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1
The Care & Feeding of Laboratory Notebooks

On the following page, we reproduce an excellent guide from MIT’s OpenCourseWare on main-

taining a laboratory notebook. (This guide is available under the Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 United States license. See http://ocw.mit.edu/terms/#cc for

terms and conditions.)

1
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Requirements for Experimental Notebooks 

MIT Department of Physics 
(Dated: February 14, 2008) 

Learning to maintain a laboratory notebook is one of 
the most important skills you will develop in Junior Lab. 
A good laboratory notebook is essential when you be-
gin to write papers or to develop oral presentations sum-
marizing your experimental efforts. A clear well-written 
narrative that includes experimental schematics, plots of 
raw data, and details of your analysis methods will en-
able you to receive quick feedback and assistance during 
lab sessions from peers, TA’s and section instructors. 

A poorly maintained notebook will prove immensely 
frustrating to you and your instructor. It is very diffi-
cult to answer questions like ’why didn’t the experiment 
work’ or ’why was my result off by an order of magni-
tude?’ without being able to clearly and easily trace your 
efforts using your notebook. Don’t count on being able 
to recall the gain of your amplifier even one day after a 
lab session!!! The following is a list of specific guidelines 
to follow when performing laboratory work. 

1. Create a descriptive table of contents and make an 
entry every time you add new material: 
Date ———- Contents ———- Page Don’t 
use generic entries like “Day 1” or “Analysis”. In-
stead, produce records of significant milestones: 
e.g. “Calibration of NaI Scintillation Counter 
Using Ba-133 and Na-22 Check Sources”, “Plot 
of monochromator linearity over the visible spec-
trum”, “Montecarlo Simulation of Mean Slant Path 
Distance in Muon TOF Experiment”. 

2. Sign and date each page demonstrating authentic-
ity. 

3. Don’t ever erase, use white-out, or tear out pages 
of a lab notebook. Indicate “mistakes” by simply 
drawing a single, neat line through the item. These 
may prove to not so incorrect as initially thought 
and will very often be useful as a guide to how the 
experiment was done and provide clues on how to 
better execute the experiment next time. 

4. Loose-leaf pages are never acceptable within a lab 
notebook. Graphics or tables generated by com-
puter must be neatly taped into the notebook. Re-
member to annotate these types of graphics with 
as much information about how they were created 
as possible. 

5. Preparatory questions and solutions should be writ-
ten in your lab notebooks. 

6. Following the preparatory questions, list the ob-
jectives of the experiment. Restate the essential 
physics of the experiment in your own words!!! 

7. After listing the objectives, identify the things you 
will have to do, the data you must obtain and iden-
tify the required calibrations. 

8. On the first day of a new experiment you should 
sketch a block diagram of the experimental appa-
ratus.. 

9. Identify the location of the data files or long anal-
ysis programs if they are too big to directly enter 
or tape into your notebook. Analysis scripts, func-
tional forms for non-linear fits, etc. should always 
be present in your notebooks. 

10. Note typical “readings” and instrumental settings 
so to be able to quickly setup an experiment on 
subsequent days. 

11. Sketch waveforms at various places within the sig-
nal chain. This will help ensure your understanding 
of each component and permit you to rapidly iden-
tify equipment failure. 

12. When tabulating data, make neat columns with 
headings and always note correct units. 

13. Don’t wait until after the session has ended to visu-
ally examine the quality of your data. Make prelim-
inary, hand drawn plots of data, AS THEY ARE 
ACQUIRED. These initial plots will very often 
save you time and frustration in making sure that 
your data are reasonable and suggestive of the be-
havior you expect. The importance of making 
preliminary plots and analyses in real-time 
cannot be overstated. 

14. Your notebook should contain diagrams, narra-
tives, tables of raw data, formulas, computations, 
reduced data, error analysis and conclusions in a 
neat compact, orderly arrangement. 

Bring your notebook to every lab session and 
to all oral exams. Failure to do so will result in 
penalties to your grade! 



2
Laboratory Safety

It is required that you read this entire section before doing any PH255 lab work. After reading the

safety information below, please print and sign the lab safety rules acknowledgment form on page 10.

UA safety information and procedures can be found at http://bama.ua.edu/~ehs/.

2.1 General rules

Two primary rules for lab safety are that you never work alone in the lab, and you never operate

equipment without proper training. At least one other person must be present in the lab for you to

work on any experiment or exercise. The instructor will usually be happy to assist you if you need

any extra time in the laboratory beyond normal class hours. Proper training includes reading the

laboratory procedure for a given experiment and asking the instructor for a quick demonstration

of the operation of the equipment involved. A short summary of some of the basic rules:

• If you don’t know what you are doing WITH CERTAINTY, ask for help.

• Don’t assume that you can just ‘figure it out,’ ask for proper instructions.

• Make sure you are trained on all equipment and procedures before beginning.

• Never work alone.

• If you must work alone,see the preceding rule.

• If others urge you to follow unsafe practices, refuse.

• Taking shortcuts to speed up an experiment is not only potentially dangerous, it usually has

the opposite effect in the end. A hastily done experiment usually needs to be repeated.

• If an injury occurs, remain calm, dial 911, and only provide first aid if you are absolutely

certain of what to do.

Other general rules are to always put things back in their proper place when you are finished, and

leave the lab in a better condition than you found it. This is more than just a common courtesy to

others working in the lab, safety and organization go hand in hand.

2.2 High Voltage Safety & Electronic Equipment Considerations

Some of the exercises and experiments in this course involve the use of high voltage. To ensure your

own safety and to prevent damage to equipment in the lab, certain precautions must be followed.

While OSHA defines “high voltage” to be anything in excess of 600 V, for the purposes of this

3
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4 2.2 High Voltage Safety & Electronic Equipment Considerations

course, we will treat all electrical devices as if they had high voltage present.

• Before connecting or disconnecting any cable, make sure that the power supply is in the

STANDBY or OFF mode. NEVER connect or disconnect a cable with power supplied.

• Never, ever work alone. If an electrical accident does occur, having a lab partner present may

be the difference between life and death. We have first-hand experience in these matters.

• Some supplies have capacitors inside which may not be discharged for a considerable amount

of time after powering off the supply. Do not open any electrical equipment unless instructed

to do so and supervised by an instructor.

• Always keep one hand in your pocket or behind your back when testing any circuit in which

there may be high voltage present. This will help prevent an electrical shock from sourcing

current through your heart.

• Remember that it is current that kills. A good (e.g., sweaty) connection of 6 V across your

body can kill as well as a poor connection of 600 or 6000 V.

• Unless specifically instructed to do so, do not change the polarity of an applied voltage. Under

no circumstances change the polarity with the high voltage on, as this will damage the power

supply.

• Gas discharge tubes (e.g., for atomic spectra) use a 5000 V dc supply. Never insert or remove

a tube while the power is on, and never touch the metal connectors on the ends of the tube

while inserting or removing a tube. Only handle the central glass portion of the tubes. The

tubes may also become hot after operation, let the tubes cool down before attempting to

remove them.

• When you have finished your exercise or experiment, power down all electronics (except

computers, they stay on).

• Keep all cable ends and connectors off the floor. If a cable ends or connector get stepped on,

it will be damaged, and the mating connector will also be damaged when you attempt to put

them together. Connectors and cables cost anywhere from $10 to $100 each – the damage

bill adds up quickly!

Electrical equipment represents the large majority of potential hazards in the lab, particularly in

terms of risk indexed against opportunity. There are many sources of moderate or high voltage, and

many occasions to operate electronic equipment. However, if you follow proper safety procedures,

the risk to you is negligible.

Electricity is potentially dangerous because your body operates via electrical nerve impulses. Even

a small amount of external current can disturb or interrupt such transmissions. The amount of

current is what matters, as shown in the table below.i

iSource data from http://www.allaboutcircuits.com/vol_1/chpt_3/4.html. This page has an excellent dis-
cussion of electrical safety.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab
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2.2 High Voltage Safety & Electronic Equipment Considerations 5

Bodily effect dc 60 Hz ac 10 kHz ac

Slight sensation Men = 1.0 mA 0.4 mA 7 mA
felt at hand(s) Women = 0.6 mA 0.3 mA 5 mA

Threshold of perception
Men = 5.2 mA 1.1 mA 12 mA

Women = 3.5 mA 0.7 mA 8 mA

Painful, but voluntary Men = 62 mA 9 mA 55 mA
muscle control maintained Women = 41 mA 6 mA 37 mA

Painful, unable to Men = 76 mA 16 mA 75 mA
let go of wires Women = 51 mA 10.5 mA 50 mA

Severe pain, Men = 90 mA 23 mA 94 mA
difficulty breathing Women = 60 mA 15 mA 63 mA

Possible heart fibrillation Men = 500 mA 100 mA
after 3 seconds Women = 500 mA 100 mA

Keep in mind that these figures are only approximate, and will vary from individual to individual.

However, note that with more than just a few milliamperes, you can’t let go of the electrical

source. With good contact, your arm-to-arm resistance is about 1 kΩ. A normal 110 V ac wall

outlet thus gives 110 mA, more than enough to kill you if improperly handled!

If someone in the lab does receive an electrical shock, first turn off the power to the offending

instrument or pry the victim off with insulated materials (gloves, yardstick, plastic). Apply CPR

if you know how (you have learned CPR, right?), and have someone immediately dial 911.

Some other important suggestions if an accident occurs:

• If you don’t know what you are doing, GET HELP.

• Double check that the power is off, and tape its power switch off so no one else can turn it

on.

• Use a plastic-handled screwdriver to short out the device before touching wires or electrodes.

• If you need to move the offending wire(s), use a long insulating item, such as a wooden meter

stick.

• If you must touch the offending wire(s), keep one hand in your pocket, touch the wire with

the back of your hand first (higher resistance, no chance of grabbing and not being able to

let go).

• Never, EVER work alone.

• Be sure all electrical equipment is grounded in at least one place, and do not defeat the third

pin on electrical plugs.

PH255: Mod. Phys. Lab P. LeClair, J. Busenitz, A. Piepke, D. Williams
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2.3 General Precautions When Using Lasers

The helium-neon and diode lasers used in the laboratory have a total beam power of <1 mW and

should not be capable of damaging your eyes. However, we will not test this assumption. NEVER

allow a laser beam to enter your eye directly. Take care not to look at the laser beam reflected from

a specular (mirror-like) surface. When the beam has been broadened by a lens or diffusely reflected

(e.g., by paper or a matte-finished surface), it is generally quite safe, since the beam energy density

has been strongly reduced. See http://bama.ua.edu/~ehs/New%20Web/laseprog.htm for further

laser safety guidelines.

2.4 Radiation Safety

The radioactive sources used in this lab are expressly intended for classroom use. They are sealed

sources of very low activity, and according to federal safety standards, do not require special

precautions (for example, it is not necessary to have a film badge to monitor your exposure).

However, we will treat all radiation sources with proper respect, and assume that they are all

potentially dangerous. Some common sense rules to follow when handling or using radioactive

sources in the lab:

• The radioactive sources used in this laboratory are stored in a labeled red box inside a shielded

metal box. WHEN YOU HAVE FINISHED USING A SOURCE, PUT IT BACK. Do not

leave any source lying around the lab unattended.

• Do not handle the sources any more than necessary. Before doing an exercise or experiment,

think about how to configure the equipment with the goal in mind of keeping the maximum

practicable distance between yourself and the source. This will help reduce the amount of

time you spend in the proximity of the source.

• If you suspect that there is radioactivity where you aren’t expecting it, there is a survey meter

(Geiger counter) in the lab for checking out this kind of situation.

• If you wish to use them, lead bricks are available to provide shielding around the source. This

is primarily to reduce the influence of background radiation on your experiment, they are not

required for safety. To avoid getting any lead on your hands, use the gloves provided in the

lab while handling the bricks, or any other lead objects in the lab. Wash your hands after

handling lead, even if you wore gloves. Use only painted lead bricks; unpainted and oxidized

bricks will have a white powdery coating, these should not be used.

• Never remove a source from the laboratory, even temporarily. The staff are legally responsible

for the sources and must periodically account for their presence and condition.

• Keep sources away from your body.

• Never bring a radioactive source near your eyes because they are particularly sensitive to

radiation.

• Be aware of the sources being used in neighboring experiments.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab
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Meticulous care must be taken by all students and staff to insure that every source removed from

the repository be returned immediately after its use. For further information on UA radiation

safety, see http://bama.ua.edu/~ehs/New%20Web/radprog.htm

2.4.1 Exposure and Dosage

An excellent guide on radioactivity and radiation protection can be found at http://pdg.lbl.gov/

1999/radiorpp.pdf. This section is adapted from the MIT OpenCourseWare for course 8.13-14,

“Experimental Physics I & II.” The safety guide at http://ocw.mit.edu/courses/physics/ under

course 8.13-14 is available under the Creative Commons Attribution-NonCommercial-ShareAlike

3.0 United States license. See http://ocw.mit.edu/terms/#cc for terms and conditions.

Ionizing radiation damages tissue; any exposure should therefore be minimized. The unit of radi-

ation exposure is the rem (roentgen equivalent man). A new unit, called the Sievert (= 100 rem)

is recommended by the International Commission on Radiation Units and Measurements (ICRU).

Your inescapable dosage from cosmic rays and other background sources is 360 mrem/yr, which

works out to 4.2×10−2 mrem/hr. The recommended limit to exposure for a member of the general

public is 100 mrem/yr, averaged over any consecutive five years. If you follow the lab guidelines,

your exposure will be only a small fraction of the dose you receive from the natural background. A

meter is available for you to check the radiation levels yourself.

Radioactive sources emit three types of radiation: high energy helium nuclei (alpha rays), electrons

(beta rays), or photons (gamma rays). Most of the sources in the lab emit only gamma radiation.

Of the sources which do emit alpha or beta particles, most are enclosed in plastic or metals, which

prevent particulate radiation from escaping. Any exceptions will be obviously noted. Any such

specially marked sources should never be handled. Handling of open alpha- or beta-emitters can

result in dangerous dosages to the skin.

The strength of a radioactive source is measured in curies (Ci). A one-curie source has an activity

of 3.7×1010 disintegrations/s. The “absorbed dose” is a quantity that measures the total energy

absorbed per unit mass; it is measured in rads, where 1 rad = 100 erg/g. The “equivalent dose” is

measured in the units discussed above, the rem. The equivalent dose is derived from the absorbed

dose by multiplying by a “radiation weighting factor” which is a measure of how damaging a partic-

ular type of radiation is to biological tissue. For photons (gamma rays) and electrons and positrons

(beta particles), the radiation weighting factor is unity; for helium nuclei (alpha particles), it is

20; for protons with energy greater than 2 MeV it is 5; and for neutrons it ranges from 5 to 20,

depending on the energy. When you use the meter in the lab, the readings are in rads, and you

must consider the type of particle when you work out the equivalent dose.
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8 2.5 Cryogenics

For gamma rays with energy greater than 1 MeV, a useful approximation is that the equivalent dose

due to a source with an activity of C microcuries is 5.2×10−4CEγR
−2 mrem/hr, where R is the

distance from the source in meters and Eγ is the energy of the gamma ray in MeV. For gamma rays

with energy less than 1 MeV, this formula is still approximately true for a full body dose. However,

low-energy gamma rays deposit their energy in a smaller mass of tissue than high-energy gamma

rays and can cause high local doses. For example, the local dose to the hands from handling a

10 KeV source can be up to 25 times the value given by the above formula; hands, however, have

a higher tolerance to radiation than inner organs or eyes.

The protective value of shielding varies drastically with the energy of the photons. The intensity

of a soft X-ray beam of “soft” (i.e. < 1 KeV) can be reduced by many orders of magnitude with

a millimeter of aluminum while 1.2 MeV gamma rays from 60Co are attenuated by only a factor

of 2 by a lead sheet one-half of an inch thick. The best way to keep your dosage down is to put

distance between you and the source. If you stay a meter away from most sources in the lab, you

will be receiving, even without any lead shielding, a dose which is much less than your allowable

background dose. If, however, you sit reading the write-up with a box of sources a few inches away,

you may momentarily be receiving ten to a hundred times the background level.

2.5 Cryogenics

Liquid nitrogen is chemically inert, but it can cause severe frostbite. Wear gloves and protective

glasses or a face shield when transferring or transporting liquid nitrogen. Do not put liquid nitrogen

in closed containers – the boiloff of liquid nitrogen will cause pressure to build up until something

explodes.

2.6 What to do if an Injury Incident Occurs

1. Don’t panic. The accident scene may be very scary. Resist the urge to rush in without

thinking, or run away.

2. Take charge of yourself and others. Take a few seconds to think and develop a plan. Dial

911. Give firm, clear instructions to bystanders.

3. Approach the victim safely. Turn off any electricity, move the victim away from conductors

with insulating tools (yardstick, gloves). Stabilize falling objects.

4. Perform emergency first aid if you know what to do. You may do more harm than good if

you do not know the correct procedures. Perform CPR, arrest bleeding if necessary. Do not

move victim if possible.

5. Stay with the victim until help arrives, or delegate a bystander if you must deal with equip-

ment.

A summary of the preceding safety rules:
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2.6 What to do if an Injury Incident Occurs 9

• If you don’t know what you are doing FOR SURE, seek help.

• Get proper training for whatever equipment and procedures you encounter, and

• DON’T assume you are so smart you can derive it all on the spot.

• Never work alone if at all avoidable.

• If you must work alone, make sure someone knows where you are, what you are doing, and

when you should be done.

• If others urge you to follow unsafe practices, refuse loudly and firmly.

• It is your body, and you need it for a long time.

• If an injury occurs, remain calm, dial 911, and only provide first aid if you know what to do

FOR SURE.
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LAB SAFETY RULES

You must have a signed copy of this form on file to work in the PH255 laboratory.

The safety policies and procedures listed below must be followed in the laboratory. Failure to

comply with these rules may result in dismissal or suspension from the laboratory.

• Be aware of the locations of fire extinguishers and first aid kits.

• The emergency telephone is in the hallway (dial 911 for emergencies).

• For non-emergency issues dial 8-5454 to contact campus police.

• All accidents or injuries, however slight, must immediately be called to the attention of the

laboratory instructor who will advise the student on the course of action to be taken.

• Unauthorized experiments are prohibited. Follow the laboratory directions carefully.

• Food and beverages are prohibited in the laboratory.

• Do not remove any laboratory equipment or supplies from the laboratory.

• Never work in the laboratory without supervision.

• Never look directly into a laser beam or point a laser beam at someone else.

• Use care when handling electrical equipment in order to avoid electrical shock.

• Notify the instructor in case of damaged power cords or other problems with electrical equip-

ment.

• Careless acts are prohibited.

I have read and understand these rules and agree follow them to the best of my ability.

Student Name:

Student Signature:

CWID:

Course Number:

Date:
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3
Electron Diffraction

3.1 Introduction

The purpose of this lab is to observe the wave properties of electrons, verify the de Broglie relation,

and determine lattice spacings in graphite carbon.

3.2 Equipment Description and Setup

The electron diffraction tube comprises a “gun,” which emits a narrow converging beam of electrons

within an evacuated clear glass bulb on the surface of which is deposited a luminescent screen.

Across the exit aperture of the “gun” lies a micro-mesh nickel grid onto which has been vaporized

a thin layer of graphitized carbon; the beam penetrates through this carbon “target” to become

diffracted into two rings corresponding to separations of the carbon atoms of 0.123 and 0.213

nanometers. The source of the beam of electrons is an indirectly-heated oxide-coated filament

inside the cathode structure, the heater of which is connected to 4mm sockets at the rear of the

tube, labeled “+ FIL” and “- FIL”. The electrons are accelerated by a potential difference between

the cathode and anode of the gun. The ground of the accelerating voltage is connected to the

“Cathode” socket at the rear of the tube and the positive voltage is connected to the socket at the

top of the tube. Figure 3.1 shows annotated photos of the diffraction tube.

The electron diffraction tube is connected to a high voltage supply, a bias voltage supply, and a low

voltage supply Figure 3.2). To avoid burning out the graphite grating or the filament, an interface

is provided at the rear of the tube for making the required connections. Do not turn on any power

supply until the connections have been checked by the instructor.

1. Connect the low voltage power supply with the positive terminal connected to the socket

labelel +FIL and the negative terminal connected to the socket labeled -FIL.

2. Connect the positive terminal of the external bias power supply to the +FIL socket and

connect the negative terminal of the bias power supply to the socket labeled Cathode.

3. The positive potential (anode potential) of the high voltage tube should already be con-

nected to the terminal on top of the tube (if not, see the instructor) and there should

be a banana cable connection branching out from this cable; attach this banana cable to the

socket labeled Cathode.

4. Connect the socket labeled Cathode to earth ground, which should be available on the bias

power supply.

11



12 3.2 Equipment Description and Setup

Figure 3.1: Side view (left) and rear view (right) of the electron diffraction tube

External Bias: This bias is used to focus the rings which are observed on the end of electron

diffraction tube. This bias should be initially set at approximately 40 volts and then reduced as

needed. You will observe that decreasing the external bias will increase the anode current. (See

comment below regarding maximum anode current.) The paragraph below on target protection

explains how the external bias works.

Anode Voltage: This voltage accelerates the electrons. During the experiment it will be varied be-

tween 2500 and 5000 volts. AS A SAFETY PRECAUTION, THE LEAD CONNECTING

THE HIGH VOLTAGE POWER SUPPLY TO THE ELECTRON DIFFRACTION

TUBE SHOULD NEVER BE DISCONNECTED. After turning on the high voltage power

supply, raise the voltage gradually to 5000 volts, noting the anode. The instructor will show you

how to precisely monitor the anode current and voltage; see also the notes below on the Bertan

power supply, which is used as the high voltage power supply. THE ANODE CURRENT

SHOULD NEVER EXCEED 200 µA. As mentioned above, you can use the external bias to

reduce the anode current.

Protection of the Carbon Target:

The graphitized carbon through which the electron beam is confined to pass is only a few molecular

layers in thickness and can be punctured by current overload. The external bias voltage is used

to control the electron beam current as follows. The cathode is essentially a can which surrounds

the filament and which has a small opening (exit aperture) on the anode side. An internal resistor

connects one lead of the filament to the cathode. Recall that you connected the power supplies
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Figure 3.2: Power supplies used for the electron diffraction experiment
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14 3.3 Procedure

so that the cathode and negative terminal of the bias are tied to earth ground, which means that

they are held at an absolute potential of 0 V. The low voltage power supply maintains a constant

potential difference between the two filament leads. The positive terminal of the external bias sets

its end of the filament to an absolute potential equal to its output potential. For example, when the

external bias is set at 40 V, the voltage of the filament is about 40 V, which is positive compared

to the 0 V potential of the cathode. Therefore, when an electron is thermally ejected from the

filament, it immediately experiences a retarding force acting upon it towards the filament. At a

potential difference of 40 V, practically all thermally ejected electrons are stopped before they can

reach the cathode and therefore no electrons escape the cathode through the hole to be accelerated

toward the anode. The voltage applied through the external bias is sometimes called a “negative

bias” or “reverse bias.” In order to produce an observable current of electrons being accelerated

between the cathode and anode, one must lower the external bias far enough so that some electrons

are able to reach the cathode exit aperture before being stopped.

Notes on Bertran HV supply.

1. The NIM bin must be on for the supply to work.

2. Dual channel. You need only one of them, A or B. The output connectors are in the back.

3. Voltage is set with dial, 1000 V per full turn.

4. Set voltage to zero before enabling output using toggle switch.

5. There are two LEMO outputs, one for reading the voltage setting and the other for the

current being drawn. Suggestion: set voltage coarsely using dial while monitoring current.

Then connect voltage readout to DVM for fine voltage setting. Always monitor current while

making major changes to the HV level or to the external bias.

3.3 Procedure

Connect the tube electron tube into the power supplies as described above. After the instructor

has checked the wiring, first turn on the low voltage supply, set it to 12 V, and wait a few

minutes for the filament (which should begin to glow) to stabilize. Second, turn on the external

bias power supply and set it to 40 V. Third, turn on the high voltage power supply and turn up

the anode potential to 5000 V, monitoring the anode current as you do so. Finally, decrease the

external bias potential (perhaps to about 20 V) until the image of two wide rings and a central dot

is clearly visible on the screen.

First, measure the ring diameters while the anode voltage is at 5000 volts. Then reduce the anode

voltage to 4500 volts, refocus using the external bias, and measure the ring diameters for that

voltage. As the rings are fuzzy, you should measure the inside diameter and outside diameter of

each ring - 4 diameters in total. Continue in this fashion, reducing the anode voltage in steps

of 500 volts until 2500 volts is reached. You may find it useful to turn off the room lights or use
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3.4 The de Broglie Hypothesis of Electron Diffraction 15

a black cloth as a hood in order to improve your measurements. If you do decide to turn off the

lights, first check with other teams working in the room.

The distance from the graphite target to the front of the acrylic box is approximately 125 mm and

the radius of curvature of the fluorescent screen is approximately 50 mm. Knowing this, you can

calculate the extrapolated diameter (blue double arrow) from the measured diameter (red double

arrow). You will calculate the extrapolated diameter in your analysis and then use it to calculate

the electron diffraction angle θ.

3.4 The de Broglie Hypothesis of Electron Diffraction

Louis de Broglie hypothesized that particles of momentum p would exhibit the properties of waves

with wavelength λ given by

λ =
h

p

where h is Planck’s constant. In our experiment, the electrons of charge e are accelerated through

a potential different V . Approximating the initial momentum of the electrons as zero and applying

the law of conservation of mechanical energy,

p =
√

2meV
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where m is the mass of the electron. The observed diffraction rings correspond to first–order

interference maxima satisfying the condition for interference maximum:

d sin θ = λ

where d is the lattice spacing corresponding to the maximum. In the small angle approximation

sin θ = tan θ

In terms of the distance L from the graphite target to the outside surface of the acrylic box and

the ring diameter D extrapolated to the outside surface of the acrylic box,

tan θ =
D

2L

Equating the two expressions for λ,
h√

2meV
=
dD

2L

In carrying out the experiment, d and L are set in the construction of the apparatus, you choose

and set an accelerating volltage V , and then you measure D. We can solve the above relationship

for D in terms of d, L, and V , yielding a prediction for D in terms of experimental parameters.

D =

√
2Lh

d
√
me

1√
V
≡ α 1√

V

where

α ≡
√

2Lh

d
√
me

In other words, according to the de Broglie hypothesis applied to this experiment, D should vary

linearly with 1/
√
V with slope α.

3.5 Analysis and Discussion

1. For each ring (inner, outer) and accelerating voltage, average your measurements of D. Tab-

ulate the results as a function of the accelerating voltage.

2. Calculate the extrapolated ring diameter from the measured average ring diameter. Explain

your method.

3. What are the significant sources of uncertainty in the determination of the ring diameters.

Make a quantitative estimate of the uncertainty.

4. For each ring, plot the extrapolated diameter versus the inverse square root of the accelerating

voltage.
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3.5 Analysis and Discussion 17

5. Fit a straight line to each plot. Compare the quality of the fit to the prediction that the

experimental data should lie along a straight line. If the prediction is consistent with the

data, further compare the fitted slope of the straight line with the predicted value for the

slope.
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4
Speed of Light

Choose one of the two experiments to measure the speed of light.

4.1 Experiment 1

For the Foucault method Pasco apparatus, we will use the Pasco manual, found online at:

https://www.pasco.com/file_downloads/Downloads_Manuals/Basic-Speed-of-Light-Apparatus-Manual-OS-9262.pdf

4.2 Experiment 2

4.2.1 Introduction

This experiment represents a direct measurement of the speed of light by dividing the distance

traveled by the light by the time required for the trip. A diagram of the apparatus is shown in

Figure 4.1.The beam from a laser amplitude-modulated at 1 MHz is directed to a mirror or a series

of mirrors so the beam will travel over a distance D before it is incident on a photodiode. The

output of the photodiode is connected to one input of a dual beam oscilloscope so the 1 MHz

waveform can be observed. The beam from the laser is directed through a beam splitter so a

reference beam can be directed over a very short distance d to a second photodiode. The second

diode output is connected to the second input of the dual channel oscilloscope so two 1MHz wave

forms can be observed simultaneously. There should be a shift in time ∆t between the two 1 MHz

signals, and this time difference represents the difference in time required for the laser beam to

traverse the long and short light paths. Thus the speed of light can be calculated from the equation

c =
D − d

∆t

4.2.2 Experimental Setup

The experimenters have some choice in how to set up the equipment. They can choose the long

path D by using one or two mirrors and they can choose the short path length d by position of

the beam splitter. Because the beam will diverge over a long distance, a lens should be used to

focus the beam on the photodiode. Some time will be required to adjust the mirrors so the two

laser beams will fall on the two photodiodes. The light path adjustments should be continued until

strong signals (around 0.5 V - 1 V peak to peak), are observed on the oscilloscope.

Use the ring stands and lab jacks to set different parts of the apparatus to the similar heights.

Handle the mirrors only on the edges. It may be necessary to clean the mirrors, which should be

done carefully, as the mirrors are coated on their front surfaces.

19
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20 4.2 Experiment 2

Physics 255:  Modern Physics Lab

Measurement of the Speed of Light

Introduction:  This experiment represents a direct measurement of the speed of light by
dividing the distance traveled by the light by the time required for the trip.  The beam
from a laser amplitude-modulated a 1 MHz is directed to a mirror or a series of mirrors so
the beam will travel over a distance D before it is incident on a photodiode.  The output
of the photodiode is connected to one input of a dual beam oscilloscope so the 1 MHz
waveform can be observed.  The beam from the laser is directed through a beam splitter
so a reference beam can be directed over a very short distance d to a second photodiode.
The second diode output is connected to the second input of the dual channel oscilloscope
so two 1MHz wave forms can be observed simultaneously.  There should be a shift in
time _t between the two 1MHz signals, and this time difference represents the difference
in time required for the laser beam to traverse the long and short light paths.  Thus the
speed of light should be c = (D – d)/ _t.  A diagram of the apparatus is shown in Figure 1.

Experimental Setup:  The experimenters have some choice in how to set up the
equipment.  They can choose the long path D by using one or two mirrors and they can
choose the short path length d by position of the beam splitter.  Because the beam will
diverge over a long distance, a lens should be used to focus the beam on the photodiode.
The diagram of Figure 1 can be used to direct the experimenter in setting up the
equipment.  Some time will be required to adjust the mirrors so the two laser beams will
fall on the two photodiodes.  The light path adjustments must be continued until strong
signals (about 2V peak to peak), are observed on the oscilloscope.

Experimental Procedure:  After the equipment setup is complete, the time difference
can be measured directly on the oscilloscope.  Different oscilloscope sweep times should
be used and the _t measurement should be made several times and the results averaged.
The experimenter should estimate the possible range of errors in making the _t, D and d
measurements.  After measurements are made at on distance D, this distance should be
changed and the experiment repeated.

Figure 4.1: Schematic of apparatus

The photodetector is powered by a 9 V battery on a circuit board, which is attached to the top

panel of the photodetector. If the battery needs replacing, remove the corner screws to lift the top

panel out.

Make sure the switch next to the amplifier on the photodetector is set to OFF.

Figure 4.2 and figure 4.3 show photos from previous setups of the experiment.

Setup and Procedure
● By pulsing the laser, we can create 

a phase difference between the 
short-path light and the long-path 
light.

● This phase difference will be the 
key to calculating our estimate of 
the speed of light.Figure 4.2: Left: Overview photo of setup. Right: Oscilloscope traces for a particular pair of beam paths

Note that the connection between the control box and the external trigger on the

oscilloscope should not be made; rather trigger the oscilloscope on the photodiode output for

the path. The instructor will show you how to use the oscilloscope.

