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Model and ingredients

How accelerating charges emit radiation?

What is the spectrum of radiation emitted from a hot object, and why
do they glow at all?

In short, individual charges in atoms acquire random thermal energy,
which causes them to oscillate, which causes them to radiate.

1 Figure out the field from moving charges
2 Find the radiation emitted from accelerating charges
3 From radiation, find radiation reaction force that must be present
4 Compute the equation of motion and energy of oscillating charges
5 Model a hot object as random oscillators excited thermally
6 Realize the result is silly, consider Planck’s hypothesis . . .
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Electric fields in different reference frames

1 Charge is invariant - same for all observers.
2 What about the fields?
3 Consider a capacitor:

�E
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A

+σ

−σ

v

O

O�

Figure: (left): An observer in O′ travels at velocity v perpendicular to the
electric field created by a capacitor in frame O. (right) An observer in O′

travels at velocity v parallel to the electric field created by a capacitor in
frame O.
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Electric fields in different reference frames

In the capacitor’s reference frame O, we know that the field between
the plates is

E =
σ

εo
=

Q

Aεo

Because total charge on each plate Q is σA.
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Electric fields in different reference frames

1 observer travels perpendicular to ~E?
2 Dimensions along the direction of motion shortened by a factor γ.
3 Thus area of plates in O′ smaller by factor γ.
4 Since charge is constant smaller plates means a larger apparent

charge density!
5 Thus, the observer in O′ must see a charge density

σ′ = γσ
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Electric fields in different reference frames

This means the electric field in the observer’s frame must be

E′ =
σ′

εo
= γ

σ

εo
= γE

(
~v ⊥ ~E

)
~E for motion perpendicular to the field is enhanced by a factor γ.
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Electric fields in different reference frames

1 How about motion parallel to the field?
2 Now the spacing of the capacitor is contracted!
3 Area of the plates is the same, so σ is too.
4 ~E doesn’t depend on the spacing (C does), so field is the same!

E′ = E
(
~v ‖ ~E

)
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Electric fields in different reference frames

1 Nothing special about the field of capacitor, just like any other
electric field.

2 Derived general transformation of ~E between different reference
frames:

E′⊥ = γE⊥

E′|| = E||

1 Components of ~E ⊥ ~v increased by a factor γ
2 Components of ~E ‖ ~v are unaffected
3 Holds only for charges that are stationary in one of the two frames
4 Moving in both frames? You get ~B!
5 Force transforms in the same way since ~F = q~E
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Field from a charge moving at constant velocity

1 Charge q traveling at velocity v along x in O′
2 Charge’s rest frame is O.
3 InO the charge is at rest, inO′ the charge is in motion at constant v
4 The ⊥ (z) and ‖ (x) components of ~E transform differently
5 =⇒ magnitude and orientation of ~Ewill be different in O′.

O

O�

v

x

z

z�

x�

q
θ

�E

Figure: A charge is at rest in frame O, while frame O′ moves with velocity v
and angle θ
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Field from a charge moving at constant velocity

In frame O, the charge is at rest, so the field at a distance r from the
origin measured in O is:1

E =
kq

r2

Broken down by components, we have (noting Ey and Ez are the same)

Ex =
kq

r2
cos θ =

kq

x2 + z2
x√

x2 + z2
=

kqx

(x2 + z2)
3/2

Ez =
kqz

(x2 + z2)
3/2

1For convenience, we use k=1/4πεo for now.
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Field from a charge moving at constant velocity

1 In O′, the charge is moving at constant velocity v
2 To find the field in O′ need to transform coordinates first!

x = γ
(
x′ − vt′

)
z = z′

t = γ

(
t′ −

vx′

c2

)
γ =

1√
1− v2/c2

1 Now we know field transforms too!
2 Ex is constant, Ez larger by a factor γ:

E′x = Ex

E′z = γEz
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Field from a charge moving at constant velocity

Using the field transformation and the Lorentz transformations, we
can find field in O′ for each component:

E′x = Ex =
kqx

(x2 + z2)
3/2 =

kqγ (x′ − vt′)(
γ2 (x′ − vt′)2 + z′2

)3/2

E′z = γEz =
kqγz

(x2 + z2)
3/2 =

kqγz′(
γ2 (x′ − vt′)2 + z′2

)3/2

What a mess . . .
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Field from a charge moving at constant velocity

Main interest here is to find the difference between the electric field
observed by the moving and stationary observer at the same location
(i.e., when their origins overlap).

We aren’t worried about time dependence, simultaneity, or
propagation delays.

Thus, consider t=t′=0 only, which simplifies things

E′x =
kqγx′

(γ2x′2 + z′2)3/2

E′z =
kqγz′

(γ2x′2 + z′2)3/2
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Field from a charge moving at constant velocity

We can already notice that the angle of the field in frame O′ is

tan θ′ =
E′z
E′x

=
z′

x′
(1)

1 The field in O′ points along the radial direction
2 I.e., E′ makes the same angle with the x′ axis that r′ does.
3 E′ points radially outward from the instantaneous position of q.

Given both components of the field in E′, finding the magnitude of the
field is just algebra . . .
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Field from a charge moving at constant velocity

Algebra ensues.

