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Lorentz transformations between coordinate systems

x′ = γ (x− vt) or x = γ
(
x′ + vt′

)
(1)

y′ = y (2)
z′ = z (3)

t′ = γ
(
t−

vx

c2

)
or t = γ

(
t′ +

vx′

c2

)
(4)

Here (x,y, z, t) is the position and time of an event as measured by an
observer in O stationary to it. A second observer in O′, moving at
velocity v along the x axis, measures the same event to be at position
and time (x′,y′, z′, t′).
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Velocity Addition

We have an observer in a frame O, and a second observer in another
frame O′ who are moving relative to each other at a velocity v. Both
observers measure the velocity of another object in their own frames
(vobj and v′obj). We can relate the velocities measured in the different
frames as follows:

vobj =
v+ v′obj

1+
vv′obj

c2

v′obj =
vobj − v

1−
vvobj

c2

(5)

Again, vobj is the object’s velocity as measured from the O reference
frame, and vobj is its velocity as measured from the O′ reference frame.

Decide if you should add or subtract velocities, then pick the formula.
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Velocity Transformations?

What about velocities along y and z?

Relative motion is along x, so y and z coordinates not contracted
But, we still have time dilation

v′y =
dy′

dt′
=
dy′/dt
dt′/dt

(6)

dy′

dt
=
dy

dt
= vy no length contraction (7)

dt′

dt
=
d

dt

(
γ
(
t−

vx

c2

))
= γ

(
1−

vvx

c2

)
(8)
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Velocity Transformations?

Put it together:

v′y =
vy

γ
(
1− vvx

c2

) (9)

Transverse velocities do change! Similar expression along z.

This is a homework problem.
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Doppler shift?

Classically: sound frequency higher for approaching source,
lower for receding.

With wave speed v, source speed vs, and receiver speed vr:

f′ = fo

(
v+ vr
v− vs

)
(10)

Important when source/receiver speed is in the same range as wave
speed.

Expect this for light, but vlight >> vsound ... harder to observe
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Doppler shift?

For light at speed c? Wave crests appear to pile up and get
compressed moving toward source!

Does not violate relativity - length contraction squashes waves
moving toward you.
Wavelength appears different!
In stationary frame (e.g., next to light source), period is T = λ

c

In frame approaching light source at vo, T ′ = γT
And, crests of waves are coming faster: v′w = vw + vo

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 10 / 25



Doppler shift?

For light at speed c? Wave crests appear to pile up and get
compressed moving toward source!
Does not violate relativity - length contraction squashes waves
moving toward you.

Wavelength appears different!
In stationary frame (e.g., next to light source), period is T = λ

c

In frame approaching light source at vo, T ′ = γT
And, crests of waves are coming faster: v′w = vw + vo

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 10 / 25



Doppler shift?

For light at speed c? Wave crests appear to pile up and get
compressed moving toward source!
Does not violate relativity - length contraction squashes waves
moving toward you.
Wavelength appears different!

In stationary frame (e.g., next to light source), period is T = λ
c

In frame approaching light source at vo, T ′ = γT
And, crests of waves are coming faster: v′w = vw + vo

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 10 / 25



Doppler shift?

For light at speed c? Wave crests appear to pile up and get
compressed moving toward source!
Does not violate relativity - length contraction squashes waves
moving toward you.
Wavelength appears different!
In stationary frame (e.g., next to light source), period is T = λ

c

In frame approaching light source at vo, T ′ = γT
And, crests of waves are coming faster: v′w = vw + vo

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 10 / 25



Doppler shift?

For light at speed c? Wave crests appear to pile up and get
compressed moving toward source!
Does not violate relativity - length contraction squashes waves
moving toward you.
Wavelength appears different!
In stationary frame (e.g., next to light source), period is T = λ

c

In frame approaching light source at vo, T ′ = γT

And, crests of waves are coming faster: v′w = vw + vo

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 10 / 25



Doppler shift?

For light at speed c? Wave crests appear to pile up and get
compressed moving toward source!
Does not violate relativity - length contraction squashes waves
moving toward you.
Wavelength appears different!
In stationary frame (e.g., next to light source), period is T = λ

c

In frame approaching light source at vo, T ′ = γT
And, crests of waves are coming faster: v′w = vw + vo

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 10 / 25



Doppler shift?

In source frame, λ = vwT

In moving frame, λ′ = v′wT ′ = (vw + vo)γT = (vw+vo)T√
1−v2o/c2

Algebra ... noting vw = c for all observers and λ′ = cT ′:

λ′ = λ

√
c+ vo
c− vo

(11)

Moving toward source at vo shortens wavelength λ toward blue

Similarly, moving away source at vo lengthens wavelength λ toward
red (vo < 0)
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Doppler shift?

Red shift: ratio of shifted wavelength to what a stationary observer
sees:

z =
λ′

λ
=

√
c+ vo
c− vo

(12)

vo > 0when approaching, vo < 0when receding.

only depends on relative velocity vo and c!
critical for astronomy – measure velocity of objects relative to
earth remotely

Relativity principle: makes no difference if source or observer is
moving.
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Momentum

How to conserve p in all frames? Whose velocity, whose time?

Conservation laws apply to all observers
All agree on c and proper time
Correct velocity to use is

proper velocity = η =

(
rate of change of posn. in observer’s frame

proper time measured by moving observer

)
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Momentum

η =
dl

dtp
=
dl/dt
dtp/dt

=
v

dtp/dt
(13)

dtp

dt
=
d

dt
(t/γ) =

1

γ
(14)

=⇒ η =
v√

1− v2/c2
= γv (15)

Long story short: p = mη = γmv

Maintains p conservation for all observers, e.g., collisions.