4.2.3 Experimental Procedure

After the equipment setup is complete, the time difference can be measured directly on the oscillo-

scope. Different oscilloscope sweep times should be used and the ∆t measurement should be made
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Figure 4.3: More photos showing the setup of the apparatus. Clockwise from top left: laser and beam splitter; beamsplitter,
lens and photodetector; closeup of photodetector showing connections to oscilloscope; far reflecting mirror.

several times for each sweep time. After measurements are made at one distance D, this distance

should be changed and the experiment repeated.

4.2.4 Analysis and Discussion

1. Average your measurements of ∆t for each sweep time and value of D. Tabulate the results.

2. Estimate the uncertainties in the measurements of d, D, and ∆t. In the case of ∆t, discuss

the uncertainty of the individual measurements as well as the uncertainty after averaging.

Explain how you got your estimates.

3. Plot D − d versus ∆t (averaged) and fit a straight line to it, requiring that the intercept be

zero. Compare the slope with the accepted value for the speed of light. Discuss any difference

between the measured and accepted values in terms of the experimental uncertainties.
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5
Counting Statistics

5.1 Hypothesis

Gamma ray emission from a radioactive source occurs as random, independent events. As such,

the distribution of emission times should follow Poisson statistics. For a large number of decays

and a small decay probability, the statistics should therefore be approximately Gaussian.

5.2 Introduction

No matter how many measurements of a quantity we make, we will never know its true value. If

we make a large number of measurements under nominally identical conditions, then the average

of this collection of measurements gives us an estimate of the true value. We might logically expect

that the more measurements we make, the better our estimate of the true value. In some cases, the

underlying statistics of the randomness in the measurements allows us to determine how far our

estimate is from the true value. This is the case for radioactive decay, where the probability for

decay λ is the same for all identical atoms in the sample of interest. This makes radioactive decay

an example of a sequence of independent random events, in which the occurrence of any event has

no effect on the occurrence of any other. Repeated measurements of independent, random events

occurs often in physics, and the goal of this laboratory is to learn how to analyze such experiments.

Since the decay of an unstable nucleus is entirely random, we cannot predict when a particular

atom will decay. Because it is equally likely to decay at any moment, however, we can predict the

mean number of atoms which have decayed after a prescribed amount of time. If the probability

per unit time of a given atom decaying is λ, then the mean number of original atoms remaining

after a time t out of an original population of N(0) atoms is governed by an exponential decay:

N(t) = N(0)e−λt (5.1)

Closely related to the decay rate above is the half life of the isotope t1/2, the amount of time on

average it takes for half of a given sample of radioactive material to decay. From the exponential

decay, it is clear that

t1/2 =
ln 2

λ
(5.2)

If a particular isotope has a decay probability of λ= 1 × 10−5 s−1, meaning any given atom has a

probability of 1 in 105 of decaying during any given second, this implies a half life of t1/2 =6.93×104 s

(19.25 hr). The exponential decay is only an approximate solution for real radioactive decay for two

primary reasons. First, the exponential function is continuous, while the number of atoms remain-
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ing can only take on integer values. Second, since the decay process is random, the exponential

decay is only statistically true. We only expect the exponential behavior to hold for an extremely

large population of atoms. Since we are normally dealing with very large numbers of atoms, of the

order of Avogadro’s number, the approximation is usually quite good.

The analysis above applies to a particular sort of experiment, one in which we simply measure the

number of non-decayed atoms as a function of time. The present experiment is somewhat different,

in that we will make repeated measurements of the number of decay events occurring within a

certain fixed amount of time. If the measurement time is small compared to the half life, then

the number of decays observed will be small compared to the total number of atoms present, so

we may assume that the number of non-decayed atoms in the sample is not changing significantly

over the course of our measurement. On the other hand, the decay rate should be constant in this

case, with the number of decays in a given fixed amount of time distributed about a characteristic

mean value. What we wish to establish is that their distribution is governed by the statistics of

independent random events.

How can one judge whether a certain process really has a steady rate on time scales of the experi-

ment? There is only one way: make repeated measurements of the number of counts xi in a time

interval ti, and see if there is a trend in the successive values of xi/ti. These ratios are sure to

fluctuate, since we are inherently dealing with a random variable, and the question is whether the

observed fluctuations are consistent with a fixed steady rate. To answer this question, we will need

the expected distributions for a truly random process.

5.3 Binomial, Poisson, and Gaussian Statistics

From the decay probability per unit time λ and the fact that individual decays are independent

events, we can calculate the probability that out of a sample of N atoms, we measure x decays per

unit time. We do this in the same way we would calculate the odds when throwing dice or tossing

coins, using the binomial distribution. If the probability per unit time of decay is λ, the probability

per unit time of no decay is 1− λ. Putting these two facts together, the probability per unit time

of x decays from N atoms isi

Pλ(x|N) =

(
N

x

)
λx (1− λ)N−x =

N !

x! (N − x)!
λx (1− λ)N−x (5.3)

Though this an exact expression, it is unwieldy and computationally useless given the appearance

of numerous factorials. For a very large collection of atoms and a small decay probabilityii, we

can take the limit of the binomial distribution[1] as N → ∞ and obtain the somewhat friendlier

Poisson distribution:

iRecall that
(
n
k

)
=n!/k!(n− k)!.

iiSay, of order λN. 10.
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Pµ(x) =
µx

x!
e−µ Poisson distribution (5.4)

Here µ is the expected number of decays per unit time (the population mean), x the number of

decays per unit time actually observed, giving Pµ(x) as the probability for measuring x decays per

unit time if µ are expected. The population mean µ is related to the decay rate and number of

atoms by µ=Nλ. The use of the Poisson distribution is justified when the number of events per

unit time is steady over the course of the measurement. On the other hand, if our experimental

data is found to obey Poissonian statistics, we can be reasonably sure that we are observing a

process governed by a steady decay rate.

Though an improvement, the Poisson distribution remains unwieldy and restricted to sets of inte-

gers, owing to the appearance of x!. If the true number of decays per unit timet µ is largeiii, the

Poisson (or Binomial) distribution can be approximated by the normal (Gaussian) distribution:

P (x) =
1√
2πµ

e−(x−µ)2/2µ Gaussian distribution (5.5)

This is part of the Central Limit Theorem, one of the most important results in all of statistics.

Crucially, the x in the Gaussian distribution can be treated as a continuous variable if necessary,

while the x in the Poisson distribution must be an integer.

The usual way of writing the normal (Gaussian) distribution is it in terms of the mean µ which

defines the center of the distribution, and the standard deviation σ which defines the spread of the

data. The relationship between µ and σ for a random process is simply σ=
√
µ, giving

P (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

Gaussian distribution (5.6)

In the normal distribution, it can be shown that approximately 68% of the observations lie in the

interval [µ−σ, µ+σ], 95.5% in the interval [µ−2σ, µ+2σ], and 99.7% in the interval [µ−3σ, µ+3σ].

Although a true normal distribution is defined in terms of the true mean µ and the standard devia-

tion σ, we cannot determine either of these quantities exactly with a finite number of measurements,

we can only measure better and better approximations. In practice, we replace µ by the observed

mean x, defined as:

x =
1

N

N∑
i=1

xi (5.7)

where N is the total number of observations and xi are the individual observations. We replace σ

by the sample standard deviation s, defined as:

iiiSay, µ>100.
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s =

√√√√ 1

N − 1

N∑
i=1

(xi − x)2 (5.8)

When only a single observation x is made, the sample standard deviation may be determined by

s=
√
x. Thus, the mean error for any single result or data point x is

√
x and the fractional error

is given by 1/
√
x. This is a very important result for analyzing experimental data. As a practical

point, now you know how to put error bars on a frequency distribution.

The standard deviation is a measure of the random statistical uncertainty in the measurement,

and it becomes part of the experimental error associated with physical measurement. If you have

measured an average count to be 695 with s=26, and another experimenter has measured a count

of 680, then their count agrees with your count, within the experimental error. Nothing is made

of the difference between the values 695 and 680 because, in all probability, the two results are the

same. A related quantity is the probable error P is defined to be that deviation which is expected

to be exceeded in half of the observations. For a normal distribution, P is given by

P = 0.6745σ (5.9)

We can also estimate the relative uncertainty of the measured mean of a number of measurements,

a quantity known as the standard deviation of the mean σx. This quantity tells you that if you

measure x repeatedly, the sample mean x has an uncertainty σx compared to the true mean µ given

by:

σx =
σ√
N

(5.10)

For an estimate, σ can be approximated by s, σx ≈ s/
√
N . Based on your observations, you can

expect 68% of any measurements of x made in the same way will have a mean of x±σx. Put another

way, if you are primarily interested in the average value of x, then σx tells you the uncertainty in

that average with respect to repeated measurementsiv. The standard deviation of the mean is the

typical manner of reporting average quantities with statistical uncertainty:

(best value of x) = x± σx (68% confidence) (5.11)

Putting this all together, if we take N measurements for our sample, the frequency with which we

would expect to measure x decays would be, using sample mean and standard deviation:

frequency(x) =
N

s
√

2π
e−(x−x)2/2s2 (5.12)

ivRemember that the standard deviation σ tells you that 68% of subsequent measurements will fall within ±σ of
the mean x, whereas the standard deviation of the mean tells you that a collection of measurements has a 68% chance
of yielding a mean of x.
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“Frequency” here is the number of times that x is the result of your measurement, if you take

N measurements with a mean value of x. The data in Fig. 5.1 below are compiled from 5120

consecutive measurements of the number of 662 keV gamma rays emitted in 40 ms measurement

intervals from a 137Cs source. The frequency of the measured rates is well-described by a normal

distribution, which can be determined from only the sample average and standard deviation. The

data here have been sorted in to ‘bins’ of width 2 counts.[1] The ‘binning’ process just means

that rather than tallying the frequency of exact numbers of counts, we would tally the frequency

of observations falling within fixed-width ranges, known as ‘bins.’ In this case, we counted the

frequency of observations falling in the range [60, 62], [62, 64], etc. Another way of viewing the

binning process is as a sort of ‘rounding’ – for a bin width of 2, we round downward to the nearest

multiple of 2. A bin width of 5 would mean rounding down to the nearest multiple of 5, and a bin

width of 1 just means rounding downward to the nearest integer.v
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Figure 5.1: Gaussian fit to data with an average of x=75.5 counts in 40 ms. The sample standard deviation is s=8.48 counts,
in good agreement with

√
x = 8.7. The sample standard deviation of the mean is sx = 0.119, so our average count rate is

reported as x=75.5±0.12. (The counts are sorted in to ‘bins’ of width 2 for this analysis.)

5.4 Objective

In this experiment you will explore the statistics of random, independent events in physical measure-

ments. The random events used in this study will be pulses from a scintillation detector exposed to

gamma rays from a radioactive 137Cs source. The 137Cs parent nuclei undergo beta decay to create

vOf course, this ‘rounding’ process is only for constructing the frequency distribution plot, we do not actually
round the data – that would be throwing away data! We merely sort it and construct a frequency table based on
intervals determined by the bin width. If we actually rounded it, we could never choose a smaller bin size after
that. . .
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excited 137Ba daughter nuclei, which relax to their ground state by emitting 662 keV gamma rays.

The gamma ray emission from the excited state of 137Ba occurs randomly, as does the decay of its

parent isotope, 137Cs. Since the 30 year half-life of 137Cs is continually replenishing the short-lived
137Ba, this isotope’s activity will be nearly constant for far longer than a lab period, and will suffice

for a few hours of measurement.

The scintillation detector software control will allow a measure the source activity 1,024 times for

a specified duration known as the “dwell time.” From these measurements, you can construct a

frequency histogram and compare with Gaussian or Poisson distributions. Dwell times (i.e., the

measurement time interval) can be changed to change the average number of counts with the dwell

period for further comparison with theoretical predictions. The overall goal is to become familiar

with the statistical analysis of random uncertainties.

5.5 Preparatory Questions

Include your responses to these questions in your report.

1. Describe how a scintillation counter works, starting from the entrance of an energetic charged

particle or photon, and ending with an electrical pulse at the output of the photomultiplier.

Why are subsequent signals independent?

2. Suppose the mean counting rate of a certain detector of random events is 2.1 counts per

second. What is the probability of obtaining zero counts in a one-second counting interval?

What is the most likely interval between successive pulses?

5.6 Relevant Reading

Taylor[1], Ch. 4, 5, 11

Pfeffer & Nir[2], Ch. 5.3.1-3, 5.5.1

5.7 Supplies

1. Spectech UCS30 spectrometer

2. NaI(Tl) detector

3. Multi-channel analyzer (MCA) / control electronics

4. Pb cylinder for shielding

5. 137Cs source (check out from locked cabinet)

6. detector holder and shelf housing

7. lab notebook and USB drive for saving spectra
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Pb brick

Pb cylinder

detector

detector
housing

sources

control electronics

calipers

Pb, Al, Cu
sheets

Figure 5.2: The Spectech UCS30 spectrometer and accessories

5.8 Suggested procedure

5.8.1 Startup

1. Turn on the power to the Spectech UCS30

2. Run the program “UCS USB” from the shortcut on the desktop

3. Place the 137Cs source on top of the table, and place the Pb cylinder around it

4. Place the cylindrical NaI detector inside the Pb cylinder

5. Run the energy auto-calibration from “Settings/Energy Calibration/Auto Calibrate” - this

will take several minutes. The final spectrum should look like the one in Fig. 5.3.

6. Once the calibration is finished, click on the “X” to clear the spectrum, and you are ready to

set up the experiment and begin taking data.

5.8.2 Setting up Pulse Height Analysis (PHA) mode

1. Under the “Mode” menu, select “PHA (preamp in).” This should be the default value.

2. Open the detector settings (Settings, High Voltage/Amp/ADC).

3. Adjust the Discriminator Units of Channels settings to select only the 662 keV gamma peak.

The values are in channels where the maximum channel is 1024; about 590 and 730 for the

Low and High values respecively should work well (the peak should be at about channel 660).

4. Run a spectrum using the green diamond “go” button and verify that you are only scanning

the 662 keV peak. Once verified, stop counting with the red octagon’ “stop” button and clear

the spectrum with the “X”.

5. Under the “Mode” menu, select ”MCS (Internal).”

6. Under Settings/MCS/Dwell, choose a dwell time. This is the time interval over which the

counts within the detection limits are measured.
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Figure 5.3: Gamma spectrum of 137Cs. Aside from the main photopeak at ≈ 660 keV, clear Compton edge and backscatter
features are visible, as well as X-ray absorption edges. Note the logarithmic scale on the vertical axis.[3]

5.8.3 Running the experiment

Once a dwell time is selected, running a spectra (with the “go” button) will make 1024 measure-

ments of the total number of counts within the detection region, with each measurement as long as

the specified dwell time. Do this, and save the resulting data (name it sensibly!). Be sure to save

the file in comma-separated value (CSV) format so you can read it in, e.g., Excel later!

In this experiment, you will want to vary the dwell time such that you have a total number

of counts varying by a factor of 5-10. The goal is to accumulate data at three different dwell

times, corresponding to three different mean counts per dwell time, such that the total amount of

acquisition time at any dwell time is the same. Thus, if your first spectra is at a dwell time of

200 ms, for 1024 points your acquisition time is 204.8 s. Your second data set at, e.g., 100 ms would

require two separate spectra to have the same amount of total acquisition time, since 1024 points

at 100 ms corresponds to 102.4 s, or half the measurement time as your first spectra. Though you

are free to choose your own parameters, a suggested plan would be

• 1 spectrum at 200 ms dwell time

• 2 spectra at 100 ms dwell time

• 5 spectra at 40 ms dwell time

During your data analysis, you will combine the 5 spectra at 40 ms dwell time to make one data

set which can be compared with the single spectra acquired at 200 ms dwell time. It is important

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab



5.9 Data analysis 31

that you run the spectra for each dwell time in order and in quick succession. The total acquisition

time, once the experiment is set up, should take one hour or less, which should leave time to begin

analysis during the laboratory period. The data analysis for this experiment is longer than average.

However, the data acquisition itself is more straightforward than usual.

5.9 Data analysis

Though it is somewhat cumbersome for our purposes, we suggest that you use MS Excel for your

analysis, though you are free to use any statistical/analysis software package you are comfortable

with (e.g., Originlab, Sigmaplot, etc.). See your instructor for assistance.

For each of your runs with different dwell times, import all of the data (perhaps with a new work-

sheet or file for each dwell time to avoid confusion). If you have 5 measurements at a dwell time of

40 ms, for instance, import all 5 data sets and paste them sequentially into a single set of columns

to make one large data set.vi If you have followed the procedure correctly, the product of dwell time

and the number of points should be a constant for each cumulative data set (e.g., 5 sets giving 5120

points at 40 ms, 2 sets giving 2048 points at 100 ms, and one set giving 1024 points at 200 ms, all

giving 204.8 s acquisition time). A cursory qualitative analysis can be performed by simply plotting

the number of counts versus the acquisition time or measurement number. Does the data seem to

be evenly distributed about a mean, or is a trend visible? Indicate the mean in your graph as a

horizontal line.

As a first level of quantitative analysis, you should do the following:

1. Compute the sample mean x and sample standard deviation s. Both are built-in functions in

Excel.

2. Compare s to σ calculated by σ=
√
µ with µ≈x. Calculate and comment on the numerical

difference between s and σ, e.g., which is larger, and why.

3. Compute P , Eq. 5.9.

4. Count the number of times that the deviation |x−x| is greater than σ and show that this

occurs for approximately 1/3 (strictly, 31.7%) of the observations. (A column of |x−x| and

the function COUNTIF will be useful in Excel.)

5. Show that the deviation |x−x| is greater than P approximately 50% of the time.

Next, you should determine whether the count rate (or equivalently, the decay probability) is

constant quantitatively. For each dwell time make a new column to find the cumulative average,

defined as

viWhen pasting in the sets, be sure to add to the time column so it increases.
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rc(j) =

i=j∑
i=1

xi

i=j∑
i=1

ti

(5.13)

where xi is the number of counts detected in time ti. Note that the sum in the denominator is

just the time at which data point j was recorded after the start of the measurement, which is j

times the dwell time (or the first column in your data file), and the numerator is the sum of the

data from the first point through point j. For a truly random process with a steady mean rate µ,

rc(j) should converge to µ in the asymptotic limit. Plot rc(j) and demonstrate that the cumulative

average converges, and thus that the decay rate is constant over the course of the measurement.vii

Include error bars to demonstrate convergence.viii

If you are satisfied that the decay probability is constant, construct a histogram of the number of

times that a given x was observed versus x (similar to Fig. 5.1. It may be convenient to distribute

the data into fixed-width bins as described above, and as demonstrated in the Excel template. Fit

a Gaussian distribution to your data. If you use x as an estimate of µ and s as an estimate of σ, a

calculated Gaussian curve with the proper normalization condition should fit your data reasonably

well (the normalization for your distributions can be found from the total number of readings).

Comment on the accuracy of the fit.

5.10 Discussion and topics for your report

Are the decay rates consistent with the dwell times chosen? That is, do the rates scale with the

decay time properly? Are the standard deviations of the rates for different dwell times related as

expected?

For each dwell time, what are the 68% confidence limits for the number of counts?

Should you use the standard deviation σN or the standard deviation of the mean σN in comparing

different data sets?

For the observed distribution with the lowest mean rate, take the highest deviation from that mean

and test whether you would be justified in concluding that the detector was malfunctioning at that

time. Do not forget to account for how many chances there were for such a deviation to occur . . .

viiA way to double-check that the distribution is random about the mean is to calculate the reduced deviation, or
z score: z(xi) = (xi − x) /σ. Calculate z(xi) in a new column. If the deviations are random, then the sum of this
column should be very close to zero.
viiiRecall that the error bar for a given point is just the square root of the number of counts, if the decay process is

truly random.
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5.11 Format of report

You may choose one of the following formats for your report:

1. two-page memo (excluding required plots)

2. group oral presentation

3. formal written lab report

4. research proposal

Further details and templates are provided for each of these formats. Keep in mind that over the

course of all of the one-week experiments you must do each type of report.

A Quick Review of Standard Deviation

Suppose a series of measurements is made of the value of some unknown quantity. Usually these

measured values will not all be the same. A statistical analysis of the measured values estimates the

quantity and its variability. Analysis of the uncertainty determines the probability that the “true”

value lies within a certain range. Of course, the percent difference between two measured values

gives some idea of the range of measured values to be expected, but this is not a very reliable indi-

cator. Whenever a measurement is reported, a determination of the reliability of a measurement is

equally important to report. The mathematical methods used to determine statistical uncertainty

are commonly referred to as error analysis.

A mathematically complete treatment of error analysis is beyond the scope of this document, and

is a part of your required reading[1]. It is necessary to understand the basic methods of error

analysis to properly report the results of the experiments. Some basic assumptions are necessary

to estimate the uncertainties encountered in the measurements and analysis of data. First, it is

assumed that differences in measurements are due to small random fluctuations that are just as

likely to make the measurement higher as it is to make it lower. In some cases there is a systematic

error which always makes a measurement smaller or larger than the “true” value. Examples of

systematic errors include parallax in reading a meter stick, friction in balance or meter bearings,

tightening of a micrometer screw too much, failure to account for air resistance, etc.

In well-designed experiments, systematic errors are accounted for, noted and measured. Under

these conditions, a very large number of measurements of the same quantity should distribute

themselves symmetrically about the simple arithmetic mean or average, which is the “best” value

of the quantity. The expected variations of the measurements can be described by a quantity called

the “standard deviation”
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The standard deviation is computed in a straightforward manner. Suppose the quantity x is

measured n times. The measured values are labelled x1, x2, . . .xn. First, we calculate the mean,

or average of all the values, denoted x. This is just as you would expect:

x =
1

n

n∑
i

xi (5.14)

Next, calculate the deviation of each measurement from the mean, xi − x and square the result:

(xi − x)2. We square the result so that deviations above and below the mean don’t cancel each

other out, but add to the overall deviation. Finally, add the squared deviations together, divide by

the number of measurements n and take the square root of the result:

σ =

√√√√ 1

n

n∑
i=1

(xi − x)2 (5.15)

A sneaky, and somewhat less tedious formula is given by

σ =
1

n

√√√√n

(
n∑
i=1

x2
i

)
−
(

n∑
i=1

xi

)2

(5.16)

A large standard deviation indicates that the data points are spread far from the mean and a

small standard deviation indicates that they are clustered closely around the mean. The reported

standard deviation of a group of repeated measurements should give the precision of those mea-

surements. When deciding whether measurements agree with a theoretical prediction, the standard

deviation of those measurements is of crucial importance: if the mean of the measurements is too

far away from the prediction (with the distance measured in standard deviations), then the theory

being tested probably needs to be revised. This makes sense since they fall outside the range of

values that could reasonably be expected to occur if the prediction were correct and the standard

deviation appropriately quantified.

According to sampling theory, there is a 68% probability that any additional measurement made

of the quantity x will lie within ±σ of the mean and a 95% probability that it will lie within ±2σ

of the mean. in most of the experiments of this course, repeated measurements are performed

about five or ten times. Using the above analysis for less than five independent measurements of a

quantity is generally not considered to be statistically reliable.

The statistical treatment assumes that all errors are random and ignores any systematic error, such

as improper meter calibration, wind resistance, etc. which might be present. In any laboratory

situation, it is the responsibility of the experimenter to determine whether or not these systematic

errors are significant and to include them in the estimate of accuracy if they are. On occasion, it

will not be feasible to repeat an experiment several times and find a mean and standard deviation.

It may be possible, however, to determine or estimate the uncertainties in the measurements of
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the quantities used in computing the final result. For example, a manual measurement of a time

interval is accurate to ±0.1 second, due to reaction times in starting and stopping the timer.

137Cs Decay and Gamma Emission

137
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Figure 5.4: Energy level diagram showing the decay of 137Cs to 137Ba. The 137Cs decays via two paths, 93.5% follow a
two-step process resulting in the emission of a 662 keV gamma ray. The decay of the Ba nucleus from its excited state is an
internal transition, and contributes to the decay percentages but not the gamma decay factor.[4]

A 137Cs nucleus can decay via two routes to the 137Ba ground state, shown schematically in Fig. 5.4.

First, a single beta emission of 1.176 MeV can occur with no subsequent gamma emission, bringing

the 137Cs directly to the ground state. However, this single-step process occurs for only about

6.5% of all nuclei. The other 93.5% decay via two-step process. First, a 514 keV beta is emitted,

resulting in metastable and short-lived 137Ba∗. The metastable 137Ba∗ subsequently (2.55 min half

life) decays to the 137Ba ground state by emission of a 662 keV gamma.

Though 137Cs has only a single gamma emissionix, there are x-ray emissions that can be observed

in the energy range under study. We list a few of the higher energy emissions in Table 5.1.

Table 5.1: X-rays from 137Cs

E (keV) I (%) Assignment E (keV) I (%) Assignment

31.45 0.00026 Ba Kα3 36.38 0.68 Ba Kβ1

31.72 2.04 Ba Kα2 36.65 0.0079 Ba Kβ5

32.19 3.76 Ba Kα1 37.26 0.215 Ba Kβ2

36.30 0.35 Ba Kβ3 37.35 0.0481 Ba Kβ4

ixStrictly speaking, there is a 283.53 keV gamma, but its intensity is about 105 times smaller than the 662 keV
peak.
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6
Gamma ray attenuation

6.1 Introduction

The term “gamma ray” (or γ-ray) is an approximate classification for photons of energies E ∼
100 keV−10 MeV (f ∼ 1019−1024 Hz; see Fig. 6.7 in the Appendix). When gamma rays pass

through matter, their intensity may be attenuated by interactions with the matter just as with any

other photons. Gamma rays have three primary mechanisms of interaction: photoelectric effect,

Compton scattering, and pair production. If gamma rays are emitted in a narrow beam toward

a block of intervening matter, these three interactions cause a loss of intensity along the beam

direction, either by deflection along a different direction or absorption. These processes are shown

schematically in Fig. 6.1 below.

crystal

-

+

Compton

Pair production -
E > 1022 keV 511 keV

511 keV

-
absorption

Figure 6.1: Gamma rays can interact with crystals in a number of ways: Compton scattering, pair production, absorption,
and photoeffect (not shown). The combination of these effects is a dispersion in energy, as well as a deflection of many gamma
rays from the original beam direction.

Thus, the interaction of high-energy X-rays and γ rays involves three different mechanisms, which

we describe briefly below:

1. Photoelectric effect: the photons in the incident radiation are of high enough energy to

release electrons from atoms and molecules in the absorbing or detecting material. Photons

in the beam are thus absorbed, leading to a corresponding reduction in intensity. This

photoeffect will lead to a peak in the γ energy spectrum, known as the photopeak or full

absorption peak. This corresponds to gamma rays depositing all of their energy in the detector

material. The energy of the gamma rays can be determined from the photopeak energy and

compared to an energy level diagram for the parent nucleus and its decay products.

2. Compton effect: when a beam of high-frequency electromagnetic radiation passes through a

material containing free electrons, an interaction takes place between the incident photons and
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the free electrons. In this interaction, photon-electron scattering, energy and momentum are

transferred from the photons in the incident beam to the electrons. X-ray and γ-ray energies

are rather large compared to the binding energies of the outermost electrons of atoma, so the

outermost electrons can be treated as essentially free. As a result of energy transfer to the

electrons in the absorbing material, both the intensity and the energy of the beam is reduced.

3. Pair production: When a positron and electron collide, they annihilate each other and

produce photons. Energy conservation dictates that the total energy of the emitted photons

equals that of the annihilated particles. Given that the rest energy of an electron or positron

is 511 keV, the total energy of the emitted photons must be at least 1.022 MeV. When high-

energy photons (> 1.022 MeV) interact with matter, the reverse process can also occur: the

energy of the photon is converted to an electron-positron pair. This process conserves charge

as well as linear and angular momentum, and is usually referred to as pair production. As

with the photoelectric effect, the annihilation of photons results in a reduction of gamma ray

intensity.

Two other mechanisms are worth noting, though they do not change the essential physics of the

problem.i A fourth mechanism, Rayleigh scattering, corresponds to the elastic (photon-energy-

conserving) scattering of light, which simply changes the direction of incident photons. Though

no energy is lost, this process will reduce the measured intensity of radiation simply because some

photons will be deflected out of the detection region. Essentially, at a given energy, this may be

regarded as a geometrical factor.

Finally, in principle we must also consider direct absorption of incident photons by the nucleus

itself, a process called photonuclear absorption. This process usually results in the ejection of one

or more neutrons and/or protons. This interaction can contribute ∼ 5−10% to the total photon

interaction, though within a fairly narrow energy region usually occurring somewhere between 5

MeV and 40 MeV. At the energies of the present experiment (<2 MeV), this effect is negligible.

6.1.1 Gamma Absorption

In the simplest model, we do not distinguish between the different types of interactions discussed

above but instead simply presume that, at a given incident γ energy, the number of gamma rays

∆N removed from the incident beam of original intensity No is proportional to the number of elec-

trons and nuclei along the gamma ray’s path through the material. That is, we assume a constant

attenuation coefficient for the beam, which may be viewed as an energy-dependent, weighted sum

of separate attenuations from all three mechanisms above.

The number of electrons and nuclei encountered is itself proportional to both the density of the

material ρ and the path length traveled in the material x. The coefficient of proportionality is

iOf course, there are still other mechanisms, such as nuclear-resonance scattering and Delbrück scattering, but
they are negligible from our point of view.
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known as the mass attenuation coefficient µ and has units of inverse distance. The loss of gamma

ray intensity can then be expressed as

∆N = −No (ρx)

(
µ

ρ

)
(6.1)

Typically, one deals with the density-normalized mass attenuation coefficient µ/ρ, which has units

of cm2/g, rather than the raw mass attenuation coefficient. Similarly, the quantity ρx is known as

the “mass thickness,” with units of g/cm2. In any case, the solution to this first-order differential

equation is well-known:

N(x) = Noe
−(ρx)(µ/ρ) (6.2)

N(x) is the number of gamma rays remaining after passing through a material of thickness x.

Two reduced quantities determine the gamma ray attenuation: the density-normalized attenuation

coefficient µ/ρ, and the mass per unit thickness (often called “mass thickness”) ρx, which has units

of g/cm2. An exponential law is not unexpected in this case; one obtains the same solution for any

system in which the primary quantity grows or diminishes at a fixed rate.

6.1.2 Attenuation Coefficient

The simplistic model outlined above would certainly seem reasonable for a single energy-independent

mechanism for beam attenuation. Considering all three interactions, however, we must at least con-

sider the density-normalized attenuation coefficient to be a function of energy. Typically, the quoted

coefficients are a sum of attenuation coefficients for the principle photon interactions:

µ = µpe + µcoh + µincoh + µpp (6.3)

Here µpe is the coefficient for the photoelectric effect, µcoh for coherent (Rayleigh) scattering,

µincoh for incoherent (Compton) scattering, and µpp for pair production. Overall, when dealing

with monochromatic radiation, one may simply consider an effectively constant µ at that particular

energy, and not worry about the detailed contributions to the effective µ.

However, each process has a characteristic energy dependence, making µ a strongly varying function

of energy. The photoelectric attenuation decreases rapidly with increasing energy, leading to an

overall decreasing background for µ(E). The Compton effect has a roughly constant attenuation

until ∼ 0.1−1 MeV, after which it decreases rapidly with increasing energy. Pair production is

possible only above 1.022 MeV and increases rapidly for higher energies. Taken together, µ(E) is

a strongly decreasing function of energy until a few MeV, after which it increases gently, as shown

in Fig. 6.2. At lower energies, one must also factor in characteristic x-ray absorptions.ii

iiThe X-ray absorption energies correspond to incident photons matching the energy level spacing of the atoms
in the detector material. This leads to strong absorption at these particular energies, and hence, strongly increased
attenuation.
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Figure 6.2: (left) The absorption cross-section of lead (Z = 82) for gamma rays showing the contributions from various
processes. (right) The corresponding data for aluminum (Z=13). Data from the NIST XCOM database http: // www. nist.

gov/ physlab/ data/ xcom/ index. cfm

Figure 6.3 shows the absorption cross-section for Pb as a function of photon energy. From this one

can see the superimposed effects of Compton scattering, the photoelectric effect, and pair production

as well as characteristic X-ray absorption energies. At the energies used in this experiment (57Co

and 137Cs gammas), the value of µ should vary by approximately a factor of 20−30.

