}$.

$$
\begin{equation*}
K=\int_{0}^{v} v d p=\left.p v\right|_{0} ^{v}-\int_{0}^{v} p d v=p v-\int_{0}^{v} p d v \tag{17}
\end{equation*}
$$

Noting $p=m v / \sqrt{1-v^{2} / c^{2}}$,

$$
\begin{align*}
K & =\frac{m v^{2}}{\sqrt{1-v^{2} / c^{2}}}-\int_{0}^{v} \frac{m v}{\sqrt{1-v^{2} / c^{2}}} d v \tag{18}\\
& =\frac{m v^{2}}{\sqrt{1-v^{2} / c^{2}}}+\left.m c^{2} \sqrt{1-v^{2} / c^{2}}\right|_{0} ^{v} \tag{19}
\end{align*}
$$

Energy

Continuing:

$$
\begin{align*}
K & =\frac{m v^{2}}{\sqrt{1-v^{2} / c^{2}}}+m c^{2} \sqrt{1-v^{2} / c^{2}}-m c^{2} \tag{20}\\
& =\frac{m v^{2}+m c^{2}\left(1-v^{2} / c^{2}\right)}{\sqrt{1-v^{2} / c^{2}}}-m c^{2} \tag{21}\\
& =\frac{m c^{2}}{\sqrt{1-v^{2} / c^{2}}}-m c^{2}=\left(\frac{1}{\sqrt{1-v^{2} / c^{2}}}-1\right) m c^{2} \tag{22}\\
\Longrightarrow K & =(\gamma-1) m c^{2} \tag{23}
\end{align*}
$$

Energy

Low v ? For $v \ll c, \gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2} \approx 1+\frac{v^{2}}{c^{2}}$

Energy

Low v ? For $v \ll c, \gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2} \approx 1+\frac{v^{2}}{c^{2}}$
(Binomial $-(1+x)^{n} \approx 1+n x$ for $x \ll 1$)

Energy

Low v ? For $v \ll c, \gamma=\left(1-v^{2} / c^{2}\right)^{-1 / 2} \approx 1+\frac{v^{2}}{c^{2}}$
(Binomial $-(1+x)^{n} \approx 1+n x$ for $x \ll 1$)
Plug this in: $\mathrm{K}=(\gamma-1) \mathrm{mc}^{2} \approx\left(1+\frac{v^{2}}{\mathrm{c}^{2}}-1\right) \mathrm{mc}^{2}=\frac{1}{2} m v^{2}$

Energy

- Now if $K=(\gamma-1) \mathrm{mc}^{2}$, as $v \rightarrow \mathrm{c}$ then $\mathrm{K} \rightarrow \infty$.

Energy

- Now if $K=(\gamma-1) \mathrm{mc}^{2}$, as $v \rightarrow c$ then $K \rightarrow \infty$.
- Takes infinite energy to reach light speed, not happening

Energy

- Now if $K=(\gamma-1) \mathrm{mc}^{2}$, as $v \rightarrow \mathrm{c}$ then $\mathrm{K} \rightarrow \infty$.
- Takes infinite energy to reach light speed, not happening
- Only massless objects (light) can travel at c

Energy

- Now if $K=(\gamma-1) \mathrm{mc}^{2}$, as $v \rightarrow \mathrm{c}$ then $\mathrm{K} \rightarrow \infty$.
- Takes infinite energy to reach light speed, not happening
- Only massless objects (light) can travel at c
- What about second term, independent of speed?!?

Energy

- $\mathrm{K}=(\gamma-1) \mathrm{mc}^{2}=\gamma \mathrm{mc}^{2}-\mathrm{mc}^{2}$

Energy

- $\mathrm{K}=(\gamma-1) \mathrm{mc}^{2}=\gamma \mathrm{mc}^{2}-m c^{2}$
- Subtract off a constant energy? Implies $K=E_{\text {total }}-E_{\text {rest }}$

Energy

- $K=(\gamma-1) m c^{2}=\gamma m c^{2}-m c^{2}$
- Subtract off a constant energy? Implies $K=E_{\text {total }}-E_{\text {rest }}$
- Or, $E_{\text {tot }}=K+m c^{2}=\gamma m c^{2}$ and $E_{\text {rest }}=m c^{2}$

Energy

- $K=(\gamma-1) m c^{2}=\gamma m c^{2}-m c^{2}$
- Subtract off a constant energy? Implies $K=E_{\text {total }}-E_{\text {rest }}$
- Or, $E_{\text {tot }}=K+m c^{2}=\gamma m c^{2}$ and $E_{\text {rest }}=m c^{2}$
- Bodies have rest energy associated with mass - mass-energy equivalent!