E′2 = E′2x + E′2z =
k2q2γ2x′2

(γ2x′2 + z′2)3
+

k2q2γ2z′2

(γ2x′2 + z′2)3
= k2q2γ2

[
x′2 + z′2

(γ2x′2 + z′2)3

]

= k2q2γ2r′2
[

1

(γ2x′2 + z′2)3

] (
r′2=x′2 + z′2

)
=
k2q2γ2r′2

γ6

[
1

(x′2 + z′2/γ2)3

]
factor γ2 from denominator

=
k2q2r′2

γ4

[
1

(x′2 + z′2 − (v2/c2) z′2)3

] (
1

γ2
= 1−

v2

c2

)
=
k2q2r′2

γ4
1

(x′2 + z′2)3
1[

1− v2

c2
z′2

x′2+z′2

]3
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Field from a charge moving at constant velocity

1 Still a mess, but note z′/
√
x′2 + z′2=sin θ′ and r′2=x′2 + z′2

E′2 =
k2q2r′2

γ4
1

(x′2 + z′2)3
1[

1− v2

c2
z′2

x′2+z′2

]3
E′2 =

k2q2

γ4r′4
1[

1− v2

c2
sin2 θ′

]3
E′2 =

k2q2

r′4

(
1− v2

c2

)2
[
1− v2

c2
sin2 θ′

]3 (substitute definition of γ)

=⇒ E′ =
kq

r′2
1− v2

c2[
1− v2 sin2 θ′/c2

]3/2
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Field from a charge moving at constant velocity

1 Finally, field of a moving charge!
2 Field lines end up being “squashed” along the direction of motion
3 Field higher along ⊥ (z′) direction, now axial
4 “Relativistic compression” of field lines
5 At all v inverse square law, isotropic only at very low speeds.

q q q q

v = 0 v = 0.75c v = 0.9c v = 0.99c

Figure: ~E (red) and contours of constant ~E (black) for a point charge moving
at various velocities.
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Field from a charge moving at constant velocity

1 As v approaches c, the field is more and more directional
2 Along the horizontal axis (z′=0, θ=0), ~E is reduced by a factor γ2

compared to a stationary charge

E′x′ =
kq

γ2r′2
(
along x′

)
Along the vertical axis (x′=0, θ=90◦), ~E is enhanced by a factor γ

E′y′ =
kqγ

r′2
(
along z′

)
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Field from a charge moving at constant velocity

1 No static charge distribution could produce this electric field
2 The integral of ~E · d~l around closed paths is not zero . . .
3 . . . as it is in electrostatics
4 =⇒ Maxwell’s equations imply a time-varying magnetic flux.
5 Associated with moving charge is not just ~E, but also ~B

6 ~B is just ~E viewed in relative motion

q q q q

v = 0 v = 0.75c v = 0.9c v = 0.99c
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Fields of charges that start and stop

1 In free space, electromagnetic influences travel at c
2 Shake a charge here, one over there shakes a little later . . .
3 Charge q initially at rest
4 At t=0 accelerated to a constant velocity v along the x
5 Assume constant acceleration a over time τ
6 Assume τ� the time scale we observe charge
7 What does the field look like surrounding the charge?
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Fields of charges that start and stop

1 Consider observer at position r at T after acceleration begins
2 Has enough time has passed for the “news” to reach r?
3 If r>cT , then not enough time has passed.
4 Thus, charge still appears stationary! Field of point charge at rest.
5 For r>cT field still originates from charge’s position at time t=0!

xx=0
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Fields of charges that start and stop

1 r<c(T−τ)? Enough time has passed that the news to arrive.
2 For r<c(T−τ), charge is done accelerating, at constant v
3 Observers with r<c(T−τ) see the field of a moving point charge
4 See charge moved forward to xo=v(T−τ)+ 1

2aτ
2

5 For c(T−τ) see the field of a moving point charge at xo

xx=0
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Fields of charges that start and stop

1 Spherical shell corresponding to accel. phase moves outward
2 Observers at progressively larger distances from the origin begin

to see dramatic change in field
3 What happens inside the spherical shell?
4 Field lines cannot cross, number is fixed by q (Gauss’ law)
5 Field lines inside and outside shell must connect to each other in shell

xx=0
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Fields of charges that start and stop

1 Connecting lines are not radially outward
2 This means field in shell has a transverse component now
3 As q accelerates, “sheds” part of its ~E field within shell, which

travels outward at c.
4 Field in shell volume = energy carried away from charge
5 This energy is electromagnetic radiation

Charge is losing the energy contained in the electric field within the
shell. If it is losing energy it must experience a force!

xx=0
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Fields of charges that start and stop

1 Consider a charge which suddenly stops instead
2 qmoving with v until reaching the origin at t=0 and stops
3 For r > ct, news of deceleration has not been received . . .
4 . . . the field is that of a point charge in motion at v . . .
5 . . . emanating from a point vt past the origin on the x axis.
6 Within shell, enough time, field is point charge at rest at the origin.

x
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Fields of charges that start and stop

1 Inside shell representing deceleration period, lines connect
2 Precise shape depends on the details of the acceleration
3 Key: they are transverse with almost no radial component
4 Key: field within the shell propagates outward as a pulse.
5 Given that ~E is a function of time, there will also be ~B associated
6 Together ~E and ~Bmake up an electromagnetic pulse.

x
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Fields of charges that start and stop

Contours of constant power for charge undergoing uniform
acceleration along the horizontal axis.