6.2 Objective

The primary purpose of this laboratory is to determine the mass absorption coefficients for lead,

copper, and aluminum for a fixed gamma ray energy (662 keV) to ascertain their utility in shield-

ing ionizing radiation. A secondary purpose will be to ascertain any energy dependence of the

attenuation factor for lead by comparing the attenuation factors at two different energies (662 keV

and 121 keV). Figure 6.3 shows the mass attenuation coefficient for lead for energies up to 20 MeV.

The decaying background is a superposition of the effects of Compton scattering and photoelectric

effects, while the sharp increases are due to the characteristic X-ray absorptions of Pb.

Hypothesis: The attenuation of gamma rays by a solid material can be described by a sin-

gle parameter, the mass attenuation coefficient. This quantity should be energy-dependent and

material-dependent.

6.3 Preparatory Questions

You should touch on these questions in your report.

1. Where are gamma rays on the electromagnetic spectrum?

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab
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Figure 6.3: Density-normalized mass attenuation coefficient µ/ρ for Pb (Z = 82) as a function of photon energy. Note the
logarithmic scales. The energies of primary 57Co and 137Cs gamma ray photons are noted, as are the K, L, and M absorption
energies for Pb.[5]

2. Can we be completely shielded from gamma rays? If not, then why bother?

3. Which material provides the best shielding against gamma radiation? Does the answer change

as the gamma energy changes?

4. What are the possible ways in which photons with energies in the range from 1 to 2000 keV

can interact with matter?

6.3.1 Relevant Reading

Taylor[1], Ch. 1-3

Pfeffer & Nir[2], Ch. 5.3.1-3, 5.5.1

http://en.wikipedia.org/wiki/Gamma_ray

See [5–7] for relevant nuclear data and [8] for example gamma spectra.

6.4 Supplies

1. Spectech UCS30 spectrometer

2. NaI(Tl) detector

3. Multi-channel analyzer (MCA) / control electronics

4. lead cylinder for shielding

5. sheets of Al, Cu, and Pb

6. radioactive sources
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7. detector holder and shelf housing

8. calipers for measuring sheet thickness

9. lab notebook and USB drive for saving spectra

Pb brick

Pb cylinder

detector

detector
housing

sources

control electronics

calipers

Pb, Al, Cu
sheets

Figure 6.4: The Spectech UCS30 spectrometer and accessories.

6.5 Suggested procedure

6.5.1 Startup

1. Turn on the power to the Spectech UCS30

2. run the program “UCS30” from the shortcut on the desktop

3. under the Mode menu, select PHA (preamp in)

4. place the 137Cs source on the table, and place the lead cylinder around it

5. place the cylindrical NaI detector inside the lead cylinder

6. Run the energy auto-calibration from “Settings/Energy Calibration/Auto Calibrate” - this

will take several minutes. The final spectra should look like the one shown below in Fig. 6.5.

6.5.2 Running the experiment

1. Once the calibration is finished, place the NaI detector on top of the slotted stage of the

detector housing with the lead cylinder around it

2. Place the 137Cs source in the third slot from the top using the plastic holder and record the

source-detector distance using calipers

3. Acquire a spectrum of the 137Cs source alone for a preset amount of time. An example

spectrum is shown in Fig. 6.5. In the gamma ray spectroscopy unit, you will learn more

about the interpretation of these spectra.

• From “Settings/Time” choose a “live time” of 300 seconds
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Figure 6.5: Gamma spectrum of 137Cs. Aside from the main photopeak at ≈ 660 keV, clear Compton edge and backscatter
features are visible, as well as X-ray absorption edges. Note the logarithmic scale on the vertical axis.[3]

• Click the “X” eraser icon on the toolbar to erase the existing spectrum

• Click the green “Start Counts” button on the toolbar to begin recording your spectrum.

When the allotted time has elapsed, the “Start Counts” button should be undimmed

and the red “Stop Counts” button dimmed. A large peak around 660 keV should be

visible.

• On the main screen, highlight the region of interest (ROI) under the 660 keV peak and

record the peak centroid, gross counts, and full-width at half-maximum (fwhm). From

the main screen, record the number of counts at the centroid position by setting the

channel to the centroid value.

• If you do not have at least ∼ 500 counts for the 660 keV photopeak, increase the “live

time” as required.

• Save the spectra using Save and choosing “Comma Separated File” under “Files of

Type...”. Name your file sensibly!

4. Keeping your source at the same position, and keeping the same ROI, insert a sheet of

Pb between the source and detector. Measure the thickness of this sheet with the calipers

provided. Use gloves when handling Pb, and wash your hands thoroughly when

finished.

5. Acquire and save the whole spectrum using the steps above and record the data for the 660 keV

peak.

6. Repeat for increasing numbers of Pb sheets until you have a peak intensity (measured by

gross counts) at least 3 times lower than you had without any Pb or you run out of sheets.
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7. Record a spectrum without any Pb sheets to verify the unattenuated intensity.

8. Repeat the steps above for sheets of Cu or Al. You may need to add 2-4 sheets of Al at a

time to achieve reasonable attenuation.

Once you have acquired all of your data for all three materials using the 137Cs source, if time

permits insert the 57Co source. Using the 120 keV gamma ray peak, repeat the procedure above.

An example spectra for 57Co can be found in on page 6.8.

Note: Since you have recorded the entire 137Cs spectrum each time, you can use several of the peaks

present (not just the 660 keV peak) to plot an energy dependence of the attenuation coefficient.

6.6 Data analysis

As discussed briefly above, a narrow beam of monoenergetic photons with an incident intensity

Io
iii, penetrating a layer of material with thickness x and density ρ emerges with intensity I given

by an exponential attenuation law

I

Io
= exp

[
−
(
µ

ρ

)
(ρx)

]
(6.4)

We can put this in a form more amenable to analysis by taking the natural logarithm of both sides:

ln I = ln Io −
µ

ρ
(ρx) (6.5)

Given a material of known density and thickness, it is clear that if we plot ln I (y-axis) versus ρx (x-

axis), we will obtain a straight line of slope −µ/ρ. Thus, by measuring the gamma ray intensity as a

function of intervening material, we can extract the density-normalized mass attenuation coefficient.

For each attenuating material, make a table recording the thickness of the material and the corre-

sponding counts at the peak position. Be sure to include data for zero thickness, i.e., the detector

and source along. From this table, construct a plot with ln I on the y axis and the product of thick-

ness and density (ρx) on the x axis. Perform a linear regression analysis to determine the slope of

the plot, which should be −µ/ρ. In order to compare with the NIST database, it is convenient to

have your thickness in cm, and the material density in g/cm3 (material densities can be found in

on page 6.8). Be sure to include proper uncertainties in your determination of µ/ρ (e.g., arising

from peak counts uncertainty and thickness uncertainty). An example plot is shown in Fig. 6.6

Determine µ/ρ for Cu, Pb, and Al using the 660 keV gamma ray of 137Cs, and investigate the

energy-dependence of µ/ρ for Pb using the 120 keV gamma ray peak of the 57Co (and the 835 keV

peak of 54Mn if you have time).

iiiIntensity is proportional to the number of photons detected, so this is not at odds with our previous discussion.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab



6.7 Format of report 45

0 2 4 6 8 1 0 1 2
5 . 2
5 . 4
5 . 6
5 . 8
6 . 0
6 . 2
6 . 4

 

 

ln(
I)

ρ x  ( g / c m 2 )

P b  s h i e l d i n g
1 3 7 C s  p h o t o p e a k
6 6 2  k e V

Figure 6.6: Natural logarithm of 137Cs gamma ray (661 keV) intensity as a function of lead mass thickness ρx.[3] The
accepted value of µ/ρ for Pb at 661.6 keV is 0.105 cm2/g.[4, 5]

6.7 Format of report

You may choose one of the following formats for your report:

1. two-page memo (excluding required plots)

2. group oral presentation

3. formal written lab report

4. research proposal

Further details and templates are provided for each of these formats. Keep in mind that over the

course of all of the one-week experiments you must do each type of report (and two formal lab

reports).

6.8 Discussion and topics for your report

Find the accepted values of the density-normalized mass attenuation coefficients for Al, Pb, and

Cu.iv How do your values compare?

The aluminum cover on your detector is about 3.2 mm thick. What fraction of the 661.6 keV gamma

rays are absorbed when passing through the aluminum cover? How about the 122 keV gamma rays?

Which material provides the best shielding against gamma radiation? Does your answer depend

on the energy of the gamma rays? The online NIST database may be helpful.

ivSee, e.g., http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html.

PH255: Mod. Phys. Lab P. LeClair, J. Busenitz, A. Piepke, D. Williams

http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html


46 6.8 Discussion and topics for your report

Compare the range for gamma ray penetration to characteristic values for beta and alpha emission.

How and why are they different?

Theoretical analysis of the photoeffect interaction for Eγ�mec
2 suggests that

µ = KZnE3
γ or lnµ = lnK + n lnZ − 3 lnEγ (6.6)

where K is a constant of proportionality, Z is the target atomic number, n is a coefficient between

4 and 5, and Eγ is the gamma energy in keV. Compton scattering effects are neglected here, they

contribute very little to the absorption.

Plot the natural logarithm of your 662 keV mass absorption coefficients as a function of the natural

logarithm of the atomic number of the absorbing material. Perform a linear regression analysis to

find the slope and intercept of best fit. Based on the equation above, the slope should yield n. Is

it between 4 and 5 as the model suggests?

For gamma energies near or larger than 511 keV the equation above is no longer valid. However

it is tempting to determine the energy dependence anyway. If you measured µ/ρ for lead at more

than two energies, graph the logarithm of µ/ρ as a function of the logarithm of the gamma energy.

If your data resemble a straight line, is the slope close to three?

Compare the spectrum from the 137Cs source with no absorber to the spectrum from the 137Cs

source with a thick lead absorber. What is the origin of the gammas between the photopeak and

the Compton edge? What happened to the Ba K X-rays? The same questions arise with the 57Co

spectrum. What has happened?

Electromagnetic Spectrum
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Figure 6.7: The electromagnetic spectrum. From http: // en. wikipedia. org/ wiki/ Electromagnetic_ spectrum .
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Density of various materials

Table 6.1: Densities of absorber materials

Element Density
g/cm2

Al 2.70
Cu 8.96
Pb 11.35

Gamma sources available

Table 6.2: Disk gamma source set

Isotope Activity (µCi) Half-life Peaks (keV)

133Ba 1 10.8 yrs 81, 276, 303, 356, 384
109Cd 1 462 days 88
137Cs 1 30.2 yrs 662
57Co 1 272 days 122, 136
60Co 1 5.27 yrs 1173, 1333

54Mn 1 313 days 835
22Na 1 2.6 yrs 511, 1275

unknown 1.5 ? ?

Sources from Spectrum Techniques, Oak Ridge, TN (www.spectrumtechniques.com). USNRC

and state license exempt quantities.

Additional data for 137Cs and 57Co

A 137Cs nucleus can decay via two routes to the 137Ba ground state, shown schematically in Fig. 6.8.

First, a single beta emission of 1.176 MeV can occur with no subsequent gamma emission, bringing

the 137Cs directly to the ground state. However, this single-step process occurs for only about

6.5% of all nuclei. The other 93.5% decay via two-step process. First, a 514 keV beta is emitted,

resulting in metastable and short-lived 137Ba∗. The metastable 137Ba∗ subsequently (2.55 min half

life) decays to the 137Ba ground state by emission of a 662 keV gamma.

Though 137Cs has only a single gamma emissionv, there are x-ray emissions that can be observed

in the energy range under study. We list a few of the higher energy emissions below.

vStrictly speaking, there is a 283.53 keV gamma, but its intensity is about 105 times smaller than the 662 keV
peak.
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Figure 6.8: Energy level diagram showing the decay of 137Cs to 137Ba. The 137Cs decays via two paths, 93.5% follow a
two-step process resulting in the emission of a 662 keV gamma ray.[4] The decay of the Ba nucleus from its excited state is an
internal transition, and contributes to the decay percentages but not the gamma decay factor.[4]

Table 6.3: X-rays from 137Cs. From [6]

E (keV) I (%) Assignment E (keV) I (%) Assignment

31.45 0.00026 Ba Kα3 36.38 0.68 Ba Kβ1

31.72 2.04 Ba Kα2 36.65 0.0079 Ba Kβ5

32.19 3.76 Ba Kα1 37.26 0.215 Ba Kβ2

36.30 0.35 Ba Kβ3 37.35 0.0481 Ba Kβ4

The 57Co spectra and decay process is a bit more complicated, and we will leave the details as an

exercise to the reader. Figure 6.9 shows an energy level diagram for the decay of 57Co to 57Fe.

For all but ∼ 0.18% of nuclei, the decay proceeds by electron capture to create metastable 57Fe∗

states, which decay to the ground state by gamma emission. This leads to the three characteristic

gamma peaks at 136.5, 122.1, and 14.4 keV. Additional peaks appear in the spectrum due to x-

ray emissions, sum peaks, etc. The feature of interest for this laboratory is the relatively intense

122.1 keV gamma.

Table 6.4: Gammas from 57Co. From [6]

E (keV) Ig (%) E (keV) Ig (%)

14.41 9.16 352.4 0.013
122.1 85.60 366.8 0.0013
136.5 10.68 569.9 0.017
230.3 0.0004 692.0 0.16
339.5 0.014 706.4 0.025
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Figure 6.9: Left: Energy level diagram showing the decay of 57Co to 57Fe. Not shown is a more complicated for 0.18% of
nuclei, which take a decay path through higher 57Fe excited states. Associated gamma rays, after the initial β+ electron capture
are 136.5, 122.1, and 14.4 keV.[4] Right: Gamma spectrum of 57Co. Note the logarithmic scale on the vertical axis.[3]
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7
Electron Charge to Mass Ratio e/m

7.1 Introduction

In this experiment, you will investigate the motion of an electron beam under the influence of a

magnetic field, a simple method for measuring e/m, the charge to mass ratio of the electron.i The

method is similar to that used by J.J. Thompson in 1897.

7.1.1 Motion of Electrons in a Perpendicular Magnetic Field

A beam of electrons is first created by thermionic emission from a heated metal filament, and then

accelerated through a known potential Vacc. If the electrons are emitted from the filament with

negligible kinetic energyii, conservation of energy allows us to determine the electrons’ velocity:

1

2
mv2 = eVacc =⇒ v =

√
2eVacc

m
(7.1)

A pair of Helmholtz coils produces a uniform and measurable magnetic field B at right angles to the

electron beam. Recall that in the presence of a perpendicular magnetic field, an electron of charge

−e will undergo uniform circular motion, as shown in Fig. 7.1, since the Lorentz force ~F B=e~v × ~B
is always at a right angle to the particle’s velocity vector.
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Figure 7.1: An electron moving at velocity v in a plane perpendicular to a magnetic field B undergoes circular motion.

iMuch of this procedure is reproduced from Pasco document 012-03471D, “e/m Apparatus.” This partial repro-
duction is only for use in PH255 at the University of Alabama, as dictated by the copyright notice in 012-04049J.

iiA reasonable assumption, since even at a filament temperature of T =4000 K the thermal energy is only kBT ≈
0.35 eV, giving an electron velocity of ∼3×105 m/s. This is to be compared to the electron’s velocity after acceleration,
∼107 m/s.
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52 7.1 Introduction

If the electrons are in circular motion, then the magnetic force must provide the centripetal force

FC :

FC =
mv2

r
= FB = evB (7.2)

Solving for the charge to mass ration e/m, we find:

e

m
=

v

Br
(7.3)

Using our previous relationship for the electrons’ velocity,

e

m
=

1

Br

√
2eVacc

m
=⇒ e

m
=

2Vacc

B2r2
(7.4)

Finally, if we know the radius of the Helmholtz coils and the current passing through themiii we

can determine the magnetic field near the center of the coils:

B =

(
4

5

)3/2 NµoI

a
(7.5)

Here N is the number of turns in each coil, µo=4π× 10−7 N/A2, I is the current through the coils,

and a the radius of the coils. Putting everything together, we can relate the e/m ratio to known

experimental quantities:

e

m
=

v

Br
=

2Vacc

(
5
4

)3
a2

(NµoIr)
2 (7.6)

A knowledge of the accelerating voltage, the construction of the Helmholtz coils and their current,

and a measurement of the radius of the electrons’ circular path is sufficient to determine e/m.

7.1.2 The e/m Tube

Of course, electrons are quite small, and their velocities will be prodigious. How can one measure

the radius of the circular path? An ingenious method is to perform the experiment in side a vac-

uum tube back-filled with a small pressure of a noble gas – in our case, 0.1 Pa of He. A partial

vacuum is necessary so that most electrons can travel without colliding with He atoms. However,

those few electrons in the beam that do collide with He atoms will excite them such that they

will subsequently radiate visible light, allowing us to view the trail of the electron beam. This is a

somewhat delicate balance: too much He and the mean distance between collisions for the electrons

is too small to be of any use, too little He and the glowing beam will barely be visible. A schematic

of the e/m tube is shown in Fig. 7.2

iiiRecall that in the Helmholtz geometry, the coil spacing is equal to the coil radius.
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Helium-filled
Vacuum tube

Deflection plates

Electron gun

cathode
heater

grid anode (+)

deflection plates

e-

Figure 7.2: Left: The e/m tube. Right: Electron gun.

The electron beam itself, as mentioned above, is created by thermionic emission from a heated

metal filament, part of a device known as an “electron gun” also shown in Fig. 7.2. In the electron

gun, the heater heats the cathode, which emits electrons. The electrons are accelerated by a po-

tential applied between the cathode and anode. The grid, which helps to focus the electron beam,

is held positive with respect to the cathode and negative with respect to the anode.

A rather unique feature of the Pasco e/m tube is that the socket rotates, allowing the electron beam

to be oriented at any angle from 0 to 90◦ with respect to the Helmholtz coils. Thus, you can rotate

the tube and examine the vector nature of the Lorentz force on moving electrons, changing the

path from a purely circular to helical, for instance. You can also use small permanent magnets in-

stead of the Helmholtz coils to further investigate the effects of magnetic fields on the electron beam.

Finally, the e/m tube also has two additional deflection plates, which can be used to demonstrate

the effect of an electric field on the electron beam. This can be used to give a confirmation of the

negative charge of the electron, and to demonstrate how an oscilloscope or cathode-ray tube works.

7.2 Objective

The objective of this experiment is to measure the charge-to-mass ratio of electrons e/m by applying

a magnetic field perpendicular to an electron beam of known velocity. Introductory electromag-

netism tells us that the electrons’ velocity is related to the accelerating potential, and the magnetic

field is determined by the geometry and current of the Helmholtz coils.

Hypothesis: From the accelerating potential, coil current and geometry, and the beam radius,

the ratio e/m can be determined.
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54 7.3 Preparatory Questions

7.3 Preparatory Questions

You should touch on these questions in your report.

1. Justify the formula given for the magnetic field near the center of a pair of Helmholtz coils.

2. Considering an ideal gas, to what pressure must the tube be evacuated for the mean free path

of He atoms to be comparable to the beam radius of ∼5 cm?

3. Compare thermal energy of the electrons assuming a filament temperature of 4000 K to the

kinetic energy of electrons accelerated through a 200 V potential.

4. Given a 200 V accelerating potential, what magnetic field is required to produce a beam radius

of 5 cm?

7.3.1 Relevant Reading

Taylor[1], Ch. 1-3

Review of introductory electromagnetism.

7.4 Supplies

Figure 7.3: The e/m setup and associated electronics. The black shroud is for more easily viewing the electron beam, and
can be removed.

1. Pasco e/m apparatus

• Helmholtz coils: radius and separation a=0.158 m, N=130, B[T]=7.40× 10−4I [A]

• Control panel: all connections are labeled.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab



7.4 Supplies 55

Figure 7.4: Power supplies. Top: Pasco SF-9585A high voltage power supply. Bottom: Frederiksen power supply.

Figure 7.5: Connections at the base of the e/m apparatus. Refer to this when connecting the power supplies. Left: right side
of apparatus. Right: bottom front of apparatus.
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• Cloth hood: for easier viewing of the electron beam in a lighted room.

• Mirrored scale: for measuring the beam radius without parallax error.

2. Pasco SF-9585A high-voltage power supply (0−50/0−500 V DC, 0−7 V AC)

3. Frederiksen power supply (0−24 V AC/DC)

4. 7 banana cables

5. lab notebook

7.5 Suggested procedure

7.5.1 Startup

1. Place the hood over the e/m apparatus if you will be working in a lighted room.

2. Verify that your power supplies are plugged in, but turned off. Turn all knobs to their

lowest positions.

3. Refer to Fig. 7.4 and Fig. 7.5 to make the following connections between the power supplies

and the e/m apparatus.

4. Connect the positive terminal of the 500 V DC power supply (SF-9585A supply) to the

positive terminal labeled “Accelerating Voltage” on the base of the e/m apparatus. Connect

the negative terminal of the 500 V power supply to the negative terminal labeled “Accelerating

Voltage”.

5. Connect both terminals of the AC power supply (SF-9585A supply) to the terminals labeled

“Filament” on the base of the e/m supply.

6. Connect the positive terminal of the 24 V DC power supply (Fredericksen supply) to the red

terminal of the front Helmholtz coil. Connect the black terminal of the front Helmholtz coil

to the black terminal of the back Helmholtz coil. Finally, connect the red terminal of the

back Helmholtz coil to the negative terminal of the 24 V DC power supply.

7. Have the instructor check your wiring before proceeding.

1. Turn on the supplies, and adjust them to the following levels:

• Filament current / Heater (SF-9585A supply, AC volts): 6 V AC. CAUTION: Do not

at any time exceed 6 V, or you will burn out the filament and destroy the e/m tube!

• Accelerating voltage / Electrodes (SF-9585A supply, 0−500 V DC): 150 to 250 V DC.

The 0−500 V DC output uses the central and right-most plugs of the group of three

plugs. The central plug is the ground. Note the small button near the voltage/current

display to toggle the reading between 50 and 500 volt outputs.

• Helmholtz coils (Frederiksen supply): 4−7 V DC, current below 2 A. Turn the current

limit knob to about 3/4 of its full range. Note that you are using the DC output on the

left-hand side of the supply!
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2. Watch the ammeter on the Frederiksen supply and take care that the current does not ex-

ceed 2 A. If the current is too large, the beam will be near the edge of the tube, and your

measurements will be distorted by refraction.

3. Wait several minutes for the cathode to heat up. When it does, you will see the electron

beam emerge from the electron gun and it will be curved by the field from the Helmholtz

coils. If it is not, gently turn the tube by the base (do not touch the glass) until it is. Do

not take the tube out of its socket, as you rotate the tube the socket will turn. Make sure

the tube is properly seated in the socket.

7.5.2 Measurement of e/m

In order to determine e/m accurately, you will need to make several measurements of the beam

radius for varying Vacc. For your first measurement, adjust the current in the Helmholtz coils, the

accelerating voltage, and tube position until you have a nice circular path of radius ∼ 5 cm. Sug-

gested starting parameters: Icoil≈1.2 A, Vacc≈200 V. Do not exceed 250 V on the accelerating

voltage.

1. Align the rotational position of the tube to obtain a closed circular path. While doing this,

qualitatively investigate the helical path of the beam when the beam is not aligned with the

coils.

2. Read the current to the Helmholtz coils from the display on the Frederiksen supply and

the accelerating voltage from the SF-9585A supply. Record these values in your laboratory

notebook, following the example of the table provided below on page 60.

3. Carefully measure the radius of the electron beam. Look through the tube at the beam. To

avoid parallax errors, move your head to align the electron beam with the reflection of the

beam that you can see on the mirrored scale. Measure the radius of the beam as you see it

on both sides of the scale, and average the results. Record your values, noting your estimated

error.

4. Repeat the steps above for at least 10 accelerating voltages between 150−250 V.

5. Repeat the experiment with a different current through the Helmholtz coils (and the same

10 accelerating voltages).

6. When finished, reduce all voltages to zero in the reverse order you turned them on, and turn

off the power supplies.

There are a few simple ways to improve your experimental results. The greatest source of error is

in the velocity of the electrons. First, the non-uniformity of the accelerating field caused by the

hole in the anode causes the velocity of the electrons to be slightly less than their theoretical value.

Second, collisions with the helium atoms in the tube further rob the electrons of velocity. Since

e/m is proportional to 1/r2, and r is proportional to v, experimental values of e/m are greatly

affected by these two effects. One simple way to minimize these errors is to measure the outside

of the beam path. A second rule of thumb is to keep the circle of the electron beam as large as
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possible.iv Note that both of these sources of error will tend to make your values of e/m higher

than the accepted value.

7.5.3 Deflection of electrons by electric fields - OPTIONAL

You can also use the deflection plates to demonstrate how the electron beam is deflected in an

electric field, and demonstrate that electrons are negatively charged. In the presence of an electric

field E, the path of the beam can be shown to be a parabola, governed by the equation

y =
eEx2

2mv2
(7.7)

where y is the linear deflection achieved over a linear distance x. Beyond the deflection plates, the

trajectory is a straight line, since the electrons are moving in a field-free region of space. Clearly,

the direction of the deflection will depend on the sign of the electron charge.

1. Set up the equipment as described above, except:

• Perform these alterations before turning on any supplies.

• Do not supply current to the Helmholtz coils (thus you can leave the Frederiksen supply

turned off).

• Connect the “Deflection Plates” on the e/m apparatus to the 0−50 V terminals on the

SF-9585A supply. Note that you can stack the banana plugs on the central connector,

which is common for the 0−50 V and 0−500 V outputs.

2. Apply 6 V AC to the filament/heater and 150−250 V for an accelerating voltage. Again, wait

several minutes for the cathode to warm up.

3. When the electron beam appears, slowly increase the voltage to the deflection plates from 0

to approximately 50 V DC. Note the deflection of the beam. The beam should be bent toward

the positively charged plate (the upper plate, if you followed the polarity conventions).

4. Warning: do not leave the beam on for long periods of time in this mode. The beam will

eventually wear through the glass walls of the tube!

7.6 Data analysis

Using the analysis above, you should be able to determine e/m for each accelerating voltage at

each current through the Helmholtz coils. Be sure to include error bars which properly take into

account all experimental errors, correctly propagated. Make a plot, with error bars, of e/m versus

accelerating voltage for each Helmholtz current, noting on the plot the position of the accepted

value. You may also plot the ratio of your determined values to the accepted values if you choose.

ivNote that if the voltage is too high, the radius measurement is distorted by the curvature of the glass at the edge
of the tube.
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You overall error should properly propagate the errors in the individual quantities that determine

e/m. Estimate the accuracy in the voltages and currents (due to either meter precision or fluctu-

ations) and the radius measurement. You may also repeat the analysis above taking into account

the electrons’ initial thermal energy (you may assume that only those electrons emitted directly

toward the anode end up in the beam).

Determine the earth’s magnetic field at the laboratory locationv Be sure to consider the alignment

of the tube with respect to the earth’s field. Make the necessary corrections, or justify quantita-

tively neglecting them. What other environmental sources of static magnetic fields might affect

your results?

After considering all errors, report your final average value for e/m with appropriate significant

figures and uncertainty.

7.7 Format of report

You may choose one of the following formats for your report:

1. two-page memo (excluding required plots)

2. group oral presentation

3. formal written lab report

4. research proposal

Further details and templates are provided for each of these formats. Keep in mind that over the

course of all of the one-week experiments you must do each type of report.

7.8 Discussion and topics for your report

What determines the pitch of the helical path when the tube is not rotationally aligned? The radius?

Derive the formula for the field near the center of a Helmholtz coil. What is the advantage of this

particular geometry?

If you did the optional deflection of electrons by electric fields section: How do you know that

electrons are negatively charged from this experiment?

Based on the theoretical analysis and your knowledge of the apparatus, which quantity do you

expect to be the dominate source of uncertainty? How could you improve the experiment?

vSee, e.g., http://www.ngdc.noaa.gov/geomag/magfield.shtml.
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Explain how a similar setup could be used to create a mass spectrometer for unknown charged

particles.

Example Data Table

Table 7.1: e/m experiment, group X, 23 Aug 2010

Vacc (V) IHelmholtz (A) r (m) e/m (A-s/kg)

200± 0.5 1.50± 0.01
250± 0.5 1.50± 0.01 0.045± 0.001

. . .
200± 0.5 1.00± 0.01

. . .
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8
The Photoelectric effect

8.1 Introduction

In the late 1800s, scientists ran into considerable difficulty in explaining the emission and absorp-

tion of light. Classical theory (Rayleigh-Jeans Law) predicted that the amount of light emitted

from a black body would increase dramatically as the wavelength decreased, whereas experiment

showed that it approached zero. This discrepancy became known as the “ultraviolet catastrophe.”i

Experimental data for the radiation of light by a blackbody also showed that the intensity of

light at long wavelengths departed dramatically from the classically predicted values (Wien’s Law).

In order to reconcile theory and experiment, Planck was force to develop a new model for light

called the quantum model. In this model, light is emitted in small, discrete bundles or quanta. In

this experiment, you will study the relationship between classical and quantum theories of light

emission. Analyzing the emission spectra from a mercury vapor lamp within the quantum model

will allow a determination of the ratio of Planck’s constant to the electron charge, h/e. Using the

known value of the electron charge e, Planck’s constant h can be determined.

8.1.1 Planck’s Quantum Theory

In 1901, Planck published his law of radiation. In it he stated that that an oscillator, or any

physical system, had a discrete set of possible energy values or levels; energies between these values

never occur. Planck went on to state that the emission and absorption of radiation is associated

with transitions or jumps between two energy levels. The energy lost or gained by the oscillator is

emitted or absorbed as a quantum of radiant energy, the magnitude of which is expressed by the

equation

E = hf (8.1)

where E is the radiant energy, f the frequency of the radiation (sometimes labeled ν), and h is a

fundamental constant of nature. The constant h became known as Planck’s constant.

Planck’s constant was found to have a significance beyond relating the frequency and energy of

light, it became a cornerstone of the quantum mechanical view of the subatomic world. In 1918,

Planck was awarded a Nobel prize for introducing the quantum theory of light.

iMuch of this procedure is reproduced from Pasco document 012-04049J, “h/e Apparatus and h/e Apparatus
Accessory Kit.” This partial reproduction is only for use in PH255 at the University of Alabama, as dictated by the
copyright notice in 012-04049J.

61



62 8.1 Introduction

8.1.2 The Photoelectric Effect

In photoelectric emission, light strikes a material, causing electrons to be emitted. The classical

wave model of light predicted that as the intensity of incident light was increased, the amplitude and

thus the energy of the wave would increase. This would then cause more energetic photoelectrons

to be emitted. The new quantum model, however, predicted that higher frequency light would

produce higher energy photoelectrons, independent of intensity, while increased intensity would

only increase the number of electrons emitted (or the photoelectric current). In the early 1900s,

several investigators found that the kinetic energy of the photoelectrons was dependent on the

wavelength, or frequency, and independent of intensity, while the magnitude of the photoelectric

current, or number of electrons, was dependent on the intensity as predicted by the quantum model.