Relativistic energy-momentum equations

Can go further ...

$$
\begin{align*}
\mathrm{E}_{\mathrm{tot}}^{2}-(\mathrm{pc})^{2} & =\left(m c^{2}\right)^{2} \tag{24}\\
\mathrm{E}_{\mathrm{tot}} v & =\mathrm{pc}^{2} \tag{25}
\end{align*}
$$

Better form: relativistic $E-p$ relationship

Relativistic energy-momentum equations

Can go further ...

$$
\begin{align*}
\mathrm{E}_{\mathrm{tot}}^{2}-(\mathrm{pc})^{2} & =\left(m c^{2}\right)^{2} \tag{24}\\
\mathrm{E}_{\mathrm{tot}} v & =\mathrm{pc}^{2} \tag{25}
\end{align*}
$$

Better form: relativistic $E-p$ relationship

$$
\begin{equation*}
K E=\sqrt{p^{2} c^{2}+m^{2} c^{4}}-m c^{2} \quad \text { and } \quad p=\sqrt{\frac{E^{2}}{c^{2}}-m^{2} c^{4}} \tag{26}
\end{equation*}
$$

Relativistic energy-momentum equations

Can go further ...

$$
\begin{align*}
\mathrm{E}_{\mathrm{tot}}^{2}-(\mathrm{pc})^{2} & =\left(m c^{2}\right)^{2} \tag{24}\\
\mathrm{E}_{\mathrm{tot}} v & =\mathrm{pc}^{2} \tag{25}
\end{align*}
$$

Better form: relativistic $E-p$ relationship

$$
\begin{gather*}
K E=\sqrt{p^{2} c^{2}+m^{2} c^{4}}-m c^{2} \quad \text { and } \quad p=\sqrt{\frac{E^{2}}{c^{2}}-m^{2} c^{4}} \tag{26}\\
\text { or } \quad E^{2}=p^{2} c^{2}+m^{2} c^{4}
\end{gather*}
$$

Relativistic energy-momentum equations

For massless objects, this implies:

$$
\begin{equation*}
p=\frac{E}{c} \tag{28}
\end{equation*}
$$

If you combine it all, you come to an even wilder conclusion.

Relativistic energy-momentum equations

For massless objects, this implies:

$$
\begin{equation*}
p=\frac{E}{c} \tag{28}
\end{equation*}
$$

If you combine it all, you come to an even wilder conclusion.
If the particle has zero mass, but some energy greater than zero, then we can write

Relativistic energy-momentum equations

For massless objects, this implies:

$$
\begin{equation*}
p=\frac{E}{c} \tag{28}
\end{equation*}
$$

If you combine it all, you come to an even wilder conclusion.
If the particle has zero mass, but some energy greater than zero, then we can write

$$
\begin{equation*}
\mathrm{E}_{\text {tot }} v=\mathrm{pc}^{2} \quad \Longrightarrow \quad v=\frac{\mathrm{pc}^{2}}{\mathrm{E}_{\text {tot }}}=\frac{\frac{\mathrm{E}_{\text {tot }}}{\mathrm{c}} \mathrm{c}^{2}}{\mathrm{E}_{\text {tot }}}=\mathrm{c} \tag{29}
\end{equation*}
$$

Relativistic energy-momentum equations

For massless objects, this implies:

$$
\begin{equation*}
p=\frac{E}{c} \tag{28}
\end{equation*}
$$

If you combine it all, you come to an even wilder conclusion.
If the particle has zero mass, but some energy greater than zero, then we can write

$$
\begin{equation*}
\mathrm{E}_{\text {tot }} v=\mathrm{pc}^{2} \quad \Longrightarrow \quad v=\frac{\mathrm{pc}^{2}}{\mathrm{E}_{\text {tot }}}=\frac{\frac{\mathrm{E}_{\text {tot }}}{\mathrm{c}} \mathrm{c}^{2}}{\mathrm{E}_{\text {tot }}}=\mathrm{c} \tag{29}
\end{equation*}
$$

A particle with zero mass always moves at the speed of light, and can never stop moving!

Relativistic energy-momentum equations

For massless objects, this implies:

$$
\begin{equation*}
p=\frac{E}{c} \tag{28}
\end{equation*}
$$

If you combine it all, you come to an even wilder conclusion.

If the particle has zero mass, but some energy greater than zero, then we can write

$$
\begin{equation*}
\mathrm{E}_{\text {tot }} v=\mathrm{pc}^{2} \quad \Longrightarrow \quad v=\frac{\mathrm{pc}^{2}}{\mathrm{E}_{\text {tot }}}=\frac{\frac{\mathrm{E}_{\text {tot }}}{\mathrm{c}} \mathrm{c}^{2}}{\mathrm{E}_{\text {tot }}}=\mathrm{c} \tag{29}
\end{equation*}
$$

A particle with zero mass always moves at the speed of light, and can never stop moving!
c is really a speed limit for any massive particle