Next: the formula for the radiated power.
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Radiation of accelerating charges

1 Charge q has been traveling at velocity vo along the x axis
2 Suddenly at time t=0 at x=0 decelerates smoothly for time τ
3 (implying acceleration a=vo/τ)
4 Comes to rest as shown below

vo

v

t=0 t=τ t=T
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Radiation of accelerating charges

1 During deceleration: qmoves x= 1
2voτ before stopping

2 If vo�c, x is tiny compared to relevant distances (e.g, cτ)
3 At t=T�τ, what does the field look like?
4 Observer at d doesn’t know charge stopped until δt=d/c later!
5 For R>cT cannot know that the charge has stopped yet
6 For R<c(T−τ) already see the charge as stationary.
7 Within shell at c(T−τ)<R<cT? See the charge decelerating

R
=

cT

cτ

vo
T sin

θ

x
x = 0

A

B

C

D

Region I

Region II

Shell

x =
1

2
voτ

x = voT

θ

R
=

c(
T
−
τ
)

θ

E

Er

Eθ
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Radiation of accelerating charges

Region I

1 Outside shell, R>cT , see charge moving at constant velocity vo!
2 Appears that nothing has changed
3 As though q is still moving at vo, and at position x=voT at T .
4 Field appears to emanate where the charge would be
5 Lines compressed along the axis ⊥ to v (CD)

R
=

cT

cτ

vo
T sin

θ

x
x = 0

A

B

C

D

Region I

Region II

Shell

x =
1

2
voτ

x = voT

θ

R
=

c(
T
−
τ
)

θ

E

Er

Eθ
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Radiation of accelerating charges

Region II

1 Enough time to see deceleration
2 For R<c(T−τ), see charge at rest at x= 1

2voτ

3 Field lines emanate radially from the charge’s position (AB).

R
=

cT

cτ

vo
T sin

θ

x
x = 0

A

B

C

D

Region I

Region II

Shell

x =
1

2
voτ

x = voT

θ

R
=

c(
T
−
τ
)

θ

E

Er

Eθ
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Radiation of accelerating charges

The Shell

1 Between I and II, c(T−τ)<R<cT
2 See the charge in the midst of its deceleration
3 Field in this region? Must connect I and II (BC)
4 This field is the radiation

R
=

cT

cτ

vo
T sin

θ

x
x = 0

A

B

C

D

Region I

Region II

Shell

x =
1

2
voτ

x = voT

θ

R
=

c(
T
−
τ
)

θ

E

Er

Eθ
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Radiation of accelerating charges

1 In shell: lines like BC.
2 Has radial and tangential components.
3 In II, see stationary point charge, purely radial field.
4 Gauss’ law: flux in and out of shell same, determined by q alone
5 Flux only non-zero due to radial component
6 Radial portion of the field cannot change when going from region II to

the shell.

R
=

cT

cτ

vo
T sin

θ

x
x = 0

A

B

C

D

Region I

Region II

Shell

x =
1

2
voτ

x = voT

θ

R
=

c(
T
−
τ
)

θ

E

Er

Eθ
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Radiation of accelerating charges

In II the radial component of the field is that of a point charge, and it
must be the same inside the shell:

Er =
q

4πεoR2
=

q

4πεoc2T 2

From geometry of figure: tan θ = Er
Eθ

= cτ
voT sin θ

This gives us the tangential portion of the field:

Eθ =
Er

tan θ
= Er

voT sin θ
cτ

=
qvo sin θ
4πεoc3Tτ

Note a = vo/τ and R=cT :

Eθ =
qa sin θ
4πεoc2R
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Radiation of accelerating charges

1 Tangential field Eθ goes as 1/R, not 1/R2!
2 As R (or t) increases, Eθ will overcome Er due to slower decay
3 In II we have the field of a point charge at constant velocity, which

has both radial and tangential components.
4 In I, we have the purely radial field of a stationary point charge.
5 During deceleration, tangential component of ~E ‘lost’ as radiation,

emanates outward from the charge at c in a shell of width cτ.

R
=

cT

cτ

vo
T sin

θ

x
x = 0

A

B

C

D

Region I

Region II

Shell

x =
1

2
voτ

x = voT

θ

R
=

c(
T
−
τ
)

θ

E

Er

Eθ
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Radiation of accelerating charges

End of lecture 5.
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Radiation of accelerating charges
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Radiation of accelerating charges

How much energy is lost during acceleration by radiation? Recall
tangential component inside spherical shell width τ:

Eθ =
qvo sin θ
4πεoc3Tτ

1 What is the energy density of Eθ in the shell?
2 In general, u =

energy
volume = 1

2εoE
2

uθ =
1

2
εoE

2
θ =

q2a2 sin2 θ
32π2εoc4R2

Volume of shell is 4πR2cτ . . .
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Radiation of accelerating charges

Multiply energy density by volume 4πR2cτ to get radiated energy:

Uθ = uθV =
q2a2τ sin2 θ
8πεoc3

1 But there is also a magnetic field, and we know uE = uB.
2 Just double the result to account for B.
3 Convenient: average over all angles.
4 〈sin2 θ〉 = 2

3 over a sphere

〈Uθ〉 =
q2a2τ

6πεoc3
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Radiation of accelerating charges

1 This is the entire energy emitted over the acceleration phase
2 Better is the power - energy per unit time.
3 P = U/τ, so

Prad =
〈Uθ〉
τ

=
q2a2

6πεoc3

1 Total power, E and B fields
2 If you want angle-resolved, skip averaging step:

Prad =
q2a2 sin2 θ
4πεoc3
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Radiation of accelerating charges

Prad =
q2a2

6πεoc3

1 Note power goes as the square of acceleration - sign is irrelevant
2 Also square of charge, sign of charge also irrelevant.
3 Independent of reference frame.
4 This is the Larmor equation.
5 Next: what about a charge in simple harmonic motion?
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Charges in simple harmonic motion

1 For SHM, we know x(t) = xo cosωot
2 Choose phase of zero for convenience, changes nothing.
3 Thus a = −ω2ox = −ω2oxo cosωot
4 Can we just plug this in?
5 Yes, but more useful: power averaged over one period of motion.
6 Note 〈cos2ωt〉 = 1

2 .