Einstein applied Planck’s theory and explained the photoelectric effect in terms of the quantum

model using his famous equation, for which he received the Nobel prize in 1921:

E = hf = Kmax + φo (8.2)

where Kmax is the maximum kinetic energy of emitted photoelectrons, and φo is the energy required

to remove them from the surface of the material (also called the “work function”). E is the energy

supplied by the quantum of light known as the photon.

8.1.3 h/e Experiment

A quantum of light, or photon, with energy hf is incident upon an electron in the cathode of a

vacuum tube. The electron uses a minimum φo of its energy to escape the cathode, leaving it with

a maximum energy of Kmax in the form of kinetic energy. Normally the emitted electrons reach

the anode of the tube, and can be measured as a photoelectric current. However, by applying an

opposing potential difference V between the anode and cathode, the electrons will be repelled from

the anode and the photoelectric current can be stopped. Kmax can be determined by measuring the

minimum reverse potential needed to stop the photoelectrons and reduce the photoelectric current

to zero, known as the “stopping potential.”ii The stopping potential V is thus the potential at

which the photoelectrons’ maximal kinetic energy is equal to their electrical potential energy,

Kmax = eV (8.3)

Using Einstein’s equation,

hf = eV + φo (8.4)

Solving for the stopping potential,

iiIn the present experiment we measure the stopping potential directly with an amplifier circuit, rather than
monitoring the photoelectric current. See the appendices for details.
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V =

(
h

e

)
f − φo

e
(8.5)

If we plot stopping potential (y) versus the frequency of incident light (x), the resulting graph

should be linear with slope h/e and intercept −φo/e. Coupling our experimental determination

of h/e from the slope of the V (f) graph with the accepted value for e, 1.602 × 10−19 C, we can

determine Planck’s constant h.

Our experiment will explore the dependence of stopping potential on the frequency (wavelength)

of incident light. Incident light from an atomic vapor source will be split into discrete wavelengths

using a diffraction grating and lens assembly. An individual wavelength will be chosen and aligned

incident on a photodiode, and an amplifier circuit will use feedback to apply precisely the voltage

required to nullify the resulting photocurrent. This voltage is the stopping voltage, and it can be

measured on the output terminals of the amplifier. The photodiode and amplifier circuitry are

contained in a single assembly, henceforth known as the “h/e apparatus.” Below, we describe the

circuitry briefly.

8.1.4 Theory of Operation

In this experiment, monochromatic light falls on a the cathode plate of a vacuum photodiode tube

that has a low work function φo. Photoelectrons ejected from the cathode collect on the anode.

The photodiode tube and its associated electronics have a small capacitance which becomes charged

by the photoelectric current. When the potential on this capacitor reaches the stopping potential

of the photoelectrons, the current decreases to zero, and the anode-to-cathode voltage stabilizes.

This final voltage between the anode and cathode is therefore the stopping potential of the photo-

electrons.

To let you measure the stopping potential, the anode is connected to a built-in amplifier with an

ultrahigh input impedance (>1013 Ω), and the output from this amplifier is connected to the output

jacks on the front panel of the apparatus. This high impedance, unity gain (Vout/Vin =1) amplifier

lets you measure the stopping potential with a digital voltmeter.

Due to the ultrahigh input impedance, once the capacitor has been charged from the photodiode

current it takes a long time to discharge this potential through some leakage. Therefore, a short-

ing switch labeled “PUSH TO ZERO” enables you to quickly bleed off the charge. However, the

op-amp output will not stay at 0 volts after the switch is released, since the op-amp input is floating.

Due to variances in the assembly process, each apparatus has a slightly different capacitance.

When the zero switch is released, the internal capacitance along with the user’s body capacitance
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coupled through the switch is enough to make the output voltage jump and/or oscillate. Once

photoelectrons charge the anode, the input voltage will stabilize.

8.2 Objective

The goal of this experiment is to determine the ratio of Planck’s constant to the electron charge,

h/e. Using the known value of the electron charge e, Planck’s constant h can be determined.

Hypotheses:

1. The stopping potential, and thus the electrons’ maximal kinetic energy, should increase with

the frequency of incident light.

2. The stopping potential should not depend on the intensity of incident light.

3. The stopping potential versus incident frequency should yield a linear graph of slope h/e.

8.3 Relevant Reading

Taylor[1], Ch. 2,3,8

Pfeffer & Nir[2], Ch. 2.1-2

http://en.wikipedia.org/wiki/Photoelectric_effect

8.4 Supplies

1. Digital voltmeter or multimeter

2. h/e apparatus

3. h/e accessories

• Lens/grating assembly

• Light aperture assembly

• Support base and coupling bar assembly

• Light block (for rear window of source)

4. Filters for Yellow, Green, Blue, Violet, and UV Hg emission lines

5. Graded intensity filter

6. lab notebook and USB drive for saving spectra

8.5 Suggested Setup & Alignment procedure

Before starting, examine Fig. 8.1 and the equipment list above to verify that all the required items

are in present. Your first task is to make sure that your setup looks like that in the picture!

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab
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multimeter
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Figure 8.1: The photoelectric effect setup.

8.5.1 UV Safety

Ultraviolet radiation is emitted from low pressure mercury vapor discharges. The mercury vapor

emits ultraviolet radiation when an electrical discharge is passed through it – most of the energy

emitted is at a wavelength of 254 nm. This lies in the UV-C portion of the spectrum (180−280 nm).

In the lamps used in this experiment, the 254 nm radiation will be absorbed by the outer glass tube

encasing the lamp. If the outer glass tube is cracked or broken, this radiation can cause severe skin

burns and eye inflammation. Inspect the tube for cracks before performing the experiment. If the

glass bulb is broken, immediately turn the lamp off and ask the instructor to remove it to avoid

possible injury.

In fluorescent lighting, the 254 nm radiation is used to excite a phosphor which coats the inside

of the glass envelope of the lamp. The phosphor will re-emit at visible wavelengths (different

phosphors produce different colors), and any UV-C which is not absorbed by the phosphor will be

absorbed by the glass wall of the lamp. However, the mercury discharge will also emit at other

wavelengths – notably at 365 nm, which lies in the UV-A (315−400 nm). This UV-A radiation

may not be absorbed by the phosphor, and much of it will pass out through the lamp walls into

the environment. For more information on UV radiation, see the Health Physics Society site at

http://www.hps.org/hpspublications/articles/uv.html.

8.5.2 Setup

1. Insert the coupling bar assembly into the lower mounting groove of the Hg light source and

secure in place with the thumbscrew.
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2. The Hg source has two openings, allowing two simultaneous experiments. We will perform

only one experiment, and for safety the rear opening (opposite side from the coupling bar)

should be blocked. Verify that a light block is in place. If the light block is not present, a

sheet of paper will suffice.

3. Slide the light aperture assembly into the center mounting groove on the front of the light

source. Secure it in place by tightening the two thumb screws against the light source housing

(finger tight only).

4. The lens/grating assembly mounts on the support bars of the light aperture assembly. Loosen

the thumbscrew, slip it over the bars, and finger-tighten the thumbscrew to hold it securely.

The orientation is important! During the alignment procedure, you may need to turn the

lens/grating assembly around to achieve sharp lines.

5. Turn on the Hg lamp and allow it to warm up for a minimum of 10 minutes before making

any measurements. In the mean time, you may proceed with setup and alignment. Check

the alignment of the light source and aperture by looking at the light shining on the back of

the lens/grating assembly. The light should shine directly on the center of the assembly; use

the retaining screws on the aperture to adjust if necessary.

6. The support base should already be attached to the h/e apparatus. If it is not:

(a) Remove the screw from the end of the support base rod. Insert the screw through the

hole in the support base plate and attache the rod to the support base plate by tightening

the phillips screw.

(b) Place the h/e apparatus onto the support base assembly.

7. Place the support base assembly over the pin on the end of the coupling bar assembly (see

Fig. 8.1).

8. WHile the h/e apparatus is off, connect a digital voltmeter to the “Battery Test” terminals

of the h/e apparatus (see Fig. 8.2). Verify that the total voltage is & 17 V. If it is not, ask

the instructor for new batteries.

9. If the batteries are ok, connect the voltmeter to the “OUTPUT” terminals of the h/e appa-

ratus. Press the “range” button until you have 3 decimal places on the measurement.

At this point, the setup is ready for operation. Note that the vapor light sources can become quite

hot! The next step is to verify that the light from the source is diffracted into discrete lines and

focused on the photodiode detector.

8.5.3 Alignment

1. Set the h/e apparatus directly in front of the Hg vapor source. By sliding the lens/grating

assembly back and forth on its support rods, focus the light onto the white reflective mask

of the h/e apparatus (Fig. 8.2). If you are not able to obtain a focused line, try turning the

lens/grating assembly around.
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reflective
mask

Hg lines

amplifier
discharge

voltage
output

battery
check

Figure 8.2: Projecting the Hg lines onto the reflective mask. Note that the cylindrical light shield is closed here, so we do not
know if the blue Hg line falls on the photodiode detector!

2. Roll the cylindrical light shield of the apparatus (behind the white reflective mask) out of

the way to reveal the white photodiode mask inside the apparatus (Fig. 8.3). Rotate the h/e

apparatus about its support rod until the image of the aperture is centered on the window in

the photodiode mask.

3. As above, slide the lens/grating assembly back and forth to achieve the sharpest possible

image of the aperture on the window in the photodiode mask.

4. Turn the power switch for the h/e apparatus on.

5. Rotate the h/e apparatus about the pin on the coupling bar assembly until one of the colored

maxima in the first order series shines directly on the slot in the white reflective mask.

6. Rotate the h/e apparatus on its support base so that the same spectral maximum that falls

on the opening in the white reflective mask also falls on the window in the photodiode mask.iii

7. It is crucial that only one color falls on the photodiode window, there must be no overlap

from adjacent spectral maxima.

8. Replace the cylindrical light shield when you are satisfied.

8.5.4 Making Measurements

Once you have selected your spectral line, making a measurement of the stopping potential is

straightforward:

1. Press the “push to zero” button on the side panel of the h/e apparatus to discharge any

accumulated potential in the unit’s electronics. This will assure that the apparatus records

only the potential of the light you are measuring. Note that the output voltage will drift with

the absence of light on the photodiode.

iiiThe white reflective mask is made of a fluorescent material which allows you to see the ultraviolet line as a
blue line, and it also makes the violet line appear more blue. You see the actual colors of light if you hold a white
non-fluorescent material in front of the mask (your hand will fluoresce slightly . . . ).
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window to white
photodiode mask

photodiode mask

window

Figure 8.3: Aligning the reflective mask aperture and photodiode mask with the incident Hg line. Note that this picture has
been taken after rotating the cylindrical light shield to the open position. The focused blue Hg line falls on the window in the
photodiode mask, the system is properly aligned.

2. Read the output on your voltmeter. It is a direct measurement of the stopping potential for

the photoelectrons.

3. Repeat the steps above a few times. Monitor the stopping potential for 20-30 seconds after

zeroing the apparatus to note any initial transient behavior before “settling” on the actual

stopping potential.

For some spectral lines, or when varying the intensity of incident light, you will need to use a light

filter. The apparatus includes several color filters meant for use with the Hg vapor lamp, you can

find their characteristics on page 71. The intensity filter has markings to indicate the percentage

of transmitted light through each region of the filter. To use the filters:

1. The yellow, green, and variable transmission filters have magnetic strips and mount on the

outside of the white reflective mask of the h/e apparatus.

2. The blue, violet, and UV filters (OPTIONAL) may be placed directly in front of the aperture,

or affixed to the white reflective mask using a magnetic mount from the optics component

shelf. Do not use tape!

3. The green and yellow filters are necessary, use them when you are investigating the yellow and

green spectral lines of the Hg lamp. These filters limit higher frequencies of light from entering

the h/e apparatus. This prevents ambient light from interfering with the lower energy yellow

and green light and masking the true results. It also blocks the higher frequency ultraviolet

light from the higher order spectra which may overlap with the lower orders of yellow and

green (though this may not be visible due to reduced intensity).

4. The blue, violet and UV filters (OPTIONAL) can be used to ensure spectral purity of the

blue and UV lines if there is a concern about overlap of the blue, violet, and UV lines. The

violet filter is not recommended, as it results in considerable attenuation of even the violet

line.
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5. The variable transmission filter consists of computer-generated patterns of dots and lines that

vary the intensity (not the frequency) of the incident light. The relative transmission can be

set to 100, 80, 60, 40, and 20%

8.6 Experimental Procedure

According to the photon theory of light, the maximum kinetic energy Kmax of photoelectrons de-

pends only on the frequency of incident light, and is independent of intensity. Thus, the higher the

frequency of light, the greater its energy.

In contrast, the classical wave model of light predicted that Kmax would depend on light intensity.

The brighter the light, the greater its energy.

In this experiment, you will investigate both assertions. In the first portion of the experiment, you

will select two spectral lines from a Hg source and investigate the maximum energy of photoelectrons

as a function of intensity. In the second portion of the experiment, you will select different spectral

lines and investigate the maximum energy of photoelectrons as a function of the frequency of light.

8.6.1 Experiment I: Wave vs. Quantum Model of Light

1. Set up the equipment as described in Sect. 8.5.

2. Adjust the h/e apparatus so that only one of the spectral colors falls upon the opening of the

mask of the photodiode. If you select the green or yellow line, place the corresponding colored

filter over the white reflective mask on the h/e apparatus. You may also use the filters for

the Blue or UV lines if you choose.

3. Place the variable transmission filter in front of the white reflective mask (and over the colored

filter, if one is used) so that the light passes through the section marked 100% and reaches

the photodiode. Record the voltmeter reading (stopping potential) in the table at the end of

this section. Record the approximate error in your measurement.

4. Press the instrument discharge button, release it, and observe approximately how much time

is required to return to the recorded voltage. Monitor the potential for at least a full minute

to be certain the stable stopping potential has been reached.

5. Move the variable transmission filter so that the next section is directly in front of the incoming

light. Record the new voltmeter reading, and approximate time to recharge after the discharge

button has been pressed and released.

6. Repeat the previous step until you have tested all five sections of the filter.

7. Repeat the procedure for a second color in the spectrum.

8.6.2 Experiment II: Energy, Frequency, and Wavelength

1. Set up the equipment as described in Sect. 8.5.
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2. You should be able to see five colors in two orders of the mercury light spectrum. Use a sheet

of white paper to view the whole set of lines at once if necessary.

3. Adjust the h/e apparatus so that only one of the spectral colors from the first order lines falls

upon the opening of the mask of the photodiode.

4. For each color in the first order, measure the stopping potential and record it in the table

below (including an estimate of the error in your measurement). If you select the green or

yellow line, place the corresponding colored filter over the white reflective mask on the h/e

apparatus. You may also use the filters for the Blue or UV lines if you choose.

5. Repeat the process for the second order lines (OPTIONAL).

8.6.3 Data Tables

Note 1 THz = 1012 Hz.

Table 8.1: Stopping potential and charging time vs. intensity

Color % Transmission Stopping potential (V) Approx. charge time (s)

Color #1: 100
80

λ= 60
40
20

Color #2: 100
80

λ= 60
40
20

Table 8.2: Stopping potential vs. wavelength

First order color Wavelength (nm) Frequency (THz) Stopping potential (V)

yellow
green
blue
violet
UV

Second order color Wavelength (nm) Frequency (THz) Stopping potential (V)
OPTIONAL

yellow
green
blue
violet
UV
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8.7 Analysis and Discussion

8.7.1 Stopping potential vs. intensity

1. Describe the effect that passing different amounts of the same colored light through the

variable transmission filter has on the stopping potential and thus the maximum energy of

photoelectrons, as well as the charging time after pressing the discharge button

2. Describe the effect that different colors of light had on the stopping potential and thus the

maximum energy of photoelectrons.

3. Defend whether this experiment supports a wave or quantum model of light based on your

results.

4. Explain why there is a slight drop in the stopping potential as the light intensity is decreased.iv

5. Plot stopping potential versus intensity for each line, including error bars on the vertical axis.

8.7.2 Stopping potential vs. wavelength

1. Determine the wavelength and frequency of each spectral line.

2. Plot a graph of stopping potential versus frequency, including error bars on the vertical axis.

3. Determine the best-fit slope and y-intercept of the graph. Interpret the results in terms of

the h/e ratio and the φo/e ratio. Using the accepted value for e, calculate h and φo. Get the

accepted value of the work function from the instructor.

4. In your discussion, report your values and discuss your results with an interpretation based

on a quantum model for light.

Visible Spectrum

Figure 8.4: Linear representation of the spectrum of visible light. From http: // en. wikipedia. org/ wiki/ Visible_ spectrum .
Numbers are wavelengths in nanometers.

Lamp and Filter Reference Data

ivThe impedance of the zero gain amplifier is very high (∼1013 Ω) but not infinite, so some charge leaks off. Thus
charging the apparatus is analogous to filling a bath tub with different water flow rates while the drain is partly open.
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Table 8.3: Dominant Hg emission lines

Color f (THz) λ (nm)

yellow 518.7 578†

green 549.0 546.1
blue 687.9 435.8
violet 740.9 404.7
ultraviolet 820.3 365.5

† The yellow line is a doublet of 578 and 580 nm.
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Figure 8.5: Intensity of the Hg high pressure lamp as a function of wavelength with and without various filters. The vertical
dashed lines are reference data, except the yellow 578 nm line which was determined experimentally with the Ocean Optics
USB-600 spectrometer. Note that the 578 nm line is actually a doublet of 578 nm and 580 nm. The intensity of the UV- and
blue-filtered spectra have been multiplied by ten times for visibility, and all spectra have been vertically separated for clarity.
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9
Observation of Atomic Spectra

9.1 Introduction

When gases are placed in a tube and subjected to a high-voltage electric discharge, the electrons

in the atoms can be excited to higher energy levels within the atoms; when they return to their

original levels electromagnetic radiation is emitted. In this experiment a vapor (such as helium

or hydrogen) is placed in an electric discharge tube and a high voltage is placed across the tube.

The excited emission may look almost white or have a characteristic color depending on the vapor

inside, but it is in reality composed of a number of different colors or wavelengths of visible light.

You will use a USB-controlled optical spectrometer to carefully measure the emission lines and

their relative intensities.

In the second stage of this laboratory, you will apply your knowledge of spectroscopic measure-

ments to study the thermal emission characteristics from two very important sources: the sun, and

normal household light bulbs. Comparing these spectra will help to illustrate the concepts behind

black-body radiation, as well as solar and atmospheric physics and color composition. You will

be able to estimate the temperature of the surface of the sun and the light bulb filament, and by

comparison with your atomic spectra from the first stage, establish the likely presence of H, and

He in the sun.

9.1.1 Atomic Spectra

9.1.2 Hydrogen Spectrum: Balmer Series

When gases are placed in a tube and subjected to a high-voltage electric discharge, the electrons

in the atoms can be excited to higher energy levels within the atoms; when they return to their

original levels electromagnetic radiation is emitted. The resulting light intensity versus wavelength

for an excited gas should thus contain discrete peaks, corresponding to discrete atomic transitions

unique to individual atoms. Some of this radiation may be in a wavelength region that is visible

to the human eye. Similarly, when light passes through a gas, photons whose energies correspond

to these transitions will be absorbed, leading to a loss of intensity at the corresponding wavelengths.

In this experiment, a vapor (such as helium or hydrogen) is placed in an electric discharge tube and

a high voltage is placed across the tube. The excited emission may look almost white or have a char-

acteristic color depending on the vapor inside, but it is in reality composed of a number of different

colors or wavelengths of visible light. For the sake of discussion, we will focus on the hydrogen atom.

73
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Figure 9.1: In the simplified Bohr model of the hydrogen atom, the emission lines correspond to an electron jump from a
higher energy level n to a lower n′ with the emission of a photon corresponding to the energy difference between the two levels.
For the visible Balmer series, n′=2 and n runs from 3 upward. From http: // en. wikipedia. org/ wiki/ Hydrogen_ spectrum .

A series in the emission spectrum of excited hydrogen gas is the set of spectral lines observed

when various excited states of the hydrogen atom decay into a common final state, illustrated

schematically in Fig. 9.1. In the case of the Balmer series, which contains several wavelengths in

the visible range, this final state is the n= 2 state of hydrogen. The quantity n is the so-called

principal quantum number of the hydrogen atom. The energy levels of the hydrogen atom are given

by the formula

En = −Ei
n2

n ∈ N1 = {1, 2, 3, . . .} Ei = ionization energy = 13.6 eV (9.1)

Essential to the derivation of emission and absorption spectra is the postulate that a single light

quantum, more commonly called a photon, of energy ∆En =hf =hc/λ is emitted when the atom

makes a downward transition from an excited state to a lower state (here h is Planck’s constant, c

is the speed of light, f the frequency of emitted light, and λ the wavelength of emitted light). The

energy of the light emitted from a transition between two energy levels En and En′ is thus equal

to the photon energy,

hf =
hc

λ
= ∆En = En − En′ = Ei

(
1

n′2
− 1

n2

)
(9.2)

Hence, for the case of the Balmer series where the final state n′= 2 is the same for every line, we

obtain
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hf =
hc

λ
= ∆En = En − En′ = Ei

(
1

22
− 1

n2

)
(9.3)

Other series include the Lyman series (final state n = 1, emission in the UV) and the Paschen

series (final state n=3, emission in the infrared). Some of the lines from the Paschen series can be

observed with the USB-controlled spectrometer you will use. Often the spectral lines are labeled

α, β, γ, δ, etc., starting with the longest wavelength line.

For historical reasons, the formula for hydrogen emission lines is often given in terms of the principle

quantum numbers, the emission wavelength, and the Rydberg constant RH :

1

λ
= RH

(
1

n′2
− 1

n2

)
(9.4)

You should be able to derive this equation using the equation of the energy levels in a hydrogen

atom and show how RH is related to Ei and fundamental constants. You should also be able to

sketch the energy level diagram of hydrogen and draw in the transitions you observe in this experi-

ment. Your measurements of emission lines will ultimately give you an experimental value for RH ,

which you can compare to accepted values.

9.1.3 Helium Spectrum

The emission spectrum from helium turns out to be considerably more complex than hydrogen.

This does not bode well for elements of increasing sophistication, of course. A full understanding

of the spectrum of complicated atoms cannot proceed without a detailed discussion of spin and

angular momentum, which is somewhat beyond the scope of this course. However, we can make

some general comments about the main features of the helium emission spectrum.

One can construct an energy level diagram for He similar to that of H. However, the fact that we

now have two electrons means that we must consider the interactions between them, and several

multi-electron atom features are already apparent in He. If we wish to study only lower-level exci-

tations of the He atom, we presume that one electron is in its 1s ground state, while the other is

excited into a higher energy level. When both electrons are in the 1s ground state, their spins are

antiparallel by Hund’s first rule.i However, once excited, the electron in the upper level now has

two possibilities with regard to its spin: it may be excited into a state with spin antiparallel to the

ground state electron (S=0, singlet-state para-helium), or it may be excited into a state parallel to

the ground state electron (S= 1, triplet-state, ortho-helium. It is observed that the ortho-helium

states (parallel spins) lie lower in energy than the para-helium states, for a few reasons which are

rather too detailed to explain here. The main point is this: if in the H atom we had a single

possible transition, in the helium transition there are at least two similar transitions, since we must

iI.e., the term with maximum multiplicity lies lowest in energy.
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consider the extra degrees of freedom provided by the spin quantum number. To this we must also

add the spin-orbit interaction, which further splits some of these lines into even more lines. Long

story short: helium is already a bit complicated.

For the purposes of this laboratory, we will simply consider para- and ortho-helium to be two dif-

ferent states of helium. Our helium discharge can be considered to be made up of a mixture of

para- and ortho-helium, and the observed spectra should contain a mixture of the para- and ortho-

spectra. A reference spectra is provided in the appendix, and an energy level diagram is depicted

below in Fig. 9.2.

In the Laboratory
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Figure 2. Helium emission spectrum (see Table 2 for assignments
and relative intensities).
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Figure 4. Grotrian diagram for singlet (a) and triplet (b) helium
showing the transitions observed in the laboratory. The correspond-
ing wavelengths are given in Table 2.
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0.163 5(3.163 1P1 # 2 1S0) ! 3.0 4a

7.883 3(9.883 3P 0,1,2 # 2 3S1) ! 2.0 46 b

2.693 4(5.693 1P1 # 2 1S0) ! 3.0 62 a

4.204 5(6.204 3D 1,2,3 # 2 3P 0,1,2 ) ! 2.0 2b

9.114 5(1.214 3S1 # 2 3P 0,1,2 ) ! 2.0 8a

6.834 5(8.834 1D2 # 2 1P1) ! 2.0 21 a

9.644 4(2.744 3D 1,2,3 # 2 3P 0,1,2 ) ! 3.0 91 b

1.174 4(3.174 3S1 # 2 3P 0,1,2 ) ! 2.0 4b

0.294 4(2.294 1D2 # 2 1P1) ! 2.0 5b

4.105 3(6.105 1P1 # 2 1S0) ! 2.0 52 b

5.405 4(8.405 1S0 # 2 1P1) ! 3.0 51 a

5.785 3(6.785 3D 1,2,3 # 2 3P 0,1,2 )
D3 enil ! 1.0 27 b

7.766 3(8.766 1D2 # 2 1P1) ! 1.0 32 b

4.607 3(6.607 3S1 # 2 3P 0,1,2 ) ! 2.0 23 b

0.827 3(1.827 1S0 # 2 1P1) ! 1.0 81 a

aBandpass = 2 nm, gain = 25. bBandpass = 1 nm, gain = 25.

(H$), 410.0 nm (H%, h line), 433.6 (H&, G' line), 486.1 nm
(H(, F line), 656.3 (H), C line) (see ref 12 for assignments).
Those for sodium and helium are shown in Tables 1 and 2
and in Figures 1 and 2. The intensities indicated in Tables 1
and 2 are not absolute, since the efficiencies of the optical
system and of the photomultiplier of the spectrophotometer
are wavelength dependent.

The students are asked to complete tasks described in
the following sections.

Task 1
Assignment of the lines in the obtained spectra by com-

parison with literature data and construction of the Grotrian
diagram (12–14 ) showing the energy levels and the observed
transitions for hydrogen, sodium and helium (Figs. 3 and 4).
Verification of the selection rules *l = !1 and *j = 0, !1 for
hydrogen and sodium, and *l = !1 and *L = 0, !1, *S = 0,
*J = 0, !1 for helium, where l and L are the orbital angular
momentum quantum numbers, j and J are the total angular
momentum quantum numbers for atoms that can be con-
sidered as mono- (e.g., H and Na) and poly- (e.g., He) elec-
tron species, respectively, and S is the total spin angular mo-
mentum quantum number (12–14).

Task 2
Calculation of the Rydberg constant, !H, and the ion-

ization energy, IE, of hydrogen using the following equations
(12–14):

  " 1
"

= !H
1

n1
2

– 1
n2

2 (1)

   IE = !H hc (2)

where " represents the wavelength, n2 = 2 (Balmer series), n1
is an integer larger than n2, h is the Planck constant, and c is
the velocity of light. A least squares fit of eq 1 to a plot of
1/" vs 1/n1

2, using n1 = 3–10 for " = 656.3–379.8 nm, leads
to !H = (1.0984 ! 0.0024) " 105 cm!1. (All uncertainties
quoted throughout this paper correspond to the standard de-
viation multiplied by Student´s t parameter for a 95% con-
fidence level.) This result is in good agreement with the theo-
retical value !H = 109,677.6 cm!1 (calculated from 12–14 ):

 "  
! =

#e4

8$0
2h3c

(3)

where e represents the elementary charge, $0 is the vacuum
permittivity, h is the Planck constant, c is the velocity of light,
and # is the reduced mass of the nucleus + electron system
given by

  "# =
mNme

mN + me
(4)

where mN and me are the masses of the nucleus and of the
electron, respectively. From the obtained Rydberg constant,
(1.0984 ! 0.0024) " 105 cm!1, and eq 2 it is possible to con-
clude that for hydrogen IE = 13.62 ! 0.03 eV, in good agree-
ment with the value IE = 13.59844 eV recommended in ref
15. It should be noted that for more accurate work the con-

Figure 9.2: Energy level diagram for singlet (S = 0) para-helium (left) and triplet (S = 1) ortho-helium (right). The
corresponding emission wavelengths are also given in table 9.2. From [9].

In fact, the Bohr model of the hydrogen atom can be “rescued” by introducing another parameter,

the so-called “quantum defect correction” δnl. The defect correction essentially parameterizes the

degree of deviation from the Rydberg formula, and is related to the interaction of the electron

whose transitions produce the spectrum with the inner core electrons. These interactions are not

present for hydrogen. It can be considered approximately constant for levels of different n but with

the same orbital momentum quantum number l (i.e., for the same series). For different series, it

takes on different values: it is highest for the S seriesii and close to zero for the D series. Using the

iiThis is spectroscopic notation, which you are not expected to be familiar with. For our purposes, it merely
characterizes a set of energy levels in Fig. 9.2. We have three types of levels: S, P , and D (not the same as the s, p,
and d used in atomic orbital notation).
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defect correction, we can use the following empirical relationship for the D series:

1

λ
= −RHe

[
1

n2
1

− 1

(n2 − δ3p)
2

]
(9.5)

Here RHe is the Rydberg constant for He, n1 =3, 4, 5, n2 =2, and δ3p is the (dimensionless) defect

correction for the para- or ortho- 3P state. Thus, a plot of 1/λ versus 1/n2
1 should give a straight

line of slope −RHe and intercept RHe/(2 − δ3p)
2, allowing a determination of both RHe and δ3p.

Beyond identifying lines in your spectra due to transitions in para- and ortho- helium states, you

should attempt a determination of these two constants for both ortho- and para- He. Accepted

values are δ3p=−0.009 and 0.063 for para- and ortho-helium, with

9.1.4 Black-body Radiation

“Blackbody radiation” or “cavity radiation” refers to an object or system which absorbs all radi-

ation incident upon it and re-radiates energy which is characteristic of this radiating system only,

not dependent upon the type of radiation which is incident upon it. The radiated energy can be

considered to be produced by standing wave or resonant modes of the cavity which is radiating.

The amount of radiation emitted in a given frequency range should be proportional to the number of

modes in that range. The best of classical physics suggested that all modes had an equal chance of

being produced, and that the number of modes went up proportional to the square of the frequency.

From the assumption that the electromagnetic modes in a cavity were quantized in energy with

the quantum energy equal to Planck’s constant times the frequency, Planck derived a radiation

formula. The average energy 〈E〉 per “mode” or “quantum” is the energy of the quantum times

the probability that it will be occupied (the Einstein-Bose distribution function):

〈E〉 =
hf

ehf/kBT − 1
(9.6)

where f is the frequency of radiation, T the temperature of the source, and kB is Boltzmann’s

constant. This average energy times the density of such states, expressed in terms of either frequency

or wavelength gives the energy density, the Planck radiation formula in terms of wavelength or

frequency:

Sf =
8πh

c3

f3

ehf/kBT − 1
(9.7)

Sλ =
8πhc

λ5

1

ehc/kBTλ − 1
(9.8)

Here c is the speed of light. The Planck radiation formula is an example of the distribution of en-

ergy according to Bose-Einstein statistics. An example of an approximately black body spectrum is
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shown Fig. 9.3, the spectrum of an incandescent bulb at various applied voltages (and thus various

powers).
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Figure 9.3: Spectrum of a 60 W soft white incandescent bulb at various ac supply voltages, exhibiting approximately black
body behavior.[3]

The above expressions are obtained by multiplying the density of states in terms of frequency (or

wavelength) times the photon energy times the Bose-Einstein distribution function with normaliza-

tion constant A= 1. To find the radiated power per unit area from a surface at this temperature,

multiply the energy density by c/4. The density above is for thermal equilibrium, so setting in-

ward=outward gives a factor of 1/2 for the radiated power outward. Then one must average over

all angles, which gives another factor of 1/2 for the angular dependence which is the square of the

cosine.