What about mass? Modern view: invariant - all agree on rest mass
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Energy

The work-energy theorem relates the change in kinetic energy of a
particle to the work done on it by an external force: ∆K=W=

∫
F dx.

Writing Newton’s second law as F=dp/dt, show thatW=
∫
v dp and

integrate by parts to obtain the result

K =
mc2√
1− v2/c2

−mc2
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Energy

We are concerned with finding the kinetic energy of a particle
accelerated from rest, starting with zero kinetic energy, so we may
simply write K=W=

∫
F dx and drop the ∆. Using what we have, and

noting v=dx/dt:

K =

v=v∫
v=0

F dx =

v∫
0

dp

dt
dx =

v∫
0

dp
dx

dt
=

v∫
0

v dp (16)
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Energy

We can integrate by parts. Let f=dp and g′=dx/dt, and recall
integration by parts gives

∫
fg′=fg−

∫
f′g.

K =

v∫
0

v dp = pv

∣∣∣∣v
0

−

v∫
0

pdv = pv−

v∫
0

pdv (17)

Noting p=mv/
√
1− v2/c2,

K =
mv2√
1− v2/c2

−

v∫
0

mv√
1− v2/c2

dv (18)

=
mv2√
1− v2/c2

+mc2
√
1− v2/c2

∣∣∣∣v
0

(19)
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Energy

Continuing:

K =
mv2√
1− v2/c2

+mc2
√
1− v2/c2 −mc2 (20)

=
mv2 +mc2

(
1− v2/c2

)
√
1− v2/c2

−mc2 (21)

=
mc2√
1− v2/c2

−mc2 =

(
1√

1− v2/c2
− 1

)
mc2 (22)

=⇒ K = (γ− 1)mc2 (23)
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Energy

Low v? For v << c, γ =
(
1− v2/c2

)−1/2 ≈ 1+ v2

c2

(Binomial - (1+ x)n ≈ 1+nx for x� 1)

Plug this in: K = (γ− 1)mc2 ≈
(
1+ v2

c2
− 1
)
mc2 = 1

2mv
2
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Energy

Now if K = (γ− 1)mc2, as v→ c then K→ ∞.

Takes infinite energy to reach light speed, not happening
Only massless objects (light) can travel at c
What about second term, independent of speed?!?
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Energy

K = (γ− 1)mc2 = γmc2 −mc2

Subtract off a constant energy? Implies K = Etotal − Erest

Or, Etot = K+mc2 = γmc2 and Erest = mc
2

Bodies have rest energy associated with mass – mass-energy
equivalent!
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Relativistic energy-momentum equations

Can go further ...

E2tot − (pc)2 =
(
mc2

)2
(24)

Etotv = pc
2 (25)

Better form: relativistic E− p relationship

KE =
√
p2c2 +m2c4 −mc2 and p =

√
E2

c2
−m2c4 (26)

or E2 = p2c2 +m2c4 (27)
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Relativistic energy-momentum equations

For massless objects, this implies:

p =
E

c
(28)

If you combine it all, you come to an even wilder conclusion.

If the particle has zero mass, but some energy greater than zero, then
we can write

Etotv = pc
2 =⇒ v =

pc2

Etot
=

Etot
c c

2

Etot
= c (29)

A particle with zero mass always moves at the speed of light, and can never
stop moving!

c is really a speed limit for any massive particle

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 25 / 25



Relativistic energy-momentum equations

For massless objects, this implies:

p =
E

c
(28)

If you combine it all, you come to an even wilder conclusion.

If the particle has zero mass, but some energy greater than zero, then
we can write

Etotv = pc
2 =⇒ v =

pc2

Etot
=

Etot
c c

2

Etot
= c (29)

A particle with zero mass always moves at the speed of light, and can never
stop moving!

c is really a speed limit for any massive particle

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 25 / 25



Relativistic energy-momentum equations

For massless objects, this implies:

p =
E

c
(28)

If you combine it all, you come to an even wilder conclusion.

If the particle has zero mass, but some energy greater than zero, then
we can write

Etotv = pc
2 =⇒ v =

pc2

Etot
=

Etot
c c

2

Etot
= c (29)

A particle with zero mass always moves at the speed of light, and can never
stop moving!

c is really a speed limit for any massive particle

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 25 / 25



Relativistic energy-momentum equations

For massless objects, this implies:

p =
E

c
(28)

If you combine it all, you come to an even wilder conclusion.

If the particle has zero mass, but some energy greater than zero, then
we can write

Etotv = pc
2 =⇒ v =

pc2

Etot
=

Etot
c c

2

Etot
= c (29)

A particle with zero mass always moves at the speed of light, and can never
stop moving!

c is really a speed limit for any massive particle

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 25 / 25



Relativistic energy-momentum equations

For massless objects, this implies:

p =
E

c
(28)

If you combine it all, you come to an even wilder conclusion.

If the particle has zero mass, but some energy greater than zero, then
we can write

Etotv = pc
2 =⇒ v =

pc2

Etot
=

Etot
c c

2

Etot
= c (29)

A particle with zero mass always moves at the speed of light, and can never
stop moving!

c is really a speed limit for any massive particle

LeClair, Patrick (UA) PH253 Lecture 4 January 15, 2020 25 / 25


	Lorentz Transformations
	Doppler shift
	Momentum
	Energy