〈a2〉 = 〈−ω4ox2o cos2ωot〉 = −ω4ox
2
o〈cos2ωot〉 = −

1

2
ω4ox

2
o
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Charges in simple harmonic motion

1 Now we can use the Larmor formula.
2 Total emitted power per cycle:

P =
q2ω4ox

2
o

12πεoc3

1 Goes as square of amplitude (as does energy in general for SHO).
2 Goes asω4o - much more severe as frequency increases.
3 Since charge loses energy, amplitude decays!
4 Physically: emits radiation at resonance frequencyωo.
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Charges in simple harmonic motion

1 Loss of energy means the oscillator is damped.
2 Will cover this in PH301/2 extensively.
3 Rate of loss = Q factor, “quality”.

Q = 2π
total energy of oscillator

rate of energy loss per radian
= ωo

energy stored
power loss

= ωo
E

dE/dθ
=
ωoE
P

1 Equivalently, Q = ω/∆ω, ∆ω is width of resonance
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Charges in simple harmonic motion

Since P = dE/dt, E is energy, can say:

P = −
dE
dt

= −
ωE
Q

=⇒ E = Eoe−ωot/Q

1 Eo is energy at t = 0.
2 Energy decays exponentially, time constant Q/ωo.
3 Math is the same as an RLC circuit.
4 Great, but what is Q?
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Charges in simple harmonic motion

The average energy for SHO is always half kinetic and half potential:

〈E〉 = 1

2
mω2ox

2
o

Vibrating at its natural frequencyωo, this gives us

1

Q
=

P

ωoE
=
q2ω4ox

2
o

12πεoc3

(
1

1
2mω

2
ox
2
o

)(
1

ωo

)
=

q2ωo

6πεoc3m

In terms of wavelength λo=2πc/ωo,

1

Q
=

q2

3εomc2λo
=

(
q2

4πεomc2

)(
1

λo

)(
4π

3

)
=
4π

3

re

λo
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Charges in simple harmonic motion

1 re=q
2/4πεomc2 has units of length

2 known as the classical electron radius
3 Q depends only on the ratio re/λ, so is Q dimensionless
4 For q=e, re ≈ 2.8× 10−15 m
5 The electron is, as far as we can tell, a point particle.
6 If the electron were a uniform sphere of charge, re is roughly the

size an electron would need to be for its rest energy to be
completely due to electrostatic potential energy

7 Know this to be incorrect now.
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Charges in simple harmonic motion

1 What is the Q value for a typical atom?
2 Na discharge lamp, λ=600nm (yellow)

3 Q = 4πre
λo

= 3εomc
2λo

e2
∼ 108

4 Atom will oscillate ∼108 radians or ∼107 cycles before the energy
is reduced by a factor 1/e≈1/2.718≈0.37.

5 Compare: Q∼1000 good RLC, 104 quartz, 106 precision circuit
6 λ=600nm implies a period of ∼10−15 s
7 Takes about 10−8 s for the energy to decay by a factor of 1/e.
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Charges in simple harmonic motion

1 Q factor can be related to the damping constant γ
2 γ is the coefficient of the ‘viscous’ force proportional to velocity
3 md2x

dt2
+ 2γωo

dx
dt + kx = 0

4 Damping and Q relate via 1
Q = 2γ

5 Thus γ = q2ωo
12πεoc3m

6 For a series RLC circuit, γ=(R/2)
√
C/L.

7 Knowledge of the damping factor or Q factor also allow us to find
the width of the resonance ∆ω, since ∆ω=ωo/Q.

8 More useful is linewidth ∆λ
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Charges in simple harmonic motion

1 Since λo=c/f=2πc/ωo . . .
2 Relative linewidth: propagation of variation/uncertainty
3 |∆λ| = dλ

dω(∆ω) = (2πc/ω2)∆ω and ∆ω = ωo/Q

∆λ =
2πc∆ω

ω2o
=
2πc

Qωo
=

e2

3εomc2
=

e2

4πεomc2
4π

3
=
4πre

3

1 Again, relates to characteristic length re. For Na, ∆λ∼10−14 m.
2 Relative linewidth (the “sharpness” of the line) is then

∆λ

λo
=
4πre

3λo
∼ 10−8

Back to spectral lines extensively when we have a good atomic model.
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Charges in simple harmonic motion

1 Can do a similar analysis for orbiting charges
2 Due to radiation loss, orbit decays exponentially
3 For a model hydrogen atom, decay time is ∼10−11 s!
4 Orbiting electron model is not workable.
5 Let’s push our radiation model and see where it fails . . .

LeClair, Patrick (UA) PH253 Lectures 5-8 February 2, 2020 58 / 108



Outline

1 Model and ingredients

2 Electric fields in different reference frames

3 Field from a charge moving at constant velocity

4 Fields of charges that start and stop

5 Radiation of accelerating charges

6 Charges in simple harmonic motion

7 Radiation reaction force

8 Equation of motion

9 Scattering of Light

10 Thermal Radiation
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Radiation reaction force

1 If the charge is accelerating, it is losing energy.
2 If an oscillating charge loses energy, amplitude decays.
3 Radiation amounts to a damping force.
4 Start from Larmor:

P =
e2a2

6πεoc3

Relate power to force and velocity:

P =

∫
~F ·~v dt
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Radiation reaction force

1 Consider power emitted by our oscillator from time t1 to time t2
2 Let this be exactly one period: t1−t2=T = 1/fo.
3 Point charge of massm and charge e, natural resonance frequency
ωo=2πfo.