From our point of view, the interesting point is that the peak of a blackbody spectrum as a function

of wavelength can be uniquely related to the temperature of the source through Wien’s displacement

law:

λmax =
b

T
(9.9)

where the constant b, known as Wien’s displacement constant, is equal to 2.8978×10−3 m·K. Thus,

finding the peak wavelength will tell you the source temperature, and we will use this technique

to estimate the sun’s temperature and the temperature of the filament in an incandescent bulb.

Similar methods are used in infrared imaging to determine temperatures remotely.
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9.1.5 Solar Spectrum

The spectrum of the Sun’s solar radiation is close to that of a black body with a temperature of

about 5800 K. About half that lies in the visible short-wave part of the electromagnetic spectrum

and the other half mostly in the near-infrared part. Some also lies in the ultraviolet part of the

spectrum. In addition to the black body spectrum, however, several other features are readily no-

ticeable, the most prominent of which are narrow bands or “notches” in the spectrum corresponding

to discrete absorptions. These absorptions have two origins: first, one has absorption in the outer

layers of the sun, due to the radiation from the interior exciting atoms in the outer layers; second,

one has to consider absorption of solar radiation by our own atmosphere.

Figure 9.4: Solar radiation spectrum, showing the black body contribution and solar/atmospheric absorption. From http:

// en. wikipedia. org/ wiki/ Sunlight .

The prominent absorption lines in the solar spectrum are known as Fraunhofer lines, named for

the German physicist Joseph von Fraunhofer. In all, he mapped over 570 lines, and designated

the principal features with the letters A through K, and weaker lines with other letters. Modern

observations of sunlight can detect many thousands of lines. Your quick observations should yield

dozens, many of which can be correlated with your measured H and He spectra to provide a strong

indication that these elements are present in the sun’s outer layers. Figure 9.4 shows an example

spectrum, exhibiting black body behavior and solar/atmospheric absorption.

It was later discovered by Kirchhoff and Bunsen that each chemical element was associated with

a set of spectral lines, and deduced that the dark lines in the solar spectrum were caused by

absorption by those elements in the upper layers of the Sun. Some of the observed features are also

caused by absorption in oxygen molecules in the Earth’s atmosphere.
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9.1.6 Ocean Optics USB spectrometer

The Ocean Optics Red Tide Spectrometer (Fig. 9.5) is a preconfigured, off-the-shelf spectrometer

where all of the optical bench options such as grating, and entrance slit size are already selected. It

has a wavelength range of 350−1000 nm and uses a detector with 650 active pixels; that’s 650 data

points in one full spectrum, or one data point per nanometer. Data programmed into a memory

chip on each Red Tide includes wavelength calibration coefficients, linearity coefficients, and the

serial number unique to each spectrometer. The spectrometer operating software simply reads these

values from the spectrometer, eliminating the calibration procedures normally associated with op-

tical spectrometers. Figure 9.5 also shows a diagram of how light moves through the optical bench

of the spectrometer, along with a brief explanation of the components.[10] Note that the optical

bench has no moving parts.
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Figure 9.5: Left: USB-650 “Red Tide” spectrometer. Right: Components of a typical Ocean Optics USB-series spectrometer.
See text for explanation of numbered components. Adapted from the Ocean Optics operating instructions manual for the USB-
4000 spectrometer.Image credits: Ocean Optics.[10]

1. SMA connector: Secures the input fiber to the spectrometer.

2. Slit: A dark piece of material containing a rectangular aperture, which is mounted directly

behind the SMA Connector. The size of the aperture (from 5 to 200µm) regulates the amount

of light that enters the optical bench and controls spectral resolution.

3. Filter: Restricts optical radiation to pre-determined wavelength regions.

4. Collimating Mirror: Focuses light entering the optical bench toward the grating. Light

enters the spectrometer, passes through the SMA Connector, Slit, and Filter, and then reflects

off the Collimating Mirror onto the Grating.

5. Grating: Diffracts light from the Collimating Mirror and directs the diffracted light onto

the Focusing Mirror.

6. Focusing Mirror: Receives light reflected from the Grating and focuses first-order spectra

onto the detector plane.
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7. Detector Collection Lens: An optional component that attaches to the Detector to in-

crease light-collection efficiency. It focuses light from a tall slit onto the shorter Detector

elements.

8. Detector Collects the light received from the Focusing Mirror or L4 Detector Collection Lens

and converts the optical signal to a digital signal. Each pixel on the Detector responds to

the wavelength of light that strikes it, creating a digital response. The spectrometer then

transmits the digital signal to the Oceanview application.

9. OFLV Filters: OFLV Variable Longpass Order-sorting Filters block second- and third-order

light. Optional upgrade; note present in the current setup.

10. UV4 Detector Upgrade: The detector’s standard window is replaced with a quartz window

to enhance spectrometer performance (< 340 nm). Optional upgrade; not present in the

current setup.

With the present configuration, the spectrometer can measure intensities within a wavelength range

of approximately 350 to 1000 nm. See the Ocean Optics manual provided for additional specifica-

tions operational instructions.

The Red Tide Spectrometer connects to a computer via the USB port. When connected through

a USB 2.0 or 1.1 port, the spectrometer draws power from the host computer, eliminating the

need for an external power supply. The Red Tide is controlled by the Oceanview software, a com-

pletely modular, Java-based spectroscopy software platform that operates on Windows, Macintosh

and Linux operating systems. The operation of the Oceanview software is straightforward, and

instructions on its use are integrated into the laboratory procedure below.

9.2 Objective

In this experiment you will observe and measure the discrete wavelengths of different colors of light

emitted by atoms. You will first observe light emitted from excited hydrogen atoms, and compare

that spectra to more complicated atoms, i.e., He and Hg. You will also characterize the spectra

from continuous thermal sources (approximate black bodies) to ascertain the source temperature.

From a solar spectra, you should also be able to identify solar and atmospheric absorption (giving

indications of the solar and atmospheric composition).

Hypotheses: The absorption and emission of light by atoms should occur at discrete energies,

whereas the emission of light by a thermal source should be continuous. The hydrogen spectrum

can be well-characterized by the Bohr model and Rydberg formula, while more complicated atoms

require a more sophisticated model. Real thermal sources display approximate black body behavior,

accompanied by discrete emissions.
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9.3 Relevant Reading

Pfeffer & Nir[2], 2.1.1-7, 3.2.1

http://en.wikipedia.org/wiki/Black_body

http://en.wikipedia.org/wiki/Sunlight (spectra part only)

http://en.wikipedia.org/wiki/Fraunhofer_line

http://en.wikipedia.org/wiki/Color_temperature (beginning only)

9.4 Supplies & Equipment

1. USB drive or other portable mass storage

2. H, He, Ar, Ne, and Hg vapor discharge tubes

3. Additional vapor discharge lamp of your choosing

4. Vapor lamp housing & power supply

5. Incandescent and compact fluorescent bulbs

6. Bulb holder

7. Variable transformer, 0−140 V

8. Ocean Optics USB-650 “Red Tide” spectrometer and PC

9. lab notebook and USB drive for saving spectra

9.5 Suggested procedure

9.5.1 USB-650 Setup

The USB-650 spectrometer should already be plugged in to a USB port on the adjacent PC, and

the input fiber optic cable should be running through a hole in the “dark box.” Inside the dark box

you should also find a discharge lamp power supply and a lab stand and clamp to keep the input

fiber in place, i.e., pointed at the source. Basically, the setup should look something like Fig. 9.6

below.

(In or near the dark box should also be an incandescent bulb holder and a variable transformer, not

shown in the picture.) If elements of the setup appear to be missing or improperly set up, please

notify the instructor. A few words on the elements of the setup:

• USB-650: this little box is the entire spectrometer. It should be plugged into a USB port

on the rear of the PC, and the optical input fiber should run through a hole in the dark box.

• Input fiber: a fiber optic cable used to couple incident light into the spectrometer. Basically:

point it at the source! At its heart it is a glass fiber, and it is fragile.

1. Remove the plastic cover from the SMA 905 Connectors gently. Pulling the connector

away from the fiber when removing the cover will permanently damage the fiber.
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discharge lamp 
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lamp input

fiber

USB-650
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Figure 9.6: The spectrometer setup.

2. Inspect the fibers periodically to ensure that the fibers are transmitting light. Broken

fibers stop transmitting light. Visually inspect the fibers for light transmission from time

to time.

3. Avoid coiling the fiber too tightly. While the momentary bend radius of a fiber is

typically 200 times the diameter of the fiber, the maximum bend radius of a fiber that you

fix in place is 400 times the diameter of the fiber (e.g. 16 cm for a 400µm fiber). Bending

the fiber past this threshold causes attenuation and can cause permanent damage to the

fiber.

4. Avoid bending the fiber in sharp angles.

5. Cover the SMA 905 connectors with the supplied caps when the fiber is not in use.

6. Clean the fiber ends periodically with lens paper and distilled water, alcohol, or acetone.

Avoid scratching the surface.

• Dark box: just what it sounds like. The front of the box may be closed to create a completely

dark environment for the spectrometer to operate in, which will eliminate any ambient light

from polluting your spectra. Close the lid carefully, and be sure that the optical fiber does

not get caught!

• Discharge lamp: a glass tube with two electrodes, filled with gas. Handle with care, they

are fragile and will break if dropped. After several minutes of operation, they can become

quite hot as well!

• Discharge lamp housing/supply: the discharge lamps operate at 5000 V dc. Never, ever

remove or insert lamps while the power is on, and be extremely careful not to touch the

housing electrodes even when the supply is off. When removing lamps that have been in use,
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check that they are not too hot to handle. If you only replace tubes with the power off, and

avoid touching the lamp or surrounding region during operation, there is no danger of shock.

9.5.2 Oceanview Software

The Oceanview software will assist you in acquiring a spectrum of emitted light intensity as a

function of wavelength. To begin, start the “Oceanview” program from the icon on the desktop.

Click “okay” if there is a splash screen and click the “Acquistion Group Window” button on the

left. Lock the acquisiton group window in place with the “Restore” icon on the upper right cor-

ner of the acquisition group window, see Figure 9.7. You should see a window like the one in Fig. 9.7.

Figure 9.7: Left: Oceanview software after opening and clicking the “Acquisition Group Window” button. The spectrometer
should already be acquiring a spectrum in real time, shown as a red line. Right: Oceanview software icons.

For basic emission spectroscopy, for example to observe the spectrum of a hydrogen discharge

source, we only need to set up the acquisition parameters and store a reference spectrum with no

incident light. First, set the following parameters:

1. Set the integration time to 100 ms. This is the time taken by the CCD detector to collect

incoming photons. Longer integration times lead to better signal-to-noise ratios, but longer

acquisition times. If the integration time is too high the spectrum will “saturate” by exceeding

the maximum count of 4095. No harm is done, but to see the full trace the integration time

must be reduced, or the light source attenuated.

2. Set the Scans to Average to 1. This is the number of discrete acquisitions taken and averaged

together to yield a single resulting spectrum on the screen. The signal to noise ratio (S/N)

improves with for larger numbers of scans n, as
√
n. Keep in mind that the acquisition time

grows as n however.

3. Set the boxcar average to 0. This parameter sets the boxcar smoothing width. It averages

the counts of a group of adjacent detector elements. For example, a value of 3 averages the

3 points (or bins) to the right and 3 points to the left. The final result would be a smoother

spectrum and improved S/N ratio. But if it is too high, a loss in spectrum resolution would

result. Normally the boxcar average is not required.
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You may need to adjust these parameters during your actual measurements to improve S/N or

avoid saturation. Typically, you want to adjust the integration time to yield a maximum number

of counts at any wavelength to be 1000−3000, but less than 4000. Increase the number of averages

until you are satisfied with the S/N. Before making your measurements, only one more thing needs

to be done, recording a reference “dark” spectrum. This is simply a spectrum with no light source

present to verify the spectrum baseline.

1. Make sure the spectrometer input fiber is inside the black wooden box (through the hole on

the right side). Do not bend the fiber excessively, it can easily be broken!

2. Make sure all light sources are turned off, and carefully close the lid on the black wooden box.

Tighten the latches. The real-time spectrum should now be a flat line near zero counts.

3. Click on the darkened light bulb to acquire and store a dark spectrum. If you wish, click on the

disk icon (see Figure 9.7) to save this reference spectrum. The icon with the wrench next to

it can be used to change the data format if needed: check that “ASCII with header data” is the

format chosen. Data will be saved by default in C:/Users/student/oceanview/records

. The file saved is a text file which can be opened later in Excel for further analysis. You will

need to rename your spectrum files to something descriptive.

4. The window labeled “View Minus Bkgnd” will now show all spectra with the dark spectrum

subtracted off; use this window for all of the following measurements.

You are now ready to acquire emission spectra. Carefully open the dark box.

9.5.3 Measurement of the Hydrogen spectrum

When using the discharge lamps, there are three important safety points. First, do not insert or

remove bulbs while the power supply is on. Second, do not touch the bulb or power supply contacts

while the bulb is mounted, even if you think the supply is off! Finally, the bulbs can become quite

hot after operation, especially the hydrogen bulb. Allow sufficient time for them to cool before

removing.

1. Verify that the discharge tube supply is turned off.

2. Carefully insert the H spectral tube in the discharge tube housing. The contacts are spring-

loaded, so gently press the bottom of the bulb into the socket, allowing the top of the bulb

to fit.

3. Situate the discharge tube housing in the black box on the left side, such that the bulb faces

the right side. The cord should go through a notch in the left side of the box.

4. Situate the spectrometer input fiber on the far right side of the box, pointing at the discharge

tube. You may need to adjust the height of the input fiber. Do not bend the fiber.

Do not tighten the clamp on it beyond what is necessary to keep the fiber from

moving. The fiber is fragile, and can be broken by either action.

5. Your setup should now look like Fig. 9.6.
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6. Turn on the discharge source, you should see the hydrogen tube glowing.

You are now ready to acquire spectra. From the previous section, the spectrometer should already

be acquiring data in real-time and measuring in “View Minus Bkgnd” mode. If so, you should see

a few high, sharp peaks in your spectrum.

1. Adjust the integration time and the position the input fiber such the peak intensity is below

4000 to avoid saturation of the detector. You may want to fix the integration time at 10 or

50 ms and then slowly move the fiber stand closer until you observe a good spectrum which

does not saturate the detector.

2. Close the dark box and acquire a spectrum. You can adjust the axes with the crossed-arrow

icon (auto-adjust, recommended) or the magnifying glass with the “2” in it (manual adjust).

You may want to average several or many spectra together for better signal to noise ratio

(e.g., 5−10 averaged spectra).

3. Save one of these spectra by clicking on the disk icon.

At this point, you have a nice overview of the hydrogen spectrum, displaying all the primary peaks.

However, there may be (i.e., there are) smaller peaks “hiding” below your current resolution limit.

The primary problem is the large difference in intensity of some of the peaks – keeping the largest

peaks below overload intensity means that some of the smaller ones are barely visible.

This is not just a problem of the plot scale: while the integration time for the measurement

is sufficient to collect data for the larger peaks, the peaks of much lower intensity will have an

insufficient S/N for proper identification using the same integration time. The problem is a generic

one: we are trying to measure over a large dynamic range, and that usually means that the

measurement suffers at one extreme or the other. One simple way to minimize this problem is

simply to take two spectra. We already have one at low integration times, suitable for measuring

the most intense peaks (at the expense of not seeing the smaller ones). Now we will just take a

second spectra with much longer integration time suitable for measuring the weaker peaks (at the

expense of “cutting off” the larger ones by saturating the spectrometer).

1. Adjust the integration time until one of the smaller peaks easily visible in the previous scan

now has ∼3500 counts.

2. The actual value of integration time will depend on how you have positioned the fiber relative

to the source, but it may need to be as high as a few seconds, and probably about ten times

higher than your previous scan.

3. You should now see a few peaks in the spectra that were not visible before. You can also

adjust the number of scan averages to improve the S/N. You should see at least 6 lines from

the Balmer series (see Table 9.1).

4. The acquisition times will now be several seconds long, and you will be sensitive to very low

light levels. Be sure that you have tightly closed the dark box.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab



9.5 Suggested procedure 87

5. When you are satisfied, save this “zoomed” spectra.

You can first identify the major spectral peaks in the “overview” scan, and then use the “zoom”

scan to identify any smaller peaks. Keep in mind that if peaks in the zoomed spectra have a flat

top, they have overload the spectrometer, and you should not use them for peak identification (use

the overview scan).

9.5.4 Helium spectra

Once you have completed the measurement for a hydrogen lamp, you should complete the same

measurements for the He and Hg sources. Turn off the discharge lamp source and carefully replace

the bulb. Do not access the bulb when it is turned on. The bulb may have become

quite hot during the experiment, be careful when removing it!

9.5.5 Heavier elemental spectra

As a point of comparison, choose another elemental gas (Ar, Ne, Hg, etc.) and record spectra.

9.5.6 Incandescent Bulb Spectrum

Now screw an incandescent 60 W bulb into the holder inside the dark box.

1. Plug the source into the variable transformer, and make sure the transformer dial is set to 0.

2. Plug the transformer into the power strip at the base of the table. By varying the output

voltage of the transformer from 0−140 V, you are varying the power to the bulb and hence

the brightness.

3. Set the transformer to 120 V, it should glow brightly. Note: read the actual voltage value off

the meter, not the dial!

4. Start the spectrometer acquisition, you should observe a broad spectrum reminiscent of black

body radiation.

5. Adjust the integration time and the position the input fiber such the peak intensity is below

4000 to avoid saturation of the detector. You may want to fix the integration time at 10 or

100 ms and then slowly move the fiber up and down on its stand until you observe a good

spectrum which does not saturate the detector.

6. Close the dark box and lock the lid with the clamps on the sides and acquire a spectrum.

You may want to average several or many spectra together for better signal to noise ratio

(e.g., 5−15 averaged spectra).

7. Without disturbing the setup, acquire spectra for several different bulb powers, noting the

voltage and current. You should see a much lower intensity at all wavelengths, but also a

shift of the peak in the spectrum to higher wavelengths.
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9.5.7 Solar Spectrum

1. Carefully unscrew the clamp on the input fiber and remove it from the dark box.

2. Place the stand on top of the dark box and replace the fiber. Do not tighten the clamp

on the fiber beyond a very gentle “finger tight” or you will damage it!

3. Point the input fiber at the sky through the window. Note the rough appearance of where

you are pointing the fiber (e.g., cloudy, white, gray, blue). Note the date and time (as you

would for any measurement . . . ).

4. Set the integration time for the spectrometer to 100 msec with 3 averages.

5. Start the spectrometer acquisition, you should observe a broad spectrum reminiscent of black

body radiation. You may need to rescale the plot. If the spectrum “flatlines” on the top, you

have overloaded the detector. Halve the integration time, and repeat until the spectra does

not have a flat top indicating saturation.

6. When the intensity levels are high (∼ 1000−3000 max) but not saturated (≥ 4000), you are

ready. Increase the number of averages to at least 10 until you are satisfied with the signal

to noise ratio. Remember, you are trying to tell the difference between discrete absorptions

in your spectrum and noise!

7. Save the spectrum.

9.5.8 Compact Fluorescent Bulb Spectrum

Also acquire a spectrum for a the compact fluorescent light bulb, using only a setting of 120 V on

the variable transformer. As with the other measurements, position the input fiber such that your

maximum intensity for any line is below 4000 to avoid saturating the detector.

9.6 Analysis and Discussion

Note: The spectrometer often shows weak peaks at 777, 804, and 845 nm which are not due to

the light sources, but characteristic of the spectrometer itself. Do not worry if you cannot identify

these lines.

9.6.1 Hydrogen Spectrum:

Identify all of the observed peaks and calculate the frequency and photon energy for each peak.

Assign for each peak the atomic transitions responsible for each peak (from which level to which

level). How do your values compare to reference data? Are there expected transitions you do

not observe? Make a plot of 1/λ versus 1/n2. Its slope should be RH . From RH , calculate the

ionization energy of hydrogen and both compare with the accepted values.
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9.6.2 Helium Spectrum:

Identify all of the observed peaks and calculate the frequency and photon energy for each peak.

Using the reference spectrum in the Appendix, try to assign for each peak the atomic transitions

responsible for para- and ortho-helium.

Extra credit (5%): Using the theory outlined in the introduction, calculate the Rydberg constant

and defect corrections for helium. Why is the helium spectrum so much more complicated than

the hydrogen spectrum?

9.6.3 Heavier element spectrum:

Can your data be explained in the same manner as the hydrogen or helium spectra? Can you

index some or all of the observed spectral lines to known atomic energy level transitions, or at least

known spectral lines? Locate a reference spectra and compare your results.

9.6.4 Solar spectrum:

Using the position of the main peak in your spectrum, and assuming the sun is a black body ra-

diator, calculate the apparent surface temperature of the sun. Does it agree with accepted values?

Away from the peak to higher (IR) and lower (UV) wavelengths, the intensity falls off more quickly

than expected for a black body radiator. Comment on possible reasons for the discrepancy (hints:

Raleigh scattering, atmospheric and window glass absorption).

Finally, in addition to the overall black-body-like behavior, you should observe a number of discrete

absorption lines and bands in the spectrum, known as Fraunhofer lines. You should be able to locate

the principle H, He, and Hg emission lines in the solar spectrum, strong evidence that these three

elements are present in the sun. Try to identify some of the other main absorptions. What elements’

and molecules’ absorptions might you expect to find? You should be able to discern bands due to

absorption by common atmospheric constituents (hint: try searching for “Fraunhofer lines” online).

9.6.5 Incandescent Bulb Spectrum

Plot all of your spectra together, and determine the peak emission wavelength for each voltage

setting. What trend to you expect, and what do you observe? Using the peak wavelength, estimate

the bulb’s temperature as a function of applied voltage and make a plot. Assuming a constant

filament resistance for the voltages used, what behavior might you expect (hint: conservation of

electrical and photon energy)?

(optional:) The integral of your spectrum gives the total incident power through the wavelength

range studied. How should this vary with bulb temperature? With applied voltage (assuming
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constant resistance)? Estimate or calculate the area under each curve and plot it as a function of

voltage.

Compare your spectra qualitatively to the solar spectrum. Can you understand why incandescent

bulbs at particular powers are favored for indoor lighting? Why is “color temperature” used to

characterize such lighting sources?

9.6.6 Compact Fluorescent Bulb Spectrum

Can you identify any of the lines present (hint: phosphors coat the bulb glass)? Can you comment

on why some people find fluorescent lighting “harsh” or “unnatural” compared to incandescent

or solar lighting? Why does the bulb appear white, despite the presence of discrete emission

wavelengths? Does the concept of a “color temperature” make sense for this source?

Reference Spectral Data

Table 9.1: Hydrogen emission lines, UV-Vis-NIR[11]

λ (nm) I (a.u.) Assignment

383.538 5 Balmer 9→ 2
388.905 6 Balmer 8→ 2
397.007 8 Balmer 7→ 2
410.174 15 Balmer 6→ 2
434.047 30 Balmer 5→ 2
486.133 80 Balmer 4→ 2
656.272 120 Balmer 3→ 2†

656.285 180 Balmer 3→ 2†

954.597 5 Paschen 8→ 3
1004.94 7 Paschen 7→ 3

† Spin-orbit split lines, 2p1/2 → 1s and 2p1/2 → 1s
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Table 9.2: Selected Helium emission lines, UV-Vis-NIR[11–13]

Assignment

λ (nm) I (a.u.) (spectroscopic) (orbital)

361.3 4 5 1P1 → 2 1S0 1s3p→ 1s2s (p)
388.9 64 3 3P2,1,0 → 2 3S1 1s2p→ 1s2s (o)
396.5 26 4 1P1 → 2 1S0 1s2p→ 1s1s (p)
402.6 2 5 3D3,2,1 → 2 3P2,1,0 1s3d→ 1s2p (o)
412.1 8 5 3S1 → 2 3P2,1,0 1s3s→ 1s2p (o)
438.8 12 5 1D2 → 2 1P1 1s3d→ 1s2p (p)
447.2 19 4 3D3,2,1 → 2 3P2,1,0 1s3d→ 1s3p (o)
471.3 4 4 3S1 → 2 3P2,1,0 1s3s→ 1s2p (o)
492.2 5 4 1D2 → 2 1P1 1s3d→ 1s2p (p)
501.6 25 3 1P1 → 2 1S0 1s3p→ 1s1s (p)
504.8 15 4 1S0 → 2 1P1 1s2s→ 1s2p (p)
587.6 72 3 3D3,2,1 → 2 3P2,1,0 1s3d→ 1s2p (o)
667.8 23 3 1D2 → 2 1P1 1s3d→ 1s2p (p)
706.6 32 3 3S1 → 2 3P2,1,0 1s3s→ 1s2p (o)
728.1 18 3 1S0 → 2 1P1 1s3s→ 1s2p (p)

† (o) denotes ortho-helium, (p) denotes para-helium

Table 9.3: Selected Mercury emission lines, UV-Vis-NIR[11, 13]

λ (nm) I (a.u.) Assignment

365.02 2800
365.48 300
366.29 80
404.66 1800
407.78 140
433.92 250
434.75 400
435.83 4000
546.07 1100
567.59 160
576.68 240
578.97 100
579.07 280
580.38 140
614.95 1000
671.64 160
690.75 250
708.19 250
709.19 250
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Table 9.4: USB-650 Specifications[10]

Physical

Detector Type Sony ILX511 CCD
No. of elements 2048 pixels (650 active)
Pixel size 14µm x 200µm
Pixel well depth ∼62, 500 electrons
Sensitivity 75 photons/count at 400 nm

Optical Bench

Design f/4, asymmetrical crossed Czerny-Turner
Focal length 42 mm input; 68 mm output
Entrance aperture 25µm wide slit
Fiber optic connector SMA 905

Spectroscopic

Wavelength range 350−1000 nm
Entrance aperture 25µm-wide slit
Optical resolution ∼2.0 nm FWHM
Signal-to-noise ratio 250 : 1 (at full signal)
A/D resolution 12 bit
Dark noise 3.2 RMS counts
Dynamic range 2× 108; 1300 : 1 for a single acquisition
Integration time 3 ms to 65 s (15 s typical max)
Stray light <0.05% at 600 nm; <0.10% at 435 nm
Corrected linearity >99.8%

Visible Spectrum

Figure 9.8: Linear representation of the spectrum of visible light. From http: // en. wikipedia. org/ wiki/ Visible_ spectrum .
Numbers are wavelengths in nanometers.
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10
Compton Scattering

10.1 Introduction

Compton scattering refers to the scattering process

γ +X → γ +X

where γ represents a photon and X represents an element of matter such as an electron, atom,

nucleus, etc. It was first observed by Arthur Compton in 1923, for which he won the 1927 Nobel

Prize in physics because it showed that the photon, the quantum of light, has definite energy and

momentum as would be expected for a particle. The behavior of light in diffraction and interference

experiments, together with its behavior in phenomena such as the photoelectric effect and Compton

scattering, empirically demonstrates the wave–particle duality of light.

In the language of collisions, this is a two–body collision and because the initial–state particles are

the same as the final–state particles, there is a well–defined relationship between the initial and

final energies of the photon and the angle θ at which the photon is scattered relative to its initial

direction

In this experiment, we will look at photon scattering from a target in a regime where the photon

scatters dominantly from individual atomic electrons, i.e. X = e. The energy transferred to the

electron is typically large compared to the binding energy of the electron so that the electron can

be well–approximated as being initially at rest. In that case, if we let φ be the angle which the

direction of the scattered electron makes with respect to the direction of the initial photon, the

conservation of energy and momentum implies the relations

pi = pf cos θ + pe cosφ

0 = pf sin θ + pe sinφ

Ei = Ef +Ke

where Ei is the energy of the incident photon, Ef is the energy of the scattered photon, pi and pf are

the respective momentum magnitudes, pe is the magnitude of the scattered electron’s mometum,

and Ke is the kinetic energy of the scattered electron.

What is the connection between the momentum p and kinetic energy of a particle K and its speed

v? If we assume Newtonian mechanics

p = mv

K =
1

2
mv2
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while if we assume the theory of special relativity,

p =
mv√
1− v2

c2

K = E −mc2 =
mc2√
1− v2

c2

−mc2

Assuming Newtonian mechanics and applying energy and momentum conservation, we can find the

following relationship between the initial photon energy, final photon energy, and the scattering

angle (see full derivation in the Appendix):

Ei
Ef

(1− b) +
Ef
Ei

= 2 cos θ − b (10.1)

where

b ≡ 2mc2

Ei

Similarly, assuming the theory of special relativity (see full derivation in the Appendix):

Ei
Ef

= 1 + a(1− cos θ) (10.2)

where

a ≡ Ei
mc2

In this experiment, where m is to be taken as the mass of the electron, you will check which, if any,

if any of the above predictions are consistent with your observations of Compton scattering from

electrons.

10.2 Experimental Method

An intense beam of 662 keV photons from a strong (∼0.7 Ci) radioactive 137Cs source will be

directed on a small target. A NaI detector, coupled to a pulse height digitizer, will be used to

detect the scattered photons at several different angles with respect to the direction of the beam.

10.3 Procedure

Ground rule never to be violated: whenever somebody is in the detector room the

entrance door must remain open. This will prevent inadvertent relase of the beam.

Figure 10.1 show the main part of the experiment.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab



10.3 Procedure 95

Source housing

Target

NaI detector on 
rotating stage

Figure 10.1: Overview of the experiment setup.

Experiment control station

Beam control unit

Digitizer

Data acquisition computer

Figure 10.2: The data acquisition system (UCS 30) interfaced to a PC and beam control unit.
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1. Set up the experiment as shown in Figures 10.1 and 10.2. The red cable should run between

the HV output connector on the rear of the UCS 30 to the SHV connector on the base of

tbe NaI detector. The black cable should run between the input connector on the rear of the

UCS 30 to the BNC connector on the rear of the NaI detector.

2. Switch on the Geiger counter and make sure that it is working by holding its probe near a disk

calibration source. You will use the Geiger counter to verify that the beam is off whenever you

enter the detector room. When sitting at the control table keep the Geiger counter turned

on to verify that there is no beam near you. You will verify the absence of the beam beam

means of this counter whenever you manipulate the target. The red warning light on the

beam control unit and over the door will tell you whether the beam is on or not. The door

into the detector room has an interlock, automatically shutting off the beam whenever the

door is opened. The Geiger counter, thus, only serves as an additional safety check. Nobody

will be present in the detector room whenever the beam is turned on. You will

now activate the beam control:

(a) The beam is released by pneumatic shutter. Gas pressure is supplied by the gas bottle

behind the experiment control table. Open the block-off valve on top of the bottle

to energize the piston. Turn the valve indicated in figure 10.3 counter clock wise to

Gas bottle powering 
beam release.

Shut-off valve:
• to open turn CCV
• to close turn CV

Figure 10.3: Gas bottle powering the pneumatic cylinder used to release the beam.

open. Don’t forget to close the gas bottle when you’re done with the experiment. No

adjustments need to be done to the operating pressure. The pressure regulator has been

blocked.

(b) Next power up the beam control unit shown in figure 10.4.

3. Operation of the beam control unit needs an access key provided by the instructor. To power

the the control unit toggle its power switch. A read power light will come on after the unit has

been activated. To operate the beam shutter insert the key. The green light will be on when

the shutter is closed and no beam is present. There is an additional red warning light over

the door. When the beam is off this light is off too and it is safe to enter the detector room.
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Beam control unit

Figure 10.4: Beam control unit used to release the γ-ray beam.

It is always good practice to take the Geiger counter with you when entering the detector

room to verify the beam is actually off. To activate the beam switch the key to the “Shutter

Open” position. This only enables opening. To actually open the shutter push the “Press to

Open” button. The red “Shutter Open” light will now come on in addition to the beam on

indicator over the door into the detector room. You must not enter the detector room

when the beam is open. You must never activate the beam with anybody being

present in the detector room. Normal counting time is 3 minutes per run. Always shut

down the beam by turning the key to the “Shutter Closed” position after you completed a

data taking run. As a safety measure the shutter will close automatically 5 minutes after

opening. As an additional safety measure the door into the detector room has been equipped

with an interlock. The beam will shut down automatically whenever the door is opened. One

last point: the beam operation needs electrical power. In case of a power failure you can shut

off the beam by depressing the “Emergency Close” valve. It will bleed the gas pressure which

will close the shutter.

There are two places where it is safe to stand when the 137Cs source is open: behind the

source housing and in the room with the PC and UCS 30 data acquisition and control box

is. The collimator mounted on the front of the opening in the source housing attenuates the

662 keV gammas which are not emitted toward the hole in the center of the collimator. Some

gammas do penetrate the collimator, comprising the so–called “halo” particles surrounding

the relatively intense core of the main beam. Take training from the instructor on how to

work safely with the 137Cs source. Make sure that you heed this training throughout the

process of data collection.

4. Turn on the power to the SpecTech UCS 30 box.

5. If you have not already done so, log into the PC.

6. Start the UCS 30 program and carry out the following operations.
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(a) Under the Mode menu, select PHA (amp in).

(b) Under the Settings menu, select Energy Calibration, and then select Uncalibrate if it is

available. The horizontal axis of the spectrum will then be displayed in channels, not

energy. You will do the energy calibration offline.

(c) Under the Settings Menu, select Amp/HV/ADC, and then set the HV voltage to ap-

proximately 1100 V, set the HV polarity to positive, click the radio button for HV on,

set Amp In Polarity to negative, Coarse Gain to 4, Fine Gain to 1.3, and LLD (lower

discriminator threshold) to about 7.

7. Take data for the energy calibration of the NaI detector using the 137Cs, 57Co and 133Ba

radioactive sources, which you will find in the red case containing 8 disk sources. Before

taking the final data for calibration, adjust the PMT HV and/or Fine Gain , if necessary,

so that the 137Cs full absorption peak is near 900 channels. Example 137Cs and 133Ba pulse

height spectra are shown in Figure 10.5. Take data long enough so that the pulse height

spectra are smooth in the region of the photo-peaks (statistical fluctuations small compared

to the changes in number of events from one channel to the next).

8. Once you have taken the calibration data, select Presets under the Settings menu and set the

live time (LT) to 180 s. This ensures that all runs will have exactly the same length and will

make subtraction of target–out data from target–in data straightforward. If it turns out that

you cannot get good statistics in 180 s, increase the LT preset accordingly. 300 s is the longest

integration time you may choose. After this the γ-ray beam will shut down automatically.

While the UCS 30 circuitry is digitizing the signal from the PMT, any further events arriving

from the PMT are ignored; the DAQ is said to be “dead” during this interval. The livetime

is thus the time during which the UCS 30 is ready to accept and digitize a signal from the

NaI detetor.

9. Check that the target is aligned with the 137Cs beam. Make any adjustments to the target

location as needed. For each of at least five different scattering angles between 30 degrees

and 160 degrees, orient the NaI detector so that it is facing the target and ∼50 cm away from

it. The predictions from classical mechanics and special relativity differ the most at large

scattering angles, so choose at least two of the angles to be larger than 120 degrees. Be sure

that the detector is well–shielded from the beam halo (mainly a problem for scattering angles

less than 90 degrees). When rotating the detector, take care not to stress any signal or power

cables. The NaI detector is fragile, so handle it accordingly.

10. Measure each angle and then take a sequence of three runs:

(a) Target–in run. Open the source shutter, then start the run. Once the run has stopped

upon reaching the preset limit, close the source shutter, and save the file with an ap-

propriate name. Opening and closing of the beam shutter is performed by means of the

control unit in the data taking room, as explained before.
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Figure 10.5: Illustrative pulse height spectra for the Cs–137 source (upper) and Ba–133 source (lower). The energies of the
gammas associated to the more prominent photopeaks are indicated.
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(b) Target-out run. With the beam shut off, enter the detector room and pull the target

aside, e.g. by hanging the string to which the target is attached over the clamp on the

ring stand. You can use these data to subtract background from the target–in data and

see the full–absorption peak more clearly.

(c) Calibration run with 137Cs disk source to check gain stability. This does not have to run

longer than necessary to check that the 662 keV photopeak position has remained the

same within 5–10 channels.

11. Repeat the energy calibration to check the stability of the NaI detector.

12. Document the experimental setup, by making a sketch and/or taking photos.

10.4 Analysis

1. Use your energy calibration data to find the relationship between energy and channel number.

(a) Make a plot of counts versus channel number for each disk source and turn in with your

report.

(b) For each of the following energies 81.0 keV, 302.9 keV, 356.0 keV, and 661.7 keV, estimate

the center channel of the corresponding photopeak in the pulse height spectra you took

for energy calibration. Tabulate the energies and corresponding center channels. What is

the uncertainty in the determination of the center channels? Note that some photopeaks

are somewhat distorted in shape by the presence of other peaks nearby.

(c) Plot the channel number versus energy. Are these points consistent with lying along a

straight line? If so, use the method of linear regression to fit a straight line to get a

linear equation for the channel number in terms of energy. Use the EXCEL function

LINEST for this. It will give the the parameters of the straight line and estimate their

errors. If the calibration data is not described well by a straight line, consult with your

instructor.

(d) Solve the equation obtained in the last step for the energy so that you have a linear equa-

tion for the energy in terms of the channel number. This is the energy calibration which

you will use to reconstruct the energy from the observed channel number corresponding

to the center of a photopeak.

2. For each scattering angle, subtract the target–out spectrum from the target–in spectrum. In-

clude in your report the plot of the difference versus channel number for the largest scattering

angle and for the smallest scattering angle. This subtraction can either be performed using

EXCEL or the UCS 30 program. If you want to try the latter ask your instructor for help.
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3. Convert the peak channel number for each scattering angle to energy. Make a table of

scattering angles and corresponding energies.

4. If classical physics is correct, plotting Ei
Ef

(1− b)+
Ef
Ei

versus cos θ will yield points lying along

a straight line with slope 2. Make this plot from your experimental data. Are these data

consistent with the classical hypothesis? Explain.

5. Plot Ei
Ef

versus 1− cos θ. Are the data consistent with lying along a straight line as predicted

by special relativity? If so, use your data to fit for the rest energy of the electron. Is your

measurement of the rest energy consistent with the accepted value? Explain.

Derivation of Classical and Relativistic Compton Scattering Pre-

dictions

In this section we show the full derivation of Eq. 10.1 and Eq. 10.2. In both cases we assume a

photon scatters of an electron initially at rest, imparting some energy to the electron which then

has a final nonzero velocity. For simplicity we assume the incoming photon is along the x-axis. The

recoil angle of the scattered photon with respect to the x-axis is denoted θ and the recoil angle of

the scattered electron with respect to the x-axis is denoted φ; we do not assume that these angles

are equal. Figure 10.6 shows the scattering geometry.

           

Figure 10.6: The geometry of the Compton scattering assumed for both the classical and relativistic cases.

10.4.1 Classical Prediction

This section shows the derivation of Eq. 10.1, which assumes classical definitions of energy and

momentum. The electron energy is purely kinetic, E = 1
2mv

2. There is no rest energy. The

electron momentum p = mv. Since the electron is initially at rest, both the electron energy and

momentum are zero prior to the scattering. We denote the initial energy of the photon to be Ei

and the final energy of the photon to be Ef . The initial momentum of the photon is pi = Ei
c and

the final momentum of the photon is pf =
Ef
c .
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Conservation of energy requires

Ei = Ef +
1

2
mv2

Conservation of momentum along the x axis requires

pi = pf cos θ +mv cosφ

Conservation of momentum along the y axis requires

pf sin θ = mv sinφ

Now we eliminate φ:

m2v2 cos2 φ = (pi − pf cos θ)2 = p2
i − 2pipf cos θ + p2

f cos2 θ

m2v2 sin2 φ = p2
f sin2 θ

m2v2(sin2 φ+ cos2 φ) = p2
f (sin2 θ + cos2 θ) + p2

i − 2pipf cos θ

m2v2 = p2
f + p2

i − 2pipf cos θ

Now convert photon p to E = pc:

m2v2 =
E2
f

c2
+
E2
i

c2
− 2

EfEi
c2

cos θ

Eliminate v using conservation of energy, Ei − Ef = 1
2mv

2, meaning that m2v2 = 2m(Ei − Ef ):

2m(Ei − Ef ) =
E2
f

c2
+
E2
i

c2
− 2

EfEi
c2

cos θ

Divide through by Ei
c2

:

2mc2

Ei
(Ei − Ef ) =

E2
f

Ei
+ Ei − 2Ef cos θ

Divide through by Ef :

2mc2

Ei
(
Ei
Ef
− 1) =

Ef
Ei

+
Ei
Ef
− 2 cos θ

Define b ≡ 2mc2

Ei
and rearrange the equation to get Eq. 10.1:

Ei
Ef

(1− b) +
Ef
Ei

= 2 cos θ − b
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10.4.2 Relativistic Prediction

This section shows the derivation of Eq. 10.2. In this case, the electron has a rest energy mc2

prior to the collision, and a total energy equal to the rest energy plus the kinetic energy after the

collision. The total energy E is related to the momentum p as follows:

E2 = p2c2 +m2c4

Note that the momentum of the electron is still zero prior to the scattering. Therefore the equation

we derived above using conservation of momentum is still valid, except we will express the final

electron momentum as p instead of mv. We still use pi, pf , Ei and Ef to denote the initial and

final momentum and energy of the photon.

p2 = p2
f + p2

i − 2pipf cos θ

Now consider conservation of energy in the relativistic regime. We will call the final energy of the

electron E, whereas the initial energy of the electron is just mc2.

Ei +mc2 = Ef + E ⇒ E = Ei − Ef +mc2

Inserting this into the equation for total energy:

p2 =
E2

c2
−m2c2 =

1

c2
(Ei − Ef +mc2)2 −m2c2

p2 =
1

c2
(E2

i − 2EiEf + E2
f + 2mc2Ei − 2mc2Ef +m2c4)−m2c2

Using the momentum conservation equation above with Ei = pic and Ef = pfc:

p2 =
E2
f

c2
+
E2
i

c2
− 2

EiEf
c2

cos θ

Combining the two above equations for p2 and eliminating terms that sum to zero, and rearranging:

mEi = mEf +
EiEf
c2
− EiEf

c2
cos θ

Divide by mEf :
Ei
Ef

= 1 +
Ei
mc2

− Ei
mc2

cos θ

Define a ≡ Ei
mc2

to get Eq. 10.2:
Ei
Ef

= 1 + a(1− cos θ)
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Muon Lifetime

Introduction

The muon, conventionally denoted by the Greek letter µ, is an unstable elementary particle. Its rest

mass is 105.7 MeV/c2. Together with the electron and tau, it comprises the three known charged

leptons appearing in the Standard Model of elementary particle physics. (Leptons are distinguished

by not having strong interactions with other particles, only electromagnetic and weak interactions

in addition to the graviational interaction.) What is conventionally called the muon particle has

charge −e (denoted µ−) while the muon anti–particle has charge +e (denoted µ+).

Muons are produced mainly as a result of cosmic ray interactions interactions in the earth’s atmo-

sphere and at high–energy particle accelerators. In cosmic ray interactions, a cosmic ray (proton,

neutron, gamma, nucleus) collides with an atmospheric gas molecule, the result of which is typically

the production of a large number of hadrons (protons, neutrons, kaons, pions, etc.) propagating in

the same general direction as the parent cosmic ray. The kaons and pions are unstable and eventu-

ally decay; many of the decay final states include muons. Because both particles and anti–particles

are produced in cosmic ray interactions, the produced muons come in both signs of charge. The

flux of muons at sea level is about 1 per second per 100 cm2; in rough terms, if you hold your hand

out flat, on average a muon passes through it every second.

The muon is unstable because of the existence of particles into which it can decay. In the case

of the muon, according to the Standard Model and as illustrated below, it can couple to a muon

neutrino through the emission of a virtual W− gauge boson, which in turn decays into an electron

and electron anti–neutrino. That is,

µ− → e− + νµ + ν̄e

The probability per unit time that a muon decays, known as the decay constant λ, can be calculated

from the Standard Model starting from the quantum mechanical amplitude for the above process

and is found to be

λ =
1

32

(mµc
2)5

(mW c2)4

g4

192π3~
(1 + ∆q)
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where mµ is the muon mass, mW is the mass of the W gauge boson, ∆q is a constant, and g is

the weak interaction coupling constant. Note the strong dependence (to the fifth power) of the

decay constant on the muon mass. In the quantum mechanical amplitude for muon decay, there is

a factor of the coupling constant g for each W vertex, so that the amplitude is proportional to g2.

When the modulus of the amplitude is squared to calculate the decay probability, the factor of g4 is

obtained. At energies low compared to the rest energy of the W boson, the factor (“propagator”)

appearing in the amplitude due to the propagation of the virtual W from the µνµW vertex to

the Weν̄e vertex is proportional to 1
m2
W c4

, so that λ is inversely proportional to m−4
W . That the

W is almost 100 times heavier than the proton and its mass appears to the fourth power in the

denominator accounts for the fact that the interaction leading to muon decay is weak compared to

the electromagnetic and strong interactions. The decay constants in the case of decays mediated

by the electromagnetic or strong interactions are 10–15 orders of magnitude larger. One can show

that the mean muon lifetime τ is 1
λ , so that measurement of the mean muon lifetime is directly

sensitive to fundamental quantities, namely the muon mass, the W mass, and the weak coupling

constant g.

Given the decay constant λ, the probability that a muon decays between time t and t+ dt, where

dt is an infinitesimal interval, is

λdt

Conversely, the probability that the muon does not decay between time t and time t+ dt is

1− λdt

Suppose a muon exists at some instant, which we will define as t = 0. Let P (t) be the probability

that the muon then survives until time t. The probability P(t+dt) that the muon survives until

time t+dt is

P (t+ dt) = P (t)(1− λdt)

In other words, the probability that the muon survives until time t + dt is the product of the

probability it survives until time t and the probability it does not decay between t and t + dt.

Re–arranging the above equation, we find that we have an equation we can use to solve for P :

P (t+ dt)− P (t) = −λPdt

dP = −Pλdt
dP

P
= −λdt

Integrating both sides

lnP = −λt+B
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where B is an integration constant. Therefore,

P = e−λt+B = e−λt+B = eBe−λt = Ce−λt

where C = eB is the integration constant. We can use the boundary condition P (0) = 1 to

determine that C = 1, so

P (t) = e−λt

Not unexpectedly, we have obtained the exponential decay law. Casting it in a more familiar form,

if we observe N0 muons altogether, the mean number N(t) surviving to time t is

N(t) = N0e
−λt

One can also show that the mean survival time, or in other words the mean muon lifetime, is

τ =
1

λ

We can therefore also write

N(t) = N0e
−t/τ

In this experiment, you will observe how many muons decay in different intervals. We expect that

the number of muons in each interval will fall exponentially with time, which can be shown as

follows. The expected number ∆N of muons which decay in an interval ∆t between t and t + ∆t

is just the difference between the number of muons which survive to time t and the number which

survive to time t+ ∆t:

∆N = N0e
−λt −N0e

−λ(t+∆t) = N0e
−λt
(

1− e−λ∆t
)

Because you will divide the muon decay times into intervals of constant size, the quantitity

N0

(
1− e−λ∆t

)
is a constant, which we will denote as A. Then

∆N = A−λt

that is, the number of muon decays per interval falls exponentially with increasing time, as claimed.

If you evaluate the natural logarithm of both sides,

ln ∆N = −λt+ lnA

you see that if we plot ln ∆N versus t, the points should lie along a straight line with slope −λ.
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11.1 Experimental Method

A block of plastic scintillator optically coupled to a photomultplier tube (PMT) is used to detect

charged particles passing through it. The (analog) output of the PMT is sent to a discriminator,

which produces an output logic pulse if the PMT signal is above threshold. The logic pulse is used

to either start a clock or stop a clock if it is already running. The time between the start signal and

stop signal is recorded. A muon which stops in the scintillator and then decays will produce two

correlated signals: the first signal due to the energy it deposits in the scintillator as it is stopping

and the second signal due to the energy deposited by the electron after the muon decays. Such a

pair of time–correlated signals is often called a delayed coincidence. The scintillation light pulses

due to the energy deposits in the scintillator are very short (tens of ns) compared to the typical

time between the start and stop pulses.

11.2 Procedure

i

The apparatus is comprised of four scintillator blocks arranged in a vertical stack, each connected

to a PMT (labeled 0, 1, 2 and 3). The PMTs are connected to a power distribution unit (PDU)

which controls their operating voltage. The data from the PMTs are read out by a Quarknet [14]

card attached to the control computer by USB. The quarknet card is attached to GPS antenna to

record the time. The apparatus is shown in Figure 11.1.

Figure 11.1: Left: overview of the experiment. Right: Quarknet control card and locations of connections to other parts of
the apparatus.

Each PMT/scintillator combination is referred to as a channel. Each channel is recorded by the

Quarknet card when the signal read by the PMT exceeds a certain level called a discriminator

threshold. Figure 11.2 shows a sketch of a typical PMT pulse You can see the rate at which each

iThanks to Daniel Castillo (University of Alabama, class of 2014) for his assistance in setting up and documenting
the Quarknet data collection. This section is based on his notes.
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channel is reading out in the blue lights on the Quarknet card labeled DSC0, DSC1, DSC2 and

DSC3. Random noise from radioactive decays, throughgoing muons and other processes cause

signals in each channel at a fairly high rate, which increases as the operating voltage of the PMT

increases. (The operating voltage is controlled by the potentiometer.) In order to reduce the data

rate, in this experiment we require a coincidence between three of the four channels within a window

of 10 µs. The window allows time for the muon (lifetime 2.2 µs) to decay and produce the second

signal. The Quarknet card is not capable of determining how many signals are in a single channel,

only whether the channel was hit with the coincidence window. Therefore, after coincidence data

is collected, a software program is run to search for channels which have two signals in them: one

from the muon stopping and one from the muon decaying. Sometimes a veto is used, meaning an

event is rejected if a certain channel or channels are hit. We do not use a veto in this experiment.

Vo
lta

ge
	  

Time	  

Figure 11.2: Sketch of a typical PMT pulse. The blue line denotes the discriminator threshold, and the area within the
vertical dashed lines is the time over threshold.

11.2.1 Connecting with Hyperterminal

The event data from the Quarknet card are collected using the HyperTerminal program. Hyper-

Terminal is a preinstalled terminal emulator on Windows machines. Any other terminal emulator

should work just as well, but this documentation will assume use of HyperTerminal, any changes

in functionality from using a different terminal emulator will need to be solved by the user.

Connect the power cable to the quarknet card. If there is not a HyperTerminal shortcut on

the computer desktop, it can be found in the start menu by looking in Programs>Accessories>Communications.
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After opening HyperTerminal, you will be prompted to chose a name for the session; the name does

not matter as you will not be saving the connection upon leaving HyperTerminal, but you should

choose a suitable name like ”MuonLifetime.” After you choose a name for the connection, you will

need to chose a port to connect to. If you are unsure about which port the DAQ board is connected

to, right click on My Computer and go to Properties>Hardware, click on “Device Manager”, and

click on the [+] button next to Ports. The DAQ board should show up in the list of Ports as

something like ”Silicon Labs CP210x USB to UART Bridge (COM4).” After choosing the correct

port to connect to, click Ok. Then you will need to choose some parameters for the connection

with the Quarknet board. A screenshot is shown in Figure 11.3 of the correct parameters to use

when connecting to the Quarknet board.

Figure 11.3: Connection parameters for the Quarknet board connection in HyperTerminal.

11.2.2 PDU Settings

You will now need to determine the correct voltage settings for the PMT, which are controlled by

the PDU. The PDU provides an output of 0.3 V to 1.8 V. The actual operating voltage of the PMT

is 1000 times the voltage delivered by the PDU. The PDU voltage for each channel is changed by

turning the knob corresponding to that channel: clockwise to increase voltage and counterclockwise

to decrease. To monitor the PDU voltage, use a voltmeter with the voltage connection to the yellow

port on the PDU for the channel you are measuring, and the common connection to the black port

on the PDU.
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11.2.2.1 Correct Voltage Settings: the Plateau Method

Each PMT has a unique optimal operating voltage. In order to determine this, we will measure

the rate of hits on each PMT as a function of the voltage on the PDU, referenced against another

PMT where the voltage is held steady, and determine the voltage at which the rate of coincident

hits becomes stable. An example of a plateau plot is shown in Figure 11.4. In this case, channel

0 was the reference channel and the voltage on channel 1 was varied. The rate of hits on channel

0 is steady and the rate on channel 1 rises with the voltage, but the coincidence rate between the

two channels becomes steady at about 700 mV. A voltage slightly above this value is chosen as the

operating voltage of the PMT.
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Figure 11.4: Example plateau curve for channel 1. Channel 0 is the reference channel

To measure to plateau for channel 0, pick a neighboring channel as a reference channel, in this case

channel 1. Commands to be entered in Hyperterminal are denoted in boldface.

• First disable any event counting with the command CD.

• Turn the knobs on the PDU all the way counterclockwise for all four channels.

• Set the discriminator threshold of all 4 counters to 700 mV with the command TL 4 700.

There are two ways you can verify that the threshold voltage is set correctly:

1) type the command TL into Hyperterminal, and you should see the following:

TL L0=700 L1=700 L2=700 L3=700

2) You can check the threshold directly by attaching fine-tipped probes to the voltmeter and

measuring the voltage between the TPVTHX (where X is 0, 1, 2, or 3 depending on which

channel you check) and the DEBUG PORT. The locations of the ports on the Quarknet card

are indicated in Figure 11.5.

• Set the coincidence level to 0 (only one channel required to be hit) and activate the channel

1 only with the command WC 00 02 (see Table 11.1 for commands for each channel).

PH255: Mod. Phys. Lab P. LeClair, J. Busenitz, A. Piepke, D. Williams



112 11.2 Procedure

• Increase the PDU voltage for channel 1 (the reference channel) until the rate of hits on

channel 1 is somewhere between 2000 and 3000 hits per minute. To see what the rate of hits

on channel 1 is, type the command ST 3 1 which resets all the counters and then displays

the counts on each channel once per minute. After one minute, you should see something like

this:

DS 00000000 000009f8 00000000 00000000 000009f8

“DS” is the command to display the counter rates. The next 4 numbers are the hits counted

on each channel (0, 1, 2, 3) in the last minute in hexadecimal format. The last number is

the number of coincident events counted, which is in this case is the same as the number

of events on channel 1. You can use the HEX2DEC and DEC2HEX commands in Excel to

translate hex to decimal values and vice versa. So in this example, there are 9f8 = 2552 hits

per minute.

• Once the voltage level is set on Channel 1, record the value in your lab notebook and then

reset the coincidence coindition to require 2 channels, 0 and 1, and activate channels 0 and 1

with this command: WC 00 13. See Table 11.2 for the commands for each channel pair.

• Increase the voltage on channel 0 until you just start to see hits. There is a blue LED next

to each channel that begins to light up when there are any hits.

• Enter the command ST 3 1. You will see something like this:

DS 00000035 00000368 00000000 00000000 0000000C

The first column after DS is the rate of hits per minute on channel 0, followed by channel

1, channel 2, channel 3 and the coincidence rate. In this example, channel 0 is the channel

for which you are trying to determine the plateau, channel 1 is the reference channel (which

should maintain a fairly constant rate throughout the exercise) and channels 2 and 3 are not

active, and therefore read 0. The coincidence rate is what is used to determine the plateau

as seen in Figure 11.4

• Increase the voltage in increments of 25 mV or so and record the results of the command ST

3 1 each time. Make a plateau plot and determine the correct PDU setting for channel 0.

• Repeat to make plateau plots for channels 2 and 3, keeping channel 1 as the reference channel.

Then set channel 0 to its plateau voltage and use it as the reference channel, and measure

the pleatau on channel 1.

11.2.3 Capturing Data

Once you enter the correct parameters and connect to the Quarknet board, you should see the data

stream in hyperterminal. If you do not see any text in the hyperterminal screen, try typing ”CE”
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Table 11.1: WC settings for reading out single channels, i.e. to set the rate for the reference channel.

Single Channel command

0 WC 00 01

1 WC 00 02

2 WC 00 04

3 WC 00 08

Table 11.2: WC settings for collecting pairs of channels in coincidence

Channel pair command

0,1 WC 00 13

1,2 WC 00 16

1,3 WC 00 1A

and Enter. Once you can see the data stream and you know you are succesfully connected to the

DAQ board, type ”CD” to disable the counters and the data stream should stop. This is not nec-

essary, but it is easier to enter the Quarknet card settings when the data stream is disabled. Before

you continue, it’s a good idea to start capturing text from HyperTerminal so that all the settings

you input can be read at the beginning of the data file. In the HyperTerminal window, choose

Transfer>Capture Text... and browse for the folder set up in My Documents>muonDecay data,

enter the filename, and press ”Open.” To keep the folder of data most organized, name the data

file using the format YYYYMMDD AB.txt where AB are your first and last initials.

You communicate with the Quarknet card via the HyperTerminal using text commands.

Table 11.3: Some Quarknet commands and their meanings

Command Function

H1, H2 help menu
DG Display GPS Info, Date, Time, Position and Status
DC/WC Display/Write settings of control registers
DT/WT Display/Write settings of time measurement chips (TMC)
V1 View setup registers
TL Set threshold value
SA Save setup

Enter the following commands in HyperTerminal, after TextCapture is enabled as described above:

1. WC 00 2F (this enables all 4 channels and sets a condition that three channels must register

hits in coincidence)

2. WC 01 70 (this sets a veto width to the maximum value, although veto is not used in this

experiment)

3. WC 02 FF
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Figure 11.5: Location of the TPVTH ports (left) and the DEBUG port (right).

4. WC 03 07 (this command and the command above set the coincidence gate window to about

20 microseconds)

5. DG (this shows the status of the GPS connection)

6. DC (this shows the current value of the control registers, should be 2F 70 00 04)

7. WT 01 00

8. WT 02 04 (this and the command above set the read/write delay to 40 ns)

9. DT (this shows the current value of the delcay registers, should be 00 00 04 00

10. V1 (this displays the thresholds and gate widths)

11. TL 4 700 (this sets the threshold to 700 mV)

12. ST 3 5 (this sets the status line to read out the counts every 5 minutes)

13. SA 1 (this saves the setup)

Once all the settings for the experiment have been set up, type the command CE into the terminal

to display the counters, and leave HyperTerminal open to collect the data for at least a few

days or longer for the muon lifetime experiment. When you have collected all the data you want

to analyze type CD to disable the counters and end text capture in HyperTerminal by choosing

Transfer>Capture Text>Stop. You may now close HyperTerminal without saving any connection

settings.
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11.2.4 Extracting Decay Lengths

The data is in hexadecimal format. A python program on the Windows control computer will

look for events where two signals are observed in the same channel (the muon stopping and then

decaying into an electron), and extract the time difference between them in decimal form. This

will form the basis of your decay time analysis.

To run the program, open the Windows command prompt and type cd “My Documents”, cd

muDecay. Next, type the command ”python muDecay.py” This will start the data analysis program

and ask for a data file to analyze. Browse to the data file you just collected in HyperTerminal and

select ”Open.” Depending on how large the data file is, it may take a few minutes for the program

to complete. Once the program is finished running, there should be a file in the muonDecay data

directory which has the same name as the data file with ” decays” appended to the end of the

filename. This file contains the decay length of each decay event and can be imported into any text

processing or data analysis program that can do histograms.

11.3 Analysis and Questions

1. Plot your plateau curves on a log-y plot.

2. Using Excel or a custom program you’ve written, count the number of candidate decays in each

0.5 µs interval in the range 0-20 µs. Correct the number of counts for the random background

coincidences, which will be in the tail end of the distribution at large time differences. Present

the results in a table. Also make a log-y plot of number of candidate events versus time.

Include error bars (which will be statistical in nature: what is the correct error to use in this

case?)

3. All PMTs afterpulse, that is, a secondary pulse will sometimes follow the primary pulse pro-

duced by scintillation light. Afterpulses are usually associated with collisions between gas

molecules and the electron cloud produced by PMT amplification. (The interior of the PMT

is ideally a vacuum, but in reality it contains a small amount of gas.) The collisions excite

or ionize the molecules, after which the ions can be accelerated and collide with the photo-

cathode or one of the dynodes, producing additional electrons which are then amplified or

the molecules can de–excite, producing photons which can then be absorbed by the photo-

cathode to produce more photoelectrons. Afterpulses typically occur within a fraction of a

microsecond after the primary pulse. For measurements of the muon lifetime, afterpulsing

gives rise to fake delayed coincidences, the primary pulse due to the deposition of energy by

a muon passing through the scintillator and the afterpulse mimicking the energy deposit due

to the muon decay. Is there evidence for afterpulsing in your data? Explain.

4. Delayed coincidences can also occur due to two independent pulses randomly occurring closely

in time with each other. Two muons passing through the scintillator in quick succession is

one such way this could happen. The probability of a so–called accidental delayed coincidence
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will typically be very small in this experiment but not necessarily negligible. Is there any

evidence for accidental delayed coincidences in your data? Explain.

5. Using the method of least squares, obtain an estimate of the muon lifetime from your data.

(Note that the measurement uncertainties should be time–dependent.) Also estimate the

uncertainty in your estimate. Explain how you dealt with the effects of any afterpulsing and

delayed coincidences in applying the method.

6. Compare your measured value for the muon lifetime with the accepted value. Are they

consistent within uncertainties? Explain.
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12
Planck’s Constant from LEDs

In this experiment you will determine the quantity hc/e by analyzing the current-voltage charac-

teristics and light output of light-emitting diodes (LEDs).

12.1 Introduction

Max Planck (1858-1947) was an early pioneer in the field of quantum physics. Around 1900 Planck

developed the concept of energy quantization to explain the spectral distribution of blackbody

radiation.[15] This idea is fundamental to the quantum theory of modern physics. Planck received

a Nobel Prize for his work in the early development of quantum mechanics in 1918. Planck proposed

that atoms absorb and emit radiation in discrete quantities given by

E = nhf (12.1)

where n is an integer known as a quantum number, f is the frequency of vibration of the atom, and

h is now known as Planck’s constant. The smallest discrete amount of energy radiated or absorbed

by a system results from a change in state whereby the quantum number n of the system changes

by one.

In 1905 Albert Einstein (1879-1955) published a paper[16] in which he used Planck’s quantization

of energy principle to explain the photoelectric effect. The photoelectric effect involves the emission

of electrons from certain materials when exposed to light and could not be explained by classical

models. Einstein assumed that the electrons absorbed one quantum of electromagnetic energy at

a time and that the energy of this quantum (photon) is

E = hf =
hc

λ
(12.2)

where f is the frequency of the light and λ is its wavelength. In Eindstein’s model, owing to the

discrete nature of light, an electron would only be ejected if the photon energy was greater than

the energy binding the electron to the metal. Einstein received the Nobel Prize in Physics for

this work in 1921. Niels Bohr (1885-1962) used Planck’s ideas on the quantization of energy as a

starting point in developing the modern theory for the hydrogen atom. Robert Millikan made the

first measurement[17] of Planck’s constant in 1912. The best current value for Planck’s constant

is[18]

h = 6.62606896(33)× 10−34 J · s = 4.13566733(10)× 10−15 eV · s (12.3)

The two digits in parentheses denote the standard uncertainty in the last two digits of the value.