4 Like charge q,m on a spring k.
5 Conservation of energy: power radiated must equal the

mechanical power:

0 =

t2∫
t1

~F ·~v dt+
t2∫
t1

P dt or

t2∫
t1

~F ·~v dt = −

t2∫
t1

P dt

Restricting to non-relativistic velocities (v�c) for simplicity
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Radiation reaction force

Note a = dv/dt:

t2∫
t1

~F ·~v dt = −

t2∫
t1

P dt = −

t2∫
t1

e2a2

6πεoc3
dt = −

t2∫
t1

e2

6πεoc3
d~v

dt
· d~v
dt
dt

We can integrate by parts:

t2∫
t1

~F ·~v dt = e2

6πεoc3
d~v

dt
·~v
∣∣∣∣∣
t2

t1

+

t2∫
t1

e2

6πεoc3
d2~v

dt2
·~v dt

We integrate over a full cycle, the first term vanishes – d~v
dt ·~v is the

same at each limit.
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Radiation reaction force

=⇒ t2∫
t1

~F ·~v dt =
t2∫
t1

e2

6πεoc3
d2~v

dt2
·~v dt

Since P =
∫
~F ·~v dtwe can identify

~F =
e2

6πεoc3
d2~v

dt2
=

e2

6πεoc3
d3~x

dt3

1 Effective damping force acting the oscillating charge due to the
fact that it is radiating.

2 Known as the Abraham-Lorentz force.
3 Emitted radiation carries away momentum, charge must be

pushed in opposite direction.
4 Problem: the charge is exerting a force on itself?!?!
5 Only resolved with quantum electrodynamics (QED).
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Outline

1 Model and ingredients

2 Electric fields in different reference frames

3 Field from a charge moving at constant velocity

4 Fields of charges that start and stop

5 Radiation of accelerating charges

6 Charges in simple harmonic motion

7 Radiation reaction force

8 Equation of motion

9 Scattering of Light

10 Thermal Radiation
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Equation of motion

1 Oscillating charge experiences damping due to the radiation
2 Damping force similar to viscous fluid drag for a mechanical

oscillator.
3 Without damping, for simple harmonic motion:

F = ma = −kx or m
d2x

dt2
= −kx = −mω2ox

Now include radiation reaction force derived above. Acts as the same
direction as the restoring force:

F = m
d2x

dt2
= −mω2ox−

e2

6πεoc3
d3x

dt3
or

0 = m
d2x

dt2
+mω2ox+

e2

6πεoc3
d3x

dt3
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Equation of motion

1 Amplitude of oscillation will decay with time
2 Not interested in the isolated case of a single oscillator.
3 We want oscillator interacting with an electric field.
4 This means a driven oscillator.
5 Simplest: charge exposed to a monochromatic electric field, i.e., an

electric field which varies sinusoidally with time with a single
frequencyω=2πf:

|~E| = Eo cosωt

In generalω 6=ωo, frequency of the driving field not the same as the
resonance frequency of the oscillating charge.
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Equation of motion

1 Time-varying ~E produces a time-varying force e|~E| on charge
2 This is the driving force for our oscillator.
3 Adding this driving force to our already-damped oscillator:

m
d2x

dt2
+

e2

6πεoc3
d3x

dt3
+mω2ox = eEo cosωt

1 Ugly third derivative. Will need to approximate.
2 Want it to look like a normal damped, driven oscillator.
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Equation of motion

1 In most cases, radiation resistance force is small compared to the
restoring force

2 This means small/light damping.
3 Then the acceleration is approximately the same as it is without

damping, or a∼ω2ox.
4 If this is the case,

d2x

dt2
∼ ω2ox so

d3x

dt3
∼
d

dt

(
ω2ox

)
= ω2o

dx

dt

Using this, we get something like a normal damped, driven oscillator.

LeClair, Patrick (UA) PH253 Lectures 5-8 February 2, 2020 68 / 108



Equation of motion

Substituting:

m
d2x

dt2
+
e2ω2o
6πεoc3

dx

dt
+mω2ox = eEo cosωt (cancelm)

d2x

dt2
+

e2ω2o
6πεomc3

dx

dt
+ω2ox =

(
eEo

m

)
cosωt

Define a “damping constant” γ

γ =
e2ωo

12πεomc3

=⇒ d2x

dt2
+ 2γωo

dx

dt
+ω2ox =

eEo

m
cosωt

LeClair, Patrick (UA) PH253 Lectures 5-8 February 2, 2020 69 / 108



Equation of motion

d2x

dt2
+ 2γωo

dx

dt
+ω2ox =

eEo

m
cosωt

Compare to series RLC circuit:

d2I

dt2
+
R

L

dI

dt
+ω2oI =

ωVo

L
cosωt

1 Driven oscillator with a damping proportional to velocity.
2 Same as an LC resonant circuit with resistance included.
3 We know the solution to this equation:

x(t) = A cos (ωt+ϕ)

Just need to figure out what A and ϕ are . . .
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Equation of motion

Analogies:

Series RLC Parallel RLC Mechanical

restoring inverse capacitance 1/C inverse inductance 1/L spring constant k

“mass” inductance L capacitanceC massm

friction R 1/R damping coefficient c

damping γ 1
2R
√
C/L = 1

2RCωo = R/2Lω0
1
2R

√
L/C = 1

2RLωo = 1/2RCωo c/m

ωo
√
1/LC

√
1/LC

√
k/m

Q = 1/2γ 1
R

√
L/C R

√
C/L = RCωo = R/Lωo m/2c

LeClair, Patrick (UA) PH253 Lectures 5-8 February 2, 2020 71 / 108



Equation of motion

d2x

dt2
+ 2γωo

dx

dt
+ω2ox =

eEo

m
cosωt

1 Finding a steady-state solution? (Forget transients.)
2 Complex exponentials makes it easy.
3 Presume a solution like x(t) = Aei(ωt+ϕ), rest is algebra

A(ω) =
eEo/m√

(ω2o −ω
2)
2
+ (2γωωo)

2

ϕ = tan−1

(
2ωωoγ

ω2 −ω2o

)
1 Resonance frequency is where A(ω) is maximal:
2 ωr=ωo

√
1− 2γ2

3 Small damping, reduces toωr≈ωo(1− γ2)≈ωo.
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Equation of motion

A(ω) =
eEo/m√

(ω2o −ω
2)
2
+ (2γωωo)

2
ϕ = tan−1

(
2ωωoγ

ω2 −ω2o

)

1 From the phase equation, for low driving frequencies,ω<ωo, the
phase angle is small and the charge will oscillate in sync with the
driving field.

2 Whenω>ωo, displacement is in the opposite direction from the
driving force, 180◦ degrees out of phase with the field.

3 From amplitude equation: amplitude strongly decreases above
ωo, and more gradually belowωo.

4 Sharp peak where the driving frequency matches the oscillator’s
resonance frequency,ω= ωr.
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Equation of motion
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Figure: (left) Relative amplitude of oscillation versus driving frequency with
γ ranging from 0.04 (top curve) to 0.5 (bottom curve) in steps of 0.02. The
linewidth of the resonance curve isωo/2Q. (right) Phase in radians versus
driving frequency with γ ranging from 0.04 (sharpest curve) to 0.5 (smoothest
curve) in steps of 0.02.
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Equation of motion

1 Given the amplitude, potential energy: U= 1
2mω

2
oA

2.
2 Averaged over a cycle, the K and U of the oscillator are the same.
3 Total average energy ismω2oA2 . . . use A as we derived.
4 Check: reduce to no damping: γ→0, which gives

A(ω) =
eEo

m (ω2o −ω
2)

(γ→ 0)

1 Just what we expect for a driven oscillator without damping.
2 Remove the periodicity of the driving force (ω→0)? Free

oscillator in a static electric field:

A =
eEo

mω2o
(ω→ 0)

Same result one gets from a force balance,mω2oA=kA=eE.
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Equation of motion

1 What have we learned over all?
2 Our charged oscillator is driven by a periodic electric field, and

this field ‘feeds’ energy into the oscillator, which is in turn drained
away by radiation damping.

3 The charge absorbs energy from the electric field, and reemits it as
radiation at the same frequency.

4 This leads to a steady-state equilibrium, in which the energy
gained from the field balances the energy lost by radiation.

5 More importantly: building up a model of the interaction of
radiation and matter.

Next: scattering of light, thermal radiation.

Or ... why is the sky blue? Why do hot objects glow?
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Equation of motion

End of lecture 6.
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Today: leading up to thermal radiation
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Practical matters

Exam next Wednesday in here. Coverage: most of Krane Ch. 2

Length contraction
Time dilation
Lorentz transformations
Dynamics
A single question involving the Larmor formula

Exam rules

Phones off. Only dumb calculators with no communication.
Formula sheet provided, will give any not on the sheet.
Show your work on all problems, no multiple choice.
Right work more important than right answer.
Likely: 5 problems given, solve any 4.

Study? Read the book. Old HW. Old exams.
http://pleclair.ua.edu/PH253/
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Equation of motion

1 What have we learned over all?
2 Accelerating charges radiate energy.
3 Power is P = e2a2

6πεoc3

4 This results in a resistive force Frad = e2

6πεoc3
d3x
dt3

5 For a bound charge oscillating at its resonanceωo, results in
damping.

6 If the charge is also driven by an external field atω, resonant
excitation whenω ≈ ωo

7 If damping is small,

A(ω) =
eEo/m√

(ω2o −ω
2)
2
+ (2γωωo)

2
ϕ = tan−1

(
2ωωoγ

ω2 −ω2o

)
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Equation of motion

1 What do you mean “small”?
2 Take amplitude of vibration A∼0.1nm (very large for an atom!)
3 Incident red light (ωo/2π=fo∼5× 1014 Hz)
4 Max acceleration ofω2oA over a time of 1/fo≈10−15 s
5 Gives a reaction force in the 10−18 N range.
6 HCl molecule, force constant k∼500N/m, displacement of 0.1nm

gives restoring force ∼10−8 N
7 Electron in H atom - same order
8 Factor of 1010 greater than damping . . . small indeed.
9 Consistent with Q∼108, another way to say dissipation is small.
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Equation of motion
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1 Charge excited to maximum amplitude whenω ≈ ωo
2 ω� ωo, in phase oscillation.
3 ω� ωo, out of phase oscillation.
4 Smaller damping, more narrow resonance, larger peak.
5 Another view: this is how electrons bonded to atoms scatter light!
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Outline

1 Model and ingredients

2 Electric fields in different reference frames

3 Field from a charge moving at constant velocity

4 Fields of charges that start and stop

5 Radiation of accelerating charges

6 Charges in simple harmonic motion

7 Radiation reaction force

8 Equation of motion

9 Scattering of Light

10 Thermal Radiation
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Setup

1 Instead of a single oscillating charge, how about many?
2 Expect both constructive and destructive interference of emitted

radiation.
3 Random collection of atoms with oscillating charges? No net

constructive or destructive interference
4 Total intensity is just the sum of the individual atoms.
5 Even in a regular crystal, random thermal motion . . .
6 =⇒ Assume that all the atoms incoherently emit radiation
7 =⇒ Use properties of a single atom and multiply by the number

of atoms
8 Setup: incident light in a single direction falling on an atom, and

being reemitted over a range of angles = scattering
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Setup

1 Incident EM wave strikes at atom, ~E=~Eoe
iωt

2 Electron(s) will feel a periodic force q~E and begin to vibrate
3 Electron accelerates, re-radiates some of the energy it received
4 This is scattering of light, and our driven harmonic oscillator
5 Have the amplitude and phase, so:

x(t) =
eEo/m√

(ω2o −ω
2)
2
+ (2γωωo)

2
cos (ωt+ϕ)

Since damping is very small, adds little new physics here.