In this experiment, you will use the current-voltage relationship of a set of light emitting diodes
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(LEDs) to measure Planck’s constant.

12.1.1 Light-Emitting Diodes (LEDs)

An LED is a semiconductor device that emits electromagnetic radiation at (typically) optical and

infrared frequencies. The device is a junction between p-type and n-type semiconductors, known as

a p-n diode, usually GaAs-, GaP- or SiC-based materials. They emit light only when an external

applied voltage is used to bias the diode above a minimum threshold value. The gain in electrical

potential energy delivered by this voltage is sufficient to force electrons to flow out of the n-type

material, across the junction barrier, and into the p-type region. This threshold voltage for the

onset of current flow across the junction and the production of light is Vo.

The emission of light occurs after electrons enter into the p-type region (and holes into the n-region).

In the p-type region, the electrons are a small minority surrounded by many holes (in this context,

essentially the anti-particles of the electrons) and they will quickly find a hole to recombine with.

In this process, the electron relaxes from the excited state (conduction band) to the ground state

(valence band) while the hole does the opposite. The diodes are called light-emitting because the

energy given up by the electron as it relaxes is predominantly released as a photon. Above the

threshold value, the current and light output increase rapidly with the bias voltage across the diode.

electronhole

p type n type

+ -

conduction band

valence band

Fermi level

band gap

recombination

light

+
long

-
short

Figure 12.1: The electrons and holes flow over a barrier at the p-n interface when they acquire sufficient potential energy
through the applied bias voltage.

The most important energy scale is set by the so-called ‘band gap’ Eg, the energy difference be-

tween the conduction and valence bands. This band gap is a property of the materials that make

up the diode and can be tuned over a wide variety of energies from the infrared to the ultraviolet.

All electrons and holes, once excited by the applied voltage Vo, release the same energy Eg when

they relax, and thus only photons of a specific energy are emitted.
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Based only on these facts, we know enough to predict the minimum voltage required for light

emission. If only photons of a specific energy (and hence, a specific color/wavelength/frequency)

are emitted, then regardless of the mechanism of conduction in the diode, we should expect nothing

to happen until the electrical potential energy supplied to the LED is equal to the energy of the

photons emitted. In other words, we imagine that the potential energy of each charge injected

into the LED is converted completely to light energy. Right at the threshold voltage, the electrical

energy is just equal to the photon energy, which should in turn be equal to the band gap. The

quanta of energy or photon has an energy E=hf , and an electron at a potential Vo has a potential

energy eVo, so the relation between the photon energy and the threshold voltage Vo, is given by

conservation of energy:

eVo = Eg = hf =
hc

λ
(12.4)

where f and λ are the frequency and wavelength of the emitted photons, c is the speed of light, and

e is the electronic charge. The quantity hc/e can thus be determined by separate measurements of

the threshold voltage and the emission wavelength:

hc

e
= λVo (12.5)

There are two ways to analyze this data: you can average the values of λVo, or you can plot Vo vs.

1/λ, in which case the slope of the plot will be hc/e. The latter will account for any systematic

offsets.

The accepted value of hc/e is 1.2398 × 10−6 eV · m. Since the speed of light is defined exactly

in the SI system, determining hc/e is equivalent to determining h/e (which you can compare to

your photoelectric experiment, Sec. 8). Using a known value for the electron charge (for example,

obtained from your Millikan experiment later this semester, Sec. 15), you can determine Planck’s

constant h by itself.

Figure 12.2: Schematic of a 5 mm round LED, one of the most common types of LEDs. From http: // commons. wikimedia.

org/ wiki/ File: LED,_5mm,_green_ ( en) .svg
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12.1.2 “Bamalab” boxes

In this experiment, you will be using the ‘Bamalab’ software and hardware to measure the current-

voltage characteristics of several LEDs in order to determine their threshold voltages. The Bamalab

box is a computer controlled, USB-driven box that has four basic functions: (1) sourcing current,

(2) sourcing voltage, (3) measuring current, (4) measuring voltage.

Current sourcing: current must always have a closed path to flow through. When using the

current source (+Iout, −Iout), imagine that current flows from the red positive terminal (+Iout),

through your device, back to the black negative terminal.

Voltage sourcing: the red terminal is the positive voltage, the black is the negative voltage.

Applying a potential difference of, e.g., 1 Volt means that Vred−Vblack =1 V.

Voltage measurement: the same polarity convention applies - red is positive, black is negative.

Measuring a potential difference of, e.g., 1 Volt means that Vred−Vblack =1 V.

Current measurement: the same polarity convention applies - red is positive, black is negative.

Measuring current is slightly different, however: current must flow into the +Iin terminal and back

out of the −Iin terminal to be measured, thus the current meter is in series with your device.

12.2 Objective

In this experiment, you will learn how to perform basic current-voltage characteristics for electrical

devices and measure the emission wavelength of a monochromatic light source.

Hypothesis: Comparing the threshold (“turn-on”) voltage for light-emitting diodes to their emit-

ted wavelength, one can determine hc/e.

12.3 Preparatory Questions

You should touch on these questions in your report.

1. A light-emitting diode (LED) emits blue photons of wavelength 480 nm. What would be the

minimum voltage you would expect to apply to the LED before it emits light?

2. The wavelength of a green light is 5.5 × 10−7 m. What is the approximate frequency of this

kind of light? What is the photon energy?

3. Why can’t we use incandescent or fluorescent lights for this experiment?
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12.3.1 Relevant Reading

Taylor[1], Ch. 2, 3,8

Pfeffer & Nir[2], Ch. 2.2.1-3

12.4 Supplies

1. ‘Bamalab’ electrical supply / measurement box

2. 6 banana cables

3. 4-5 LEDs (infrared, red, green, blue, UV)

4. lab notebook and USB drive for saving spectra

5. (optional) Ocean Optics USB-600 ‘Red Tide’ spectrometer or diffraction grating

12.5 Suggested procedure

12.5.0.1 Starting the Bamalab Software

Start the software by double clicking the “Shortcut to Bamalab” icon on the desktop.

Figure 12.3: Introductory screen after opening the ‘Bamalab’ software.

12.5.0.2 Checking your Bamalab box

Occasionally, components of your Bamalab box may stop functioning, or at least you may have

reason to believe so. Fortunately, there is a simple procedure for verifying your Bamalab box.

This procedure presumes that the previous stage - starting the software and verifying the USB

connection - has been successfully completed.

Voltage input and output First, open the “multimeter” panel under the “dc Circuits” tab in

the software. This should bring up a panel like the one shown in Fig. 12.4. From the “Source” pull-

down menu, select “Voltage,” and also select “Voltage” from the “Measure” pulldown menu. After
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performing each action, the middle portion of the window should change to reflect your choices.

Figure 12.4: Multimeter panel.

Next, using two “banana” cables, connect the voltage input and output together. Do this by con-

necting “+Vin” on one side of the box to “+Vout” on the other side, and similarly connect “−Vin”

to “−Vout.” Now click the “on” button under “Voltage Output” portion of the screen. The circle

just above the “on” button should now be green. Adjust the voltage output dial to some moderate

value, perhaps 1.5 or 2 V. You are now supplying voltage from the Vout terminals.

In the “Voltage measurement” portion of the screen, click “on.” The circle above the “on” button

should turn red. Now you are measuring the voltage at the Vin terminals, which are connected di-

rectly to the Vout terminals. If everything is functioning properly, the voltage measurement should

be very close to your output voltage. Finally, change the voltage output dial to some new value

(say, 3 V). You should see the “voltage measurement” indicators change to follow the change in

output, in real time. Variations of 10−15 % between output and input are tolerable. If the above

is successful, your voltage sourcing and measuring are OK!

Current input and output If you have just performed the previous step, turn off the voltage

output and measurement. On the multimeter screen, elect to source and measure current now. The

output and measurement regions of the screen should change after you do this. Using two “banana”

cables, connect the current input and output together. Do this by connecting “+Iin” on one side

of the box to “+Iout” on the other side, and similarly connect “−Iin” to “−Iout.” Operating the

current source also requires you to flip a small switch on the side of the box. Make sure this switch

is set to “on.”
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Now click the “on” button under “Current Output” portion of the screen. The circle just above

the “on” button should now be green. Adjust the current output dial to some moderate value,

perhaps 3 or 5 mA. You are now sourcing current from the Iout terminals. Next, in the “Current

measurement” portion of the screen, click “on.” The circle above the “on” button should turn

red. Now you are measuring the current passing through the Iout terminals, which are connected

directly to the Iout terminals. If everything is functioning properly, the current measurement should

be very close to your output current. Finally, change the current output dial to some new value

(say, 2 mA). You should see the “current measurement” indicators change to follow the change in

output, in real time. Again, variations of 10−15 % between output and input are tolerable. If the

above is successful, your current sourcing and measuring are OK!

12.5.0.3 Testing the LEDs

Check that the LEDs are operational before performing the I(V ) sweep in the next section. Use

the white LED tester; if you do not have this, check with the instructor.

1. Using the 50 mA slot on the tester, place the positive (longer) end of the LED in the upper

hole and the negative end of the LED in the lower hole.

2. Press the “Test” button. You should see the green “Batt” light turn on, and you should see

your LED illuminate. The infrared LED can be checked in a dark room with the camera on

a smartphone.

3. Consult your instructor for a replacement if the LED does not light up.

12.5.0.4 Performing the I(V ) sweep

From the “dc Circuits” menu on the Bamalab main screen, select “Current vs. Voltage.” That

should bring up a screen like the one in Fig. 12.5 below.

Figure 12.5: Current-voltage panel.
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1. Connect the positive end of your LED (longer leg) to +Vout. Using a second wire, connect

+Vout and +Vin together.

2. Using a third wire, connect the negative side of the LED to +Iin, and with a fourth wire,

connect +Iin to −Vin.

3. Finally, connect −Iin to −Vout. This should give you the circuit in Fig. 12.6, which applies a

voltage to LED and ammeter in series and measures the current through and voltage across

the LED.

4. In the “Current vs. Voltage” panel you should already have open, sweep the voltage from 0−4

Volts, in 50 steps or so. You should see a curve which is zero or close to it at low voltage

values, then rises rapidly as voltage increases.

5. Once you have performed this coarse I(V ) scan, clear the graph and perform a more detailed

scan starting just below the threshold voltage (where the current begins to rise rapidly) up

to about 3−4 V.i The main point is to capture the threshold behavior and a portion of the

rapid rise

6. When you have a suitable I(V ) characteristic, save the data (File/Save) to your USB memory

device, and measure the rest of your LEDs.

∆Vd

Id

V+
in V−

in

V−
outV+

out

I+
in

I−in

LED

+ -

Figure 12.6: Circuit for measuring I(V ) for a light-emitting diode, with Bamalab box connections labeled. Shaded components
are functions performed by the Bamalab box.

12.5.0.5 Wavelength Determination

The wavelength determination can proceed in three possible ways. First, if you are pressed for

time you may use the tabulated wavelengths in the Appendix on page 126. Do not consider this

to be skirting your laboratory duties: you will perform optical spectroscopy in later experiments!

You can use the color-wavelength charts in the laboratory or in the Appendix to this section as a

iIf you notice the current dropping to zero above a certain voltage, you are probably exceeding the current limit
on the Bamalab box, which is about 8 mA. In this case, reduce the maximum voltage until your maximum current is
below 8 mA.
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rough verification that the table matches your particular LEDs. Keep in mind that you have two

experiments to perform during this laboratory period.

Second, if you have time, you may use the Ocean Optics USB-650 optical spectrometer. The

spectrometer can very quickly (i.e., in a few minutes) measure the emission spectrum (intensity

versus wavelength) for all of your LEDs. If you have already performed the atomic spectroscopy

experiment, and the apparatus is free, this is the fastest and most accurate method. There is a

very good chance that another group is already using the spectrometer, in which case you might

bargain with them for use of the spectrometer for 5 minutes or so . . .

Third, if you have already performed the optics experiment, you may use a diffraction grating and

spectroscope or projection screen to relatively quickly (∼ 15 min) measure the LED wavelengths.

The instructor can help you if you wish to use this method and have not already performed the optics

experiment. Again, if you have time. If you have not already performed the second experiment

(e/k), you may want to simply use the tabulated results.

12.6 Data analysis

12.6.1 Threshold voltage

An operational definition of the threshold voltage could be that value of the bias voltage when the

current reaches 0.01 mA. Extrapolate your I(V ) curves to where they cross 0.01 mA current and

use that as the working value of Vo.

Another way to determine the threshold voltage is to plot log(I) (y) versus V (x), which should

give roughly linear behavior near the threshold. If you fit the straight-line behavior just above

threshold to a linear trendline, you can use the resulting best-fit line equation to determine the

threshold voltage, either as defined above, or by finding where the line intercepts the x axis.

Finally, you can just plot I(V ) and perform a linear extrapolation of the curve (i.e., do a linear

fit and find the x intercept). Over a range of ∼ 0.05 = 0.1 V above the perceived threshold, the

characteristic is quite linear for most LEDs, and this procedure can give quite accurate results. The

main point is that you find a reasonable and systematic way to determine the threshold voltage,

and use the same procedure in analyzing all of your data.

12.6.2 Determination of h/e

From the discussion above, you should be able to determine h/e from your data (given that c is a

constant). Do this for all of your LEDs, taking care to include estimated uncertainties in threshold
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voltage and LED wavelengths.ii. Find h/e for each LED. Using the accepted value for e, determine

h for each LED and the average result for all of your LEDs together (making sure to propagate the

uncertainty correctly). Since you have 3 or 4 measurements of Planck’s constant, you may wish to

find the mean and standard deviation of the mean to quote the uncertainty (see the introduction

to the counting statistics experiment, Sec. 5.).

Then, plot Vo vs. 1/λ and determine hc/e from the slope. Use the uncertainty from the linear

regression calculation. Which method is more accurate?

12.7 Discussion and topics for your report

In addition to the data analysis outline above, below are some questions and topics you may wish

to address in your report.

1. Is your value for h reasonable, i.e., does the range of the value plus or minus the uncertainty

coincide with the accepted value? If not, why?

2. What is the product of the threshold voltage and the emission wavelength? What should it

be?

3. Why is it problematic to determine the threshold voltage from the I(V ) equation governing

a diode?

4. How could you make your threshold determination more accurate? Presume you have use of

an optical spectrometer or light meter.

5. How is this experiment related to the photoelectric experiment you have/will perform?

6. What materials might be used to give the colors for your particular LEDs?

7. How can you create interior white lighting with discrete LED sources?

Visible Spectrum

Figure 12.7: Linear representation of the spectrum of visible light. From http: // en. wikipedia. org/ wiki/ Visible_

spectrum . Numbers are wavelengths in nanometers.

LED Wavelengths

The table below lists the known emission wavelengths for the LEDs provided in the laboratory, as

measured by the same USB-650 Ocean Optics spectrometer you will use in later experiments. If

iiFor wavelength uncertainty, you may use the full width at half maximum of the quoted wavelengths in the
Appendix on page 126.
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you do not have sufficient time to verify these measurements yourself with the spectrometer or a

diffraction grating, at least make a rough verification with the color-wavelength charts in the lab

or the one above. A printed and verified color chart in the laboratory is preferred, owing to the

wide variety in the quality of color reproduction with monitors and printers.

Table 12.1: LED Wavelengths†

Type Peak λ (nm) FWHM‡ (nm)

Infrared 931.7 40.7
Red 635 20

Yellow 593 14
Green 510 36
Blue 453 32

† Wavelengths should be verified for your particular LEDs.
‡ FWHM = full width at half maximum
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13
Polarization and Diffraction of Light

13.1 Introduction

In the first portion of this experiment, Malus’ Law of Polarization is verified by showing that the

intensity of light passed through 2 polarizers depends on the square of the cosine of the angle be-

tween the 2 polarization axes. Adding a third polarizer makes clear the vector nature of polarization.

In the second portion of this experiment, a diffraction grating consisting of a series of closely-spaced

vertical lines is used to measure the wavelength of the laser light used in the first experiment.

13.1.1 Polarization

In the first experiment, Laser light (λ= 650 nm) is passed through two polarizers. As the second

polarizer (the analyzer) is rotated, the relative light intensity is recorded as a function of the angle

between the axes of polarization of the two polarizers. The plot of light intensity, as measured

by a calibrated photocell, versus the relative angle between the polarizers will be compared with

theoretical results.

A polarizer only allows light which is vibrating in a particular plane to pass through it. This plane

forms the “axis” of polarization. Unpolarized light vibrates in all planes perpendicular to the di-

rection of propagation. If unpolarized light is incident upon an “ideal” polarizer, only half of the

light intensity will be transmitted through the polarizer.

The transmitted light is polarized in one plane. If this polarized light is incident upon a second

polarizer, the axis of which is oriented such that it is perpendicular to the plane of polarization of

the incident light, no light will be transmitted through the second polarizer, as depicted in Fig. 13.1.

However, if the second polarizer is oriented at an angle not perpendicular to the axis of the first

polarizer, there will be some component of the electric field of the polarized light that lies in the

same direction as the axis of the second polarizer, and thus some light will be transmitted through

the second polarizer.

If electric field after passing through the first polarizer at angle θ is ~E o, then the amplitude passing

through the second polarizer will be the projection onto the angle of the second polarizer. That

is, only the component of ~E o parallel to the second polarizer set at angle ϕ will pass, giving an

electric field amplitude Eo cos (θ − ϕ) after passing through both polarizers. Since the intensity of

light varies as the square of the electric field amplitude, the light intensity after passing through

both polarizers is given by

129
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polarizer 1 polarizer 2

unpolarized
light

polarized
light

nothing

θ θ ± 90◦

component 
parallel to 
polarizer 2θ ϕ

polarized
light

θ -ϕ

I∝cos2 (θ -ϕ)

Figure 13.1: Light transmitted through two polarizers. If the polarizers are aligned 90◦ offset, essentially no light passes
through both polarizers. If the polarizers have a relative angle θ−ϕ, the intensity after both polarizers vary as the cosine of the
relative angle squared.

I = Io cos2 (θ − ϕ) (13.1)

This is known as Malus’ law, and we see that the transmitted intensity will vary from zero when

the polarizers have a relative angle of ±90◦ to Io when the polarizers are aligned at 0 or 180◦.i In

retrospect, we can use Malus’ law in this form to find the transmission through a single polarizer.

A beam of unpolarized light can be thought of as containing a uniform mixture of linear polariza-

tion at all possible angles. Since the average value of cos2 θ is 1/2, the transmitted intensity for

unpolarized light through a single polarizer is 1/2.

Real polarizers do not perfectly block light with polarization orthogonal to their polarization axis.

The ratio of the transmission of the unwanted (90◦) component to the desired (0◦) component is

called the extinction ratio, and varies from around 1 : 500 for Polaroid sheets (which we will use)

to about 1 : 106 for Glan–Taylor prism polarizers. In practice, some light is also absorbed by the

polarizer, and the actual transmission will be somewhat lower. Simple Polariod-type polarizers

may have a transmission of ∼ 38%, whereas some birefringent prisms can be considerably higher,

nearly reaching the ideal limit of 1/2. Thus, even for crossed polarizers with a relative angle of

±90◦, even though the theoretical transmission is exactly zero some light will be transmitted.

In the next phase of this experiment, you will explore a curious phenomena when three polarizers

iWhen the polarizers have a relative angle of ±90◦, they are said to be crossed.
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polarizer 1 polarizer 3

unpolarized
light

component 
parallel to 
polarizer 2 θ 90◦

component 
parallel to 
polarizer 30◦

polarizer 2

Figure 13.2: Light transmitted through three polarizers.

are placed in series, depicted in Fig. 13.2. The first and third have a relative angle of 90◦ while the

middle polarizer has an angle θ relative to the first (and therefore an angle 90−θ relative to the

third). If the intensity after passing through the first polarizer is I1, and the intensity after passing

through the second polarizer is I2, then Malus’ law gives:

I2 = I1 cos2 θ (13.2)

The intensity after the third polarizer is found similarly, using the relative angle between the second

and third polarizers:

I3 = I2 cos2 (90− θ) = I1 cos2 θ cos2 (90− θ) (13.3)

Using the trigonometric identities cos (α− β)=cosα cosβ+ sinα sinβ, and 2 cosα sinα=sin 2α we

can simplify this result:

I3 =
1

4
I1 sin2 2θ (13.4)

This is the curious aspect: if we had only the first and third polarizers, which are crossed, the

transmitted intensity would be zero. By inserting an intervening polarizer at an intermediate

angle, we recover a non-zero intensity! This clearly demonstrates the vector nature of the electric

(and magnetic) field. If the intervening polarizer is placed with an angle of 45◦, we see that the

transmitted intensity is 1/4 the original intensity.

13.1.2 Photoresistors

A photoresistor, also called a light-dependent resistor or cadmium sulfide (CdS) cell, is a resistor

whose resistance decreases with increasing incident light intensity. Photoresistors are made of a

high resistance semiconductor. If the incident light is of sufficient energy to excite electrons in the

semiconductor from the valence to conduction band, the resulting free electron and its hole partner

are available to conduct electricity, thereby lowering the resistance. In extrinsic devices, impurities

(or dopants) are added which introduce energy levels nearer the conduction band. This means the

electrons may be excited with even less energy, and lower energy (longer wavelength) photons can
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also influence the resistance. Cadmium sulfide, the usual photoresistor material, has a bandgap of

2.42 eV, corresponding to green light of wavelength 512 nm. Thus, CdS photocells have greatest

sensitivity to green light, and their spectral response in fact closely mimics that of the human eye.

A typical photoresistor is shown in Fig. 13.3.

Figure 13.3: A light-dependent resistor. From http: // en. wikipedia. org/ wiki/ Photoresistor .

In the present experiment, you will shine a laser beam through the polarizers under study and

measure the intensity of the transmitted light by measuring the resistance of a photoresistor.

One complication is that the response of a photocell is a non-linear function of incident light inten-

sity. That is, if the incident light intensity doubles, the resistance will almost certainly not change

by a factor of 2. You will need to calibrate your photocell by first varying the intensity of the laser

in a known fashion using a variable transmission filter, and measuring the resistance versus percent

transmission. Once this characteristic is known, subsequent measurements of resistance (using the

same source of illumination) can be converted into accurate measurements of transmission percent-

age.

Typically, for a photoresistor the resistance R exhibits a power law characteristic as a function of

incident intensity. If the full (unblocked) intensity of the source is Io, and the resistance at that

intensity is Ro, the behavior should follow the form

R

Ro
= a

(
I

Io

)b
(13.5)

where a∼ 1 and b∼−0.5 are constants to be determined for your photoresistor. After measuring

your R(I) characteristic, you will perform a least-squares regression to determine the coefficients for

the power law above. This will calibrate your photocell and allow relative intensity to be accurately

determined from a resistance measurement.

13.1.3 Diffraction Grating

You may want to review the basics of single- and multiple-slit diffraction before reading this section,

which can be found in essentially any introductory electricity and magnetism or optics text.

A diffraction grating is an optical component with a regular pattern, in this case many thousands

of parallel lines. The form of the light diffracted by a grating depends on the structure of the
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elements and the number of elements present, but all gratings have intensity maxima at angles θn

which are given by the grating equation

d (sin θn + sin θi) = nλ. (13.6)

where θi is the angle at which the light is incident, d is the separation of grating elements and

n is an integer which can be positive or negative. The light diffracted by a grating is found by

summing the light diffracted from each of the elements, and is essentially a convolution of diffraction

and interference patterns. In the present experiment, you will measure the diffraction angle and

use the known grating spacing to determine the wavelengths of the lasers used in the preceding

experiments.

13.2 Objective

Verify the dependence of transmitted light intensity on the angle between two or three polarizers

placed in series. This demonstrates the basic functionality of a liquid crystal display (LCD), where

the central polarizer is a twisted nematic liquid crystal whose polarization can be controlled by

the application of a small voltage. Polarization also plays a crucial role in some newer 3D movie

technologies.

Verify that the wavelength of light may be measured by diffraction through a grating of closely-

spaced lines. You will use this technique in later spectroscopy labs.

Hypothesis: The intensity of light passing through two polarizers is proportional to the square

of the cosine of the relative angle between the polarizers’ axes. A simple extension of this model

gives the intensity after passing through three polarizers. The position of diffracted monochromatic

light beams after passing through a grating of a known spacing of vertical lines may be used to

determine the wavelength of the light.

13.3 Preparatory Questions

You should touch on these questions in your report.

1. For 3 polarizers, what is the angle between the middle polarizer and the first polarizer to get

the maximum transmission through all 3 polarizers?

2. For an incident wavelength of λ=632 nm, what do you expect the angle θ to be for the first

diffracted beam with a diffraction grating of 600 lines/mm?

13.3.1 Relevant Reading

Taylor[1], Ch. 2, 3

Review of basic wave optics (e.g., Serway, Halliday & Resnick, etc.)
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13.4 Supplies

1. Red diode (λ≈650 nm) and green (λ=543 nm) laser

2. 3 Polarizers (with angular scale)

3. 1 Variable transmission filter

4. 48 mm or 22 mm convex lens

5. 1 Diffraction grating

6. 1 Diffraction optics wheel

7. 3 Magnetic optical component holders

8. Magnetic optical rail

9. 1 Photoresistor, mounted to optical component holder

10. Digital voltmeter

11. Safety goggles for red & green lasers

12. 2 banana cables

13. lab notebook

13.5 Suggested procedure

The first task is to set up the optical rail system and collect the relevant components listed above.

13.5.1 Setup

1. Once you have the required items, place the laser on one end of the magnetic optical rail.

You may choose either the red or green laser for the polarization experiment. The red diode

laser has built-in positioning, which may be more convenient.

2. At all times, BE CAREFUL NOT TO DIRECTLY VIEW THE BEAM OR ITS DIRECT

REFLECTION. Use the green safety googles with the red laser, and vice-versa.

3. Plug the laser in to the nearest outlet, taking care that the cord is secure and will not be

disturbed during your measurements – aside from the obvious safety issue of tripping over

loose cords, vibrations in the cord will be coupled into your optical system and make your

readings more variable. Vibration isolation is important! Do not turn on the laser yet.

4. Place the photodiode in its component holder on the opposite end of the rail.

5. Connect the photoresistor to the digital voltmeter using the banana cables (polarity is not

important), again taking care to secure the cables against vibrations.
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6. Turn on the laser. Do not, under any circumstances, stare into the beam or point it into your

eye directly. Though the lasers we are using are not dangerous per se, extended exposure can

still cause vision impairment. Align the laser spot such that it falls directly on the center of

the photocell.

7. Turn on the digital voltmeter, and set it for a resistance (“ohms”) measurement. Set the

voltmeter range at 20 kΩ, and do not change the range throughout the experiment.ii The

resistance of your photoresistor under full illumination of the laser should be approximately

0.5−1 kΩ

8. You may wish to use a short focal length lens to focus and “steer” the beam onto the pho-

toresistor; a 48 mm convex lens works well. If you choose to use a lens, leave it in place for

all measurements to maintain your calibration.

13.5.2 Calibrating the Photoresistor

1. Place the variable transmission filter in the path of the laser beam using an optical component

holder, such that the beam passes through the 0% transmission region. Place the filter as

close to the photoresistor as possible, as the scattering by the filter will “spread” the beam.

2. Record the resulting resistance of the photoresistor.iii

3. Move the variable transmission filter such that the 20% transmission window intercepts the

beam, and record the resistance. Repeat for 40, 60, 80, and 100% transmission and complete

the table of transmission and the corresponding photoresistance below. Include the estimated

uncertainty in the resistance.

4. Make a plot of your resistance (y) versus transmission (x) data in, e.g., Excel and perform a

power-law regression (termed a “trendline” in Excel). Alternatively, you may make a table of

logR versus log T and perform a linear regression, which can be performed on most handheld

calculators. Do not include the 0% transmission point in your trendline analysis . . . think

about that for a minute.

5. Verify that your fit function predicts approximately the correct resistance for a given trans-

mission percentage, and note the fit parameters and R2 value.

If you wish to obtain a more accurate calibration, there are two simple suggestions: first, use a

second transmission filter in series to have more calibration points; second, shield as much ambient

light as possible, both during the calibration and following experiments. For the latter suggestion,

shielding the region surrounding the detector is sufficient, e.g., using a small box or tube.

iiAt a fixed range, the voltmeter performs a resistance measurement by sourcing a known current and measuring
the resulting voltage. Lower resistance ranges use higher currents. Since your semiconductor photoresistor is a
non-ohmic device, changing the current will change the resistance value. Thus, if you change the range during your
measurements, you will not be able to compare all of your data together.

iiiYou will also be measuring the ambient light as well, which we are assuming is constant. For this to be true,
you should be careful not to read the resistance while, e.g., your shadow is covering the photoresistor. Make each
measurement in the same way as much as possible.

PH255: Mod. Phys. Lab P. LeClair, J. Busenitz, A. Piepke, D. Williams



136 13.5 Suggested procedure

Table 13.1: Photoresistor calibration

Transmission R (kΩ)

0.20
0.40
0.60
0.80
1.00

13.5.3 Two Polarizers

Now you are ready to verify Malus’ law.

1. Place a single polarizer in the beam path. Leave the transmission filter in place near the

photodiode such that the beam passes through the now-calibrated 100% transmission region

for all measurements.iv

2. Verify that the beam is still falling on the photoresistor.

3. Record the photodiode resistance. This corresponds to the intensity after passing through a

single polarizer, i.e., Io.

4. Place the second polarizer in the beam path, such that each polarizer about 1/3 of the way

along the space between the laser and photoresistor. Again, leave the transmission filter in

place at 100%.

5. Set the both polarizers to 0◦.

6. Align the elements by checking that the beam reflected from each element falls near the center

of the previous element.

7. Verify that the beam is still falling on the photoresistor.

8. Record the resistance, which corresponds to the light intensity.

9. Vary the angle of only one polarizer in 10◦ increments up to 180◦ and record the resistance

values.

10. Record a few extreme points at, e.g., 350 and 190◦ to ensure that the minima and maxima

are well-located.

11. Using your calibration function for the photoresistor, calculate the relative transmission cor-

responding to each resistance and complete the table below.

13.5.4 Three Polarizers

1. Set the first polarizer to 0◦ and the second to 90◦. Place a third polarizer between the two

polarizers you already have. Again, leave the transmission filter in place for 100% calibrated

transmission.

ivEven the so-called 100% transmission region results in some loss in intensity due to scattering by the plastic film.
Leaving the filter in at 100% insures that your calibration above remains valid for absolute intensities.
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Table 13.2: Intensity versus relative angle between polarizers

θ (◦) R (kΩ) Transmission

single pol.
350

0
10

. . .
170
180
190

2. Repeat the procedure above, varying the angle of only the central polarizer.

13.5.5 Diffraction Grating

You can now remove all optical components from the rail except for the laser.

1. Place the wooden block with graph paper at the far end of the rail. Center the laser beam

on the center of the graph paper.

2. Insert the diffraction grating (with a magnetic mount) between the laser and graph paper.

Adjust its horizontal position until you see a central laser spot and two diffracted spots on

either side of it.

3. Align the grating and laser such that the incident beam is normal on the grating (i.e., θi=0).

An easy way to do this is to check that the beam reflected from the grating hits the center of

the laser.

4. Carefully measure the positions of the central spot and the two diffracted beams.

5. Carefully measure the distance between the grating and the graph paper.

6. Move the grating close enough to observe two more sets of diffracted spots (for a total of 5

spots, including the central beam). Measure the spot positions.