Ignore it for now.
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Scattered light intensity

1 For the moment neglect damping (γ→0)
2 May be several different resonance frequencies, but just worry

about one.
3 No damping:

x(t) =
eEo cosωt
m (ω2o −ω

2)

1 Now find acceleration and get power (averaged over angles)

P =
e2ω4oA

2

12πεoc3
=

e2ω4o
12πεoc3

e2E2o

m2 (ω2o −ω
2)
2

=

(
1

2
εoE

2
o

)(
e4

6πε2oc
3m2

)
ω4

(ω2o −ω
2)
2
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Scattered light intensity

1 Substitute for the classical electron radius to simplify:

P =

(
1

2
εoE

2
o

)(
8πr2ec

3

)
ω4

(ω2o −ω
2)
2

1 Key: scattered energy goes as the square of the field
2 Proportional to (time-averaged) energy density of the incident

field 1
2εoE

2
o

3 Scattered radiation intensity is proportional to the incident
radiation intensity.

4 Basically: the brighter the source, the brighter the scattered light!
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Scattered light intensity

1 Another view:
2 Say we have light going through a surface of area σ.
3 How much radiant energy passes through it in a given time t?
4 Energy density, multiplied by area σ, multiplied by the distance

light can travel in t: 12εoE
2
oσct.

5 Rate energy passes through the surface (power transmission)?
6 Energy divided by t, or P= 1

2εocE
2
oσ.

7 Compare to what we had:

P =
1

2
εocE

2
oσ =

(
1

2
εoE

2
o

)(
8πr2ec

3

)
ω4

(ω2o −ω
2)
2

=⇒ σ =

(
8πr2e
3

)
ω4

(ω2o −ω
2)
2
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Scattered light intensity

σ =

(
8πr2e
3

)
ω4

(ω2o −ω
2)
2

1 Right-hand side does have units of area!
2 What is the meaning of this area?
3 Atom scatters portion of radiation, it falls on a certain area.
4 σ is that area - area of beam “blocked” by atom.
5 Identification of σ takes ratio of total energy scattered per second

to the incident energy per square meter:

σ =
P

1
2εocE

2
o

=
total scattered energy per second

incident energy per square meter per second
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Scattered light intensity

σ =
P

1
2εocE

2
o

=
total scattered energy per second

incident energy per square meter per second

1 σ is usually called a scattering cross section
2 Energy intercepted by an area σ of incident beam is the same as

that scattered by the atom.
3 Measure of how much of the beam we would need to block to

scatter away as much of the incident light as the atom does.
4 Thus, a sort of characteristic ‘size’ associated with scattering
5 Compare for different scattering mechanisms to gauge relative

strength
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Scattered light intensity

1 Not a real area to speak of – just oscillating point charges
2 Effect same as if we blocked an area σ of the beam
3 P = 1

2εocE
2
oσ = σc〈uE〉, define

Pscattered = σc〈uE〉 = σIincident

1 By definition, I=c〈ufield〉.
2 Iincident is the irradiance, measure of radiation intensity.
3 Irradiance is the power flux per unit area (W/m2), averaged over

one period of oscillation
4 Scattered intensity proportional to the incident intensity
5 Brighter the source, the brighter the scattered light!
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Scattered light intensity

1 Did not include radiation damping. Can go back and include it.
2 Clear that non-zero damping reduces the cross section
3 (i.e., the atoms are less effective scatterers)

σ =

(
8πr2e
3

)
ω4

(ω2o −ω
2)
2
+ (2γωωo)

2

Scattering cross section highly dependent onω, γ.

log σ
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What conclusions can we draw?

Pscattered = σIincident σ =

(
8πr2e
3

)
ω4

(ω2o −ω
2)
2
+ (2γωωo)

2

1 Scattering depends strongly onω
2 Very large at the resonance (ω2o −ω2 denominator)
3 Incident radiation can most efficiently transfer its energy when

frequencies match
4 At resonance the electron will most efficiently re-radiate
5 Numerator of the cross-section grows asω4 . . . much larger above

resonance than below
6 What is the resonance frequency for atmospheric gases?
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What conclusions can we draw?

1 Atmospheric gases: resonances all in UV
2 Visible light is at much lower frequencies
3 We see cross section at frequencies below the resonance peak.
4 Higher frequency blue light is scattered more than lower

frequency red
5 Look away from the sun: see light scattered the most = more blue
6 Toward sun at sunrise/sunset? See less scattered red light.
7 UV is absorbed even more strongly, which is a good thing.
8 Ozone is particularly good at absorbing ultraviolet light
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What conclusions can we draw?

Mathematically: ifω�ωo and damping is negligible, σ reduces to

σ =

(
8πr2e
3

)
ω4

(ω2o −ω
2)
2
≈
(
8πr2e
3

)
ω4

ω4o

1 Cross section grows asω4 (or decreases as λ−4)
2 Higher frequency (smaller wavelength) radiation is scattered

much more effectively
3 This is known as Rayleigh scattering
4 Left out some details, e.g. angular distribution, polarizability of

the medium . . .
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What did we learn?

1 Incident EM waves impinging on oscillating charges:
2 Close to resonance, charges absorb and reemit efficiently
3 This is scattering of light!
4 Stronglyω dependent
5 Explains blue sky and red sunrise/sunset
6 Scattering cross section = effective area of beam a particle blocks
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Practical matters

Exam is Wednesday in here. Coverage: most of Krane Ch. 2

Length contraction
Time dilation
Lorentz transformations
Dynamics
A single question involving the Larmor formula

Exam rules

Phones off. Only dumb calculators with no communication.
Formula sheet provided, will give any not on the sheet.
Show your work on all problems, no multiple choice.
Right work more important than right answer.
Likely: 5 problems given, solve any 4.

Study? Read the book. Old HW. Old exams.
http://pleclair.ua.edu/PH253/

LeClair, Patrick (UA) PH253 Lectures 5-8 February 2, 2020 97 / 108

http://pleclair.ua.edu/PH253/


Outline

1 Model and ingredients

2 Electric fields in different reference frames

3 Field from a charge moving at constant velocity

4 Fields of charges that start and stop

5 Radiation of accelerating charges

6 Charges in simple harmonic motion

7 Radiation reaction force

8 Equation of motion

9 Scattering of Light

10 Thermal Radiation
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Thermal radiation

1 Know how to get radiation from oscillating charges
2 Know how they scatter incident radiation
3 Consider hot object (say, a gas in a perfectly black box)
4 Made up of many identical atoms, each has electrons that can

oscillate and radiate.
5 Hot atoms in box acquire thermal energy, random motion

induced.
6 Random = atoms have many different frequencies of oscillation . . .
7 . . . so any atom is exposed many frequencies at once, incoherently

Goal: energy emitted by a single atom in the box exposed to the
radiation from all others.

Energy re-emitted by a single atomic oscillator driven by
thermally-induced radiation

From this + thermo: spectrum of thermally-induced radiation
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Thermal radiation

1 Already figured out the problem for a single incident frequency
2 Strongly peaked resonance since damping small
3 Means only driving frequencies that really matter are those close

to the resonance frequency of the oscillatorω≈ωr≈ωo
4 Only those frequencies give rise to a large amplitude of oscillation.
5 Using amplitude and total energy is kA2:

Uosc = mω
2
oA

2 = mω2o
e2E2/m2

(ω2o −ω
2)
2
+ 4γ2ω2ω2o
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Thermal radiation

Uosc = mω
2
oA

2 = mω2o
e2E2/m2

(ω2o −ω
2)
2
+ 4γ2ω2ω2o

1 If only frequencies withω≈ωo matter, approximation time!
2 First, a bit of factoring:

(
ω2o −ω

2
)2

=
(
ω2o −ω

2
) (
ω2o −ω

2
)
= (ωo −ω)2 (ωo +ω)2

Ifω≈ωo, thenωo+ω≈2ωo, and(
ω2o −ω

2
)2
≈ 4ω2o (ωo −ω)2
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Thermal radiation

(
ω2o −ω

2
)2
≈ 4ω2o (ωo −ω)2

Notingω≈ωo for the damping term in U

Uosc ≈
(
ω2o
m

)
e2E2

4ω2o (ωo −ω)2 + 4γ2ω4o
=

(
e2E2

4m

)
1

(ω−ωo)
2 + γ2ω2o

1 For a single precise frequency of incident radiationω
2 We want sum over all frequencies to find the total energy.
3 If Uosc is the energy of the oscillator at frequencyω . . .
4 . . . then Uosc dω is the energy forω∈ [ω,ω+dω]

5 Summing up frequency contributions = integrate U(ω)dω
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Thermal radiation

U(ω) is sharply peaked aroundωo, so limits of integral don’t matter
much. Take 0→ ∞ limits to make it easier.

Uosc,tot ≈
∞∫
0

(
e2E2

4m

)
1

(ω−ωo)
2 + (γωo)2

dω

= −
e2E2

4mγωo
tan−1

(
ω−ωo
γ

) ∣∣∣∣∣
∞
0

=
πe2E2

8mγωo

1 Have missed one important detail: there are 2 polarizations
2 NBD, multiply by 2 as they are equivalent.

Uosc,tot =
πe2E2

4mγωo
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Thermal radiation

Recall definition of γ and factor:

Uosc,tot =
πe2E2

4mγωo
=

(
1

2
εoE

2

)
6π2c3

ω2o

Term in brackets - energy density of the field. Rearrange

ufield =
1

2
εoE

2 = Uosc,tot
ω2o
6π2c3

1 Have a relationship between energy of a single oscillating charge
and the energy of the field it is immersed in.

2 One dimensional so far, but other 2 are the same; multiply by 3

ufield =
ω2o
2π2c3

Uosc,tot =
2f2

c3
Uosc,tot
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Thermal radiation

ufield =
ω2o
2π2c3

Uosc,tot =
2f2

c3
Uosc,tot

1 ufield(ω)dω is energy per unit volume atω in [ω,ω+ dω]

2 Key: means that if we can find the total energy of a given
oscillator by some means . . .

3 . . . we automatically know the energy contained in the radiation
field at a given frequency

4 Next: use thermodynamics!
5 Particle has thermal energy 1

2kbT per degree of freedom.
6 This is where it goes hilariously wrong
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Thermal radiation

1 Thermo: each oscillator has an average energy 〈Uosc,tot〉=kBT at a
temperature T independent of the oscillator’s frequency

2 (ignoring factors of 1/2 or 3/2)
3 If the oscillator’s energy is purely thermal, we expect

〈ufield〉 =
2f2

c3
〈Uosc,tot〉 =

2kBTf
2

c3

1 Irradiance (“intensity”) is I=c〈ufield〉

I =
2kBTf

2

c2
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Thermal radiation

I =
2kBTf

2

c2

1 Awesome right? This is the famous Rayleigh-Jeans law.
2 Intensity scales with T and f2. Think about that.
3 Agrees with experiments at low f.
4 Large f? Energy density should be arbitrarily large as frequency

increases! Everything is white hot . . .
5 We should be bathing in X- and gamma-rays. We are not.
6 “Ultraviolet catastrophe” – theory behaves stupidly at high f
7 Model has gone horribly wrong somewhere. Find and fix.
8 Wrong by assuming that oscillators of any f get the same energy
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Thermal radiation

Next time: we fix the model with Planck’s hypothesis.
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