7. Switch to the other color laser and repeat the measurements above.

8. Qualitatively explore the patterns resulting when you project the laser beam through the

various features on the diffraction optics wheel.

If there is time: Using the photoresistor, measure the intensity of the central and first two pairs of

diffracted spots.

13.6 Data analysis

13.6.1 Two Polarizers

1. Plot the relative transmission versus angle, including error bars corresponding to the propa-

gated error due to resistance fluctuations and your measurement of the polarizer angles.
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2. On the same plot, include a calculated response from Malus’ law, varying the parameters

to determine the initial intensity and any angular offset until you achieve a satisfactory fit.

Minimizing χ2 is a good way to achieve this!

13.6.2 Three Polarizers

Repeat the analysis above, including a calculated response from Eq. 13.4.

13.6.3 Diffraction

From the positions of the spots and the distance to the grating, calculate the sine of the angle defined

by the beam incident on the grating, the central beam on the graph paper, and the diffracted spots.

If the optical elements are aligned for normal incidence of the beam on the grating, the nth spots

away from the central beam should have a position governed by

nλ = d sin θ (13.7)

where n is the order of the spot (n= 1 for the spots immediately following the central beam, λ is

the incident wavelength, and d is the grating spacing (i.e., the inverse of the “lines per meter” of

the grating). From your distance measurements, determine λ for each laser, including the sources

and magnitude of the uncertainties.

13.7 Format of report

You may choose one of the following formats for your report:

1. two-page memo (excluding required plots)

2. group oral presentation

3. formal written lab report

4. research proposal

Further details and templates are provided for each of these formats. Keep in mind that over the

course of all of the one-week experiments you must do each type of report (and two formal lab

reports).

13.8 Discussion and topics for your report

In addition to the data analysis outline above, below are some questions and topics you may wish

to address in your report.

1. How does the three-polarizer experiment relate to a liquid crystal display (LCD)? How can

you prove that your cell phone display uses liquid crystal technology? Hint: try viewing it

through a polarizer!
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2. Why are polarized sunglasses useful?

3. Explain how polarization is used in some recent 3D movie technologies.

4. Does the order of the polarizers in the three polarizer experiment matter? Why?

5. How are different sorts of common polarizers constructed? What is the mechanism for pro-

ducing polarized light?

6. How accurate is this technique of wavelength measurement? How could you improve it?

7. For what other experiments in this course will the diffraction measurement have relevance?

8. You can observe diffraction in a household setting with a simple laser pointer. A good

“grating” is a CD or DVD disk. Why?

9. Discuss qualitatively the patterns resulting from the features on the optics wheel. Why do

they appear the way they do?
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14
Fine Structure in Atomic Spectra

14.1 Introduction

In this experiment, we will employ a plane diffraction grating, collimating optics, and a telescope

to form a spectrometer, which we will use to measure a visible atomic emission lines of sodium

(Na) and mercury (Hg). We will use the Hg lines to calibrate the spectrometer and subsequently

determine the energy level diagram of the low lying levels of Na and the spin-orbit splitting of the

3p configuration.

14.1.1 Diffraction Grating

In this experiment, we will use a plane diffraction grating, the large N limit of diffraction by

multiple parallel slits. Diffraction gratings can be made by ruling a large number of equidistant

lines on a glass substrate. Most gratings today, however, are replicas (molds of ruled gratings).

Parallel light rays incident on a diffraction grating produces a series of sharp spots at varying angles

with respect to the incident beam. For parallel light incident on a diffraction grating with angle θi

, the positions of the maxima are given by

pλ = d (sin θp + sin θi) (14.1)

where d is the spacing between lines of the grating, θp the diffraction angle, θi the angle of incidence

with respect to the grating normal, and p designates the order of the spectrum (see Fig. 14.1). It is

clear from Eq. 14.1 that for fixed p, the angle θp will be a function of the wavelength of the light λ.

Thus, if we illuminate the grating with parallel rays of light composed of several wavelengths, each

wavelength will emerge with a different angle. Note, however, dispersion only occurs for |p|≥1. At

zero order, θp=0, we will see all the wavelengths.

The diffraction grating is a particularly simple instrument to use for studying the components of

light produced by an excited atom. When the electrons in an atom are excited, they return to lower

states by emitting light of specific wavelengths known as spectral lines. The spectrum of an atom

is one of its basic identifying signatures. The existence of many elements in astronomical studies is

often established by measurements of their spectra. Atomic spectroscopy has also played a funda-

mental role in the development of quantum mechanics, and the great theoretical and experimental

importance of atomic spectroscopy is well established.

14.1.2 Sodium Atom

The structure of Na is more complicated than that of H because of the presence of 10 additional

electrons. Although these electrons are tightly bound in the 1s, 2s and 2p levels, they produce a
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Figure 14.1: Schematic illustration of diffraction of light by a diffraction grating. Various orders of the spectrum are shown.

significant affect on the energy of the outer electron in the 3p level.

The well known bright doublet which is responsible for the bright yellow light from a sodium lamp

may be used to demonstrate several of the influences which cause splitting of the emission lines of

atomic spectra. The transition which gives rise to the doublet is from the 3p to the 3s level, levels

which would be the same in the hydrogen atom. The fact that the 3s (orbital quantum number = 0)

is lower than the 3p (l=1) is a good example of the dependence of atomic energy levels on angular

momentum. The 3s electron penetrates the 1s shell more and is less effectively shielded than the

3p electron, so the 3s level is lower (more tightly bound). The fact that there is a doublet shows

the smaller dependence of the atomic energy levels on the total angular momentum . The 3p level

is split into states with total angular momentum j=3/2 and j=1/2 by the magnetic energy of the

electron spin in the presence of the internal magnetic field caused by the orbital motion. This effect

is called the spin-orbit effect. In the presence of an additional externally applied magnetic field,

these levels are further split by the magnetic interaction, showing dependence of the energies on

the z-component of the total angular momentum. This splitting gives the Zeeman effect for sodium.

The magnitude of the spin-orbit interaction has the form µzB= µBSzLz. That is, the spin-orbit

interaction can be regarded as an internal magnetic field which raises or lowers the energy of

electrons according to their spin. In the case of the sodium doublet, the difference in energy for

the 3p3/2 and 3p1/2 comes from a change of 1 unit in the spin orientation with the orbital part

presumed to be the same. The change in energy is of the form

∆E = µBgB (14.2)

where µB = 57.88µeV/T is the Bohr magneton and g≈ 2 is the electron spin g-factor. This gives

an estimate of the internal magnetic field needed to produce the observed splitting.
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14.1.3 Mercury Atom

The structure and spectra of the Hg is very complicated, due to the large number of electrons

(Z= 80). Mercury is added to fluorescent lights because the large number of different wavelength

lines in the spectra yields an overall color close to white. We will use the most intense mercury

lines to calibrate the spectrometer, and investigate its spectrum more qualitatively.

Figure 14.2: A digital picture of the Hg light source taken with a diffraction grating placed over the lens.

14.1.4 The Grating Spectrometer

The apparatus used in this experiment is schematically shown in Fig. 14.3. It consists of a plane

transmission diffraction mounted on the rotating table of a spectrometer. The spectrometer also

consists of a telescope and a collimator. The telescope can be rotated independently of the colli-

mator about the axis of the table.

Figure 14.3: The experimental apparatus used to study atomic spectra. See the text for further description of the labeled
parts.
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1. Grating holder. Used for mounting the grating. Handle this part with extreme care. The

table on which the grating holder sets can be leveled and rotated.

2. Eyepiece. At the end of the telescope, this eyepiece can be gently pulled or pushed to get a

sharp focus on the cross- hairs without moving their position. This allows the apparatus to

allow for different individual viewing preferences without up- setting the focus of the image

being viewed.

3. Telescope focus. The chrome flange can be rotated to focus the telescope on the image. When

properly focused, the image of an object of infinity falls in the plane of the cross hairs.

4. Collimator slit width adjustment. Allows adjustment in width and also orientation of the slit.

5. Collimator focus. Adjusts the length of the collimator so that the image of the slit appears

to be at infinity. The telescope image of the slit therefore falls on the plane of the cross hairs.

6. Telescope arm clamping and tangent screws. The two screws on the side of the spectrometer

just below the telescope each serve a distinct purpose. The screw projecting radially outward

is the clamping screw (telescope axle lock) which should always be loosened before attempting

to move the telescope. After the telescope is nearly in the desired position, the clamping screw

should be gently tightened. The perpendicular tangent screw (telescope fine adjustment) then

allows for very fine adjustment of the telescope position.

7. Angular position readout, with magnifier. The least division of the main scale is 1/3 degree

and there is a vernier to carry the measurement to 1
3 minute of arc.

Below is a simplified schematic of the key optical elements of the spectrometer, showing the prin-

ciple of operation.

collimator 
slit

collimator

parallel
beam grating

re
d 

lig
ht

green light

diffraction angle

telescope eye

piece

light 
source

Figure 14.4: Principle of operation of the spectrometer.
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14.1.5 Aligning the Spectrometer

First, having focused the eyepiece on the cross hairs, focus the telescope for parallel light (i.e.,

light from infinity) by focusing on an object approximately 100 meters away. Focusing through a

window on a building across the street will do.

Second, put a light source close to the slit of the collimator. Using the telescope, view the slit.

Make the slit as narrow as possible. While looking through the telescope, adjust the focus of the

collimator so that the image of the slit falls on the plane of the cross-hairs and is sharp. Now the

collimator is set to produce a collimated beam, i.e., a parallel beam of light.

Third, mount the grating on the table of the spectrometer. Make sure that the photographic film

from which the grating is made is on the telescope side. Note the position of the telescope when

it is in line with the collimator, i.e., when the slit image is aligned with the cross-hairs. Shine the

light from your desk lamp or flashlight into the open side port of the telescope (near the eyepiece)

to illuminate the cross-hairs. You might find it helpful to place a mirror just behind and flush with

the grating to see the reflected image of the cross-hairs. Once you have located it, you can remove

the mirror and continue with the alignment procedure. Rotate the grating so that the reflected

image of the cross-hairs falls back on the cross-hairs. In this position, the grating is perpendicular

to the optical axis of the telescope. The system is set up to approximately satisfy Eq. 14.1; the

incident beam consists of parallel light falling nearly normally on the grating, i.e., θi = 0. Lock

the grating into place and record the position of the angular scale on the rotating table. Do not

adjust the grating anymore. You will be able to see images of successive orders of the spectrum by

rotating the telescope away from the zero order position.

Figure 14.5: Green, yellow, and red Hg emission lines as viewed through the spectrometer. Note that all three lines are
actually doublets.
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14.2 Procedure for Taking Data

14.2.1 Making Measurements of Various Spectra

As mentioned earlier, the sources you will be observing are mercury and sodium. You will be able

to see first order spectra for all of these light sources. With the spectrometer enclosed in the dark

box, you will also be able to detect some of the lines in second order.

To make measurements, first record the value of the angular scale on the rotating table when the

cross-hairs are aligned with the zero order spectrum (this corresponds to θo). Rotate the telescope

to the right so that the cross-hairs align with a pth order spectral line. Record the angular scale

reading. Then, rotate the telescope so that the cross-hairs align with the corresponding spectral line

on the left side of the zero order spectrum; record the angular scale reading. You should measure

the angle for each spectral line at least twice on each side, giving multiple measurements

of the angle, θp for the pth order. For each color, lock the telescope in place where the cross hairs

are nearly aligned with the spectral line and then use the fine adjustment to precisely center the

cross hairs on the line. In the case of doublets, you should be able to measure both members of

the doublet turning the fine adjustment knob only. Note, you might find it easier to measure all

the lines on one side before measuring them on the other side.

The scale on the spectrometer is a vernier scale. Make sure you understand how to read a vernier

scale. If you do not know how to read a vernier scale, ask your instructor for assistance. When

making your measurements, always rotate the table in the same direction, cw or ccw, to minimize

errors due to hysteresis.

14.2.2 Mercury Spectrum

You will use the Hg spectrum as your wavelength standards to calibrate your spectrometer. The

wavelengths can be on the National Institute of Standards and Technology atomic database website:

(http://physics.nist.gov/PhysRefData/ASD/index.html) or in the attached handout. You

should measure the angles of the five lines (violet, blue, blue-green, green and yellow). Where the

lines may belong to a doublet or a triplet, measure both lines in the case of a doublet but only

the most intense line in the case of a triplet. In the case of a triplet, however, note that the line

measured belongs to a triplet.

14.2.3 Sodium Spectrum

With the sodium lamp, you should measure the wavelengths of the green, yellow and red spectral

lines in first order. Be sure to measure both members of the yellow doublet.
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14.3 Analysis and Discussion

1. For each line you measured, calculate the diffraction angle by taking the difference between

the measured angle for that line and the angle measured for the central maximum. Average

diffraction angles measured for the same emission line and calculate the standard deviation

of the mean. Tabulate the results.

2. From the known wavelengths and measured diffraction angles, you can use Eq. 14.1 to find

the grating spacing d. Do this by fitting λ to d sin θ and extracting a value for d from the fit

parameters. Use the fitting method of linear least squares.

3. Calculate the wavelengths of the measured lines for Na and compare with reference values.

For each line, note which transition is responsible.

4. Calculate the splitting of the yellow doublet in electron volts, and compare to the database

values. What is the effective strength (in Tesla) of the spin-orbit interaction? Discuss the

difference between the observed splitting and the database value in light of measurement

uncertainties.

Appendix 1: Reference Spectral Data

Table 14.1: Hydrogen emission lines, UV-Vis-NIR[11]

λ (nm) I (a.u.) Assignment

383.5384 5 Balmer 9→ 2
388.9049 6 Balmer 8→ 2
397.0072 8 Balmer 7→ 2
410.174 15 Balmer 6→ 2
434.047 30 Balmer 5→ 2
486.133 80 Balmer 4→ 2
656.272 120 Balmer 3→ 2†

656.2852 180 Balmer 3→ 2†

954.597 5 Paschen 8→ 3
1004.94 7 Paschen 7→ 3

† Spin-orbit split lines, 2p1/2 → 1s and 2p1/2 → 1s

Appendix 2: Angular Momentum Correction to Hydrogen Levels

The energies of the stationary states of hydrogen slightly depend on the orbital angular momentum

quantum number l. An improved formula for the energy of the state of quantum numbers n and l

for nonzero l is
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Table 14.2: Selected Sodium emission lines, UV-Vis-NIR[11, 12]

λ (nm) I (a.u.) Assignment

466.5 19 6 2D5/2,3/2 → 3 2P1/2

466.9 19 6 2D5/2,3/2 → 3 2P3/2

474.8 4 7 2S1/2 → 3 2P1/2

475.2 4 7 2S1/2 → 3 2P3/2

497.9 104 5 2D5/2,3/2 → 3 2P1/2

498.3 104 5 2D5/2,3/2 → 3 2P3/2

514.8 23 6 2S1/2 → 3 2P1/2

515.4 23 6 2S1/2 → 3 2P3/2

568.3 130 4 2D5/2,3/2 → 3 2P1/2

568.8 130 4 2D5/2,3/2 → 3 2P3/2

589.0 139 3 2P3/2 → 3 2S1/2

589.6 139 3 2P1/2 → 3 2S1/2

615.4 67 5 2S1/2 → 3 2P1/2

616.1 5 2S1/2 → 3 2P3/2

818.3 90 3 2D5/2,3/2 → 3 2P1/2

819.48 129 3 2D5/2,3/2 → 3 2P3/2

Table 14.3: Selected Mercury emission lines, UV-Vis-NIR[11, 13]

λ (nm) I (a.u.) Assignment

365.02 2800
365.48 300
366.29 80
404.66 1800
407.78 140
433.92 250
434.75 400
435.83 4000
546.07 1100
567.59 160
576.68 240
578.97 100
579.07 280
580.38 140
614.95 1000
671.64 160
690.75 250
708.19 250
709.19 250

En,l =
mee

4

2 (4πεo)
2 ~2n2

[
1 +

e4

(4πεo)
2 ~2c2n

(
1

1 + l + 1
2 ± 1

2

− 3

4n

)]
(14.3)
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where the term ±1
2 corresponds to the spin parallel and antiparallel, respectively, to the orbital

angular momentum.

Appendix 3: Center-of-Mass Correction to the Hydrogen Energies

In a simple calculation of the energies of the stationary states of hydrogen, we pretend that the

proton remains at rest. Actually, both the electron and proton orbit about their common center of

mass. We can show that the energies of the stationary states, taking into account this motion of

the proton, are given by

En = − me4

2 (4πεo)
2 ~2n2

(14.4)

where m is the reduced mass

m =
memp

me +mp
(14.5)

There is a fairly good chance that you’ve not encountered the reduced mass in your previous me-

chanics classes, so we will go through it quickly. Essentially, the reduced mass is an “effective”

inertial mass that can be used solve a two-body problem as if it is a single body problem.

Our system consists of a single proton and a single electron, separated by a distance r described by

a vector ~r . Classically, we expect both particles to orbit about their center of mass. The proton,

being much heavier, will move very little in comparison to the lighter electron, and sit closer to the

center of mass. This is depicted below.i

The center of mass for a simple two-body system like this essentially amounts to finding the point

along their common axis at which their torques would balance.ii If the particles’ positions are

described by vectors ~r e and ~r p pointing from the center of mass toward the electron and proton,

respectively, then this requires

me~r e +mp~r p = 0 or ~r p = −me

mp
~r e (14.6)

Of course, we also know that the ~r =~r e−~r p. Rearranging the first equation and substituting,

~r = ~r e − ~r p = ~r e

(
1 +

me

mp

)
= −~r p

(
me

mp
+ 1

)
(14.7)

This leads us to expressions for the electron and proton orbital radii in terms of their separation

and masses:

~r e = ~r

(
mp

mp +me

)
~r p = −~r

(
me

mp +me

)
(14.8)

iSome neat animations can be found at http://en.wikipedia.org/wiki/Barycenter.
iiPut more simply, if the two particles were on a see-saw, where should the center pivot be?
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Figure 14.6: An electron and a proton, with a separation ~r . The electron sits at a distance re from their center of mass,
and the proton a distance rp from the center of mass.

Here the negative sign for ~r p just indicates that the direction is opposite ~r . Two other interesting

things to note: first, only the relative mass me/mp really matters; second, owing to the fact that

mp�me, the proton will orbit in a much smaller circle than the electron. So much smaller, in fact,

that we are usually well-justified in taking the proton to be at rest. Now, let us write down the

kinetic energy of the two-particle system. We’ll have the kinetic energy of each particle, and their

electrical potential energy :

E =
1

2
mev

2
e +

1

2
mpv

2
p −

kee
2

r
=

1

2
me

(
dre
dt

)2

+
1

2
mp

(
drp
dt

)2

− kee
2

r
(14.9)

Using the expressions above, we can write the individual particles’ velocities in terms of the rate

at which the separation changes with time:

ve =
dre
dt

=

(
dr

dt

)(
mp

mp +me

)
vp =

drp
dt

=

(
dr

dt

)(
me

mp +me

)
(14.10)

But d~r /dt is nothing more than the relative velocity of the proton and electron, which we’ll simply

call v:

~v =
d~r

dt
=

d

dt
(~r e − ~r p) =

d~r e
dt
− d~r p

dt
(14.11)

With this definition, we may write the electron and proton velocities asiii

iiiWe don’t really need the vector notation any more, since we’re just going to square them anyway.
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ve = v

(
mp

mp +me

)
vp = v

(
me

mp +me

)
(14.12)

Substituting these expressions into our energy equation,

E =
1

2
mev

2
e +

1

2
mpv

2
p −

kee
2

r
=

1

2
mev

2
m2
p

(mp +me)
2 +

1

2
mpv

2 m2
e

(mp +me)
2 −

kee
2

r
(14.13)

E =
memp

2 (me +mp)
2

(
mpv

2 +mev
2
)
− kee

2

r
=

1

2

(
memp

me +mp

)
v2 − kee

2

r
(14.14)

If we define a quantity m=memp/ (me +mp), known as the “reduced mass,” our energy equation

is identical to that of a single particle of charge −e in an electric potential V =kee/r:

E =
1

2
mv2 − eV (14.15)

We have successfully reduced a two-body problem to a single-body problem. How about the angular

momentum? Taking the center of mass as our origin, the net angular momentum is mvr for each

particle:

L = Lp + Le = me

(
dre
dt

)
re +mp

(
drp
dt

)
rp (14.16)

L = me

(
vmp

mp +me

)(
rmp

mp +me

)
+mp

( −mev

me +mp

)( −rme

mp +me

)
(14.17)

L =
mempvr

(me +mp)
2 (me +mp) =

(
memp

me +mp

)
vr = mvr (14.18)

Again, we have reduced a two-body problem to an equivalent single-body problem: the total angular

momentum is simply the reduced mass times the relative velocity times the separation distance.

We can now apply our quantization condition for the total angular momentum:

mvr = n~ or v =
n~
mr

(n ∈ N1 = {1, 2, . . .}) (14.19)

Substituting this condition into our energy equation:

E =
1

2
m

(
n2~2

m2r2

)
− kee

2

r
=

n2~2

2mr2
− kee

2

r
(14.20)

The definition of a stationary state is a state in which the energy has no time dependence. In

this case, there is no explicit time dependence, but an equivalent condition is to require that the

variation with respect to radius vanishes:
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dE

dt
=
dE

dr

dr

dt
= 0 =

(−n2~2

mr3
+
ke2

r2

)
dr

dt
(14.21)

=⇒ n2~2

mr
= ke2 or r =

n2~2

kme2
(14.22)

Using this extremal radius in our energy equation, we find

E =
n2~2

2m

(
k2m2e4

n4~4

)
− k2me4

n2~2
(14.23)

E =
−k2me4

2n2~2
=

−me4

2 (4πεo)
2 n2~2

(14.24)

For the last line, we noted that ke=1/4πεo. This implies that the hydrogen and deuteriumiv nuclei

will have slightly different emission and absorption lines, owing to the fact that the deuterium

nucleus is about twice as heavy as the hydrogen nucleus. The deuterium transitions should be at

slightly higher energies (lower wavelengths). It is a tiny effect, about a 0.2 nm shift of the 656.3 nm

H line, but quite measurable and in good agreement with this simple model.v Similar effects are

expected and observed for other hydrogen-like systems, e.g., He+ and Li++.

ivDeuterium is hydrogen with a neutron in the nucleus in addition to the proton.
vSee, for example, http://hyperphysics.phy-astr.gsu.edu/Hbase/quantum/hydfin.html.
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15
Charge Quantization

15.1 Objective

Demonstrate that electric charge is quantized and determine the base unit of electric charge.

15.2 Supplies & Equipment

1. Lab notebook

2. Millikan oil drop apparatus and accessories (Pasco)

3. High-voltage power supply (Pasco)

4. Multimeter

15.3 Introduction

The electric charge carried by a particle may be calculated by measuring the force experienced

by the particle in an electric field of known strength. Although it is relatively easy to produce a

known electric field, the force exerted by such a field on a particle carrying only one or several excess

electrons is very small. For example, a field of 105 V/m would exert a force of only 1.6 × 10−14 N

on a particle bearing one excess electron. This is a force comparable to the gravitational force on

a particle with a mass of 10−15 kg!i

The success of the Millikan Oil Drop experiment depends on the ability to measure forces this small.

The behavior of small charged droplets of oil, having masses of only 10−15 kg or less, is observed in

a gravitational and an electric field. Measuring the velocity of the drop falling in air enables, with

the use of Stokes’s law, the calculation of the mass of the drop. The observation of the velocity of

the drop rising in an electric field then permits a calculation of the force on, and hence, the charge

carried by the oil drop.

Although this experiment will allow one to measure the total charge on a drop, it is only through

the careful analysis of the data obtained and a certain degree of experimental skill that the charge

of a single electron can be determined. By selecting droplets which rise and fall slowly, one can be

certain that the drop has a small number of excess electrons. A number of such drops should be

observed and their respective charges calculated. If the charges on these drops are integral multiples

of a certain smallest charge, then this is a good indication of the atomic nature of electricity. How-

ever, since a different droplet has been used for measuring each charge, there remains the question

iMuch of this procedure is reproduced from Pasco document 012-6123D, “Instruction manual and experiment
guide for the PASCO scientific Model AP-8210.” This partial reproduction is only for use in PH255 at the University
of Alabama, as dictated by the copyright notice in 012-06123D.
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as to the effect of the drop itself on the charge. This uncertainty can be eliminated by changing

the charge on a single drop while the drop is under observation. An ionization source placed near

the drop will accomplish this. In fact, it is possible to change the charge on the drop several times.

If the results of measurements on the same drop then yield charges which are integral multiples of

some smallest charge, then this is proof of the atomic nature of electricity.

The measurement of the charge of the electron also permits the calculation of Avogadro’s number.

The amount of current required to electro-deposit one gram equivalent of an element on an electrode

(the faraday) is equal to the charge of the electron multiplied by the number of molecules in a mole.

Through electrolysis experiments, the faraday has been found to be 9.625×107 C per kg of equivalent

weight. Dividing the faraday by the charge of the electron yields Avogadro’s number NA:

9.625× 107 C/kg equiv. weight

1.602× 10−19 C
= 6.025× 1023 molecules/kg equiv. weight = NA (15.1)

15.3.1 Equation for calculating the charge on a drop

An analysis of the forces acting on an oil droplet will yield the equation for the determination of

the charge carried by the droplet.

First, let us consider the case of a spherical droplet of radius r and mass m falling without an

electric field present. In this case, there are only two forces acting on the drop: the gravitational

force Fg pulling it downward, and the frictional (drag) force Fd pushing upward. The drag force

for very small spherical objectsii in a continuous viscous fluid can be accurately modeled by Stokes

lawiii, which gives the drag force asiv

Fd = 6πηrv (15.2)

where Fd is the frictional (drag) force, η is the fluid’s dynamic viscosity, r the radius of the particle,

and v the particle’s velocity. If the particle reaches terminal velocity, this means that the gravita-

tional force is precisely balanced by the drag force. For a spherical drop of mass m, comprised of a

substance of density ρ, the gravitational force is mg= 4
3πr

3ρg, where g= 9.81 m/s2 is the gravita-

tional acceleration of the drop. Figure 15.1a shows the forces acting on the drop when it is falling

in air and has reached its terminal velocity. (Terminal velocity is reached in a few milliseconds for

iiStrictly, for very small Reynolds numbers.
iiiStoke’s law is derived by solving the “Stokes flow” limit for small Reynolds numbers (Re�1) of the Navier-Stokes

equations.
ivSee Appendix 15.7 for a derivation.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab
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the droplets used in this experiment.) At the terminal velocity vf , the forces must balance:

Fg = Fd (15.3)

4

3
πr3ρg = 6πηrvf (15.4)

vf =
2ρgr2

9η
(15.5)

Of course, we have in principle neglected one point: the buoyant force due to the differing density

of the drop and the air. Since the density of the air is only about 1
1000 that of oil, this force may

be neglected.v

Fd

mg

qE

Fd

mg

+   +   +   +   +   +   +   +   + 

-   -   -   -   -   -   -   -   - 

-

Figure 15.1: (a) This schematic shows the forces acting on the drop when it is falling in air and has reached its terminal
velocity. (b) This schematic shows the forces acting on the drop when it is rising under the influence of an electric field.

If the drop in question also has a charge q, then it will experience an additional electric force in an

electric field. Figure 15.1b shows the forces acting on the drop when it is rising under the influence

of an electric field. Here E is magnitude of the electric field, q the charge on the drop, and vr the

velocity with which the particle rises. Adding the forces, we find

qE =
4

3
πr3ρg + 6πηrvr (15.6)

In principle the radius of the particle can be measured, but it is far easier to measure the terminal

velocity. Based on Eq. 15.5, knowledge of the terminal velocity uniquely determines the particle

radius for a given fluid. Eliminating r in favor of vf , and solving for q:

qE =
4

3
πr3ρg + 6πηrvr = 6πηr (vf + vr) = 6πη

√
9ηvf
2gρ

(vf + vr) (15.7)

q =
6π

E

√
9η3

2gρ
(vf + vr)

√
vf (15.8)

vThe correction would involve replacing ρ in the equation above with ρ− ρa, where ρa is the density of air.

PH255: Mod. Phys. Lab P. LeClair, J. Busenitz, A. Piepke, D. Williams
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The electric field E is generated by applying a potential difference V between two parallel conduct-

ing plates, placed a distance d apart. If the spacing d is much smaller than the size of the plates in

any lateral dimension (easily satisfied in the experiment), in the region between the plates the field

is E=V/d. This lets us eliminate E in favor of the more easily measured V and a known distance.

q =
6πd

V

√
9η3

2gρ
(vf + vr)

√
vf (15.9)

Only one small detail remains: Stoke’s law becomes inaccurate when the velocity of falling droplets

is less than about 10−3 m/s. Droplets having this and smaller velocities have radii on the order

of 2µm, comparable to the mean free path of air molecules, a condition which violates one of

the assumptions made in deriving Stokes’s law. Since the velocities of the droplets used in this

experiment will be in the range of 10−4−10−5 m/s, we must add a correction to Stoke’s law. As

it turns out, the correction is straightforward: we need only replace the viscosity by an effective

value, which includes a correction factor (the Cunningham factor):

η −→ ηeff =
η

1 + b
Pr

(15.10)

Here P is the atmospheric pressure, r is the radius of the drop, and b is a constant factor. This

leads us to a more accurate form for the electric charge on a drop:

q = 6πd

√
9η3

2gρ
(
1 + b

Pr

)3 (vf + vr)
√
vf

V
(15.11)

We can regroup this in a somewhat more convenient manner:

q =

[
6πd

√
9η3

2gρ

] [
1 +

b

Pr

]−3/2 [(vf + vr)
√
vf

V

]
(15.12)

The first quantity in brackets is a function of the experimental apparatus and the composition

of the drop alone, and need only be determined once for any particular apparatus. The second

term in brackets is determined for each droplet, while the third term in brackets is calculated for

each change of charge that the drop experiences. Finally, an alternate form you might find more

convenient for your calculations is

q =
4

3
πρgd

√( b

2P

)2

+
9ηvf
2gρ

− b

2P

3 [
vf + vr
V vf

]
(15.13)

Below, we summarize the definitions of symbols used, along with proper units and numerical values

where applicable.
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Symbol Quantity Units Value

q charge coulombs [C]
d separation of plates in condenser meters [m] 7.5× 10−3 m
ρ density of oil [kg/m3] 866 kg/m3

g acceleration of gravity [m/s2] 9.81 m/s2

η viscosity of air Poise, or [Pa s] see plot
b constant [Pa m] 8.23× 10−3 Pa m
P barometric pressure [Pa] 101.325 kPa at 1 atm
r radius of drop [m]
vf velocity of fall [m/s]
vr velocity of rise [m/s]
V potential difference between plates [V]

15.4 Procedure

The following pages are taken from the PASCO write–up for this apparatus and are legally restricted

by copyright law to use for our course only.

Begin legally restricted use material.

PH255: Mod. Phys. Lab P. LeClair, J. Busenitz, A. Piepke, D. Williams
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Equipment
 
Included equipment: 

§ Apparatus platform and plate charging switch 
(see detailed description below) 

§ 12 volt DC transformer for the halogen lamp 
§ Non-volatile oil (Squibb #5597 Mineral Oil, 

density = 886 kg/m3) 
§ Atomizer 

 
Note:  We measured the density of the Squibb Mineral 
Oil and found it to be 886 kg/m3.  However, the 
densities of different lots of mineral oil may vary 
slightly; therefore, for greatest precision, you should 
determine the density of the mineral oil you are using. 
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Components of Platform: 
§ Droplet viewing chamber (see details below) 
§ Viewing scope (30X, bright-field, erect image) 

with reticle (line separation: 0.5 mm major 
divisions, 0.1 mm minor divisions), reticle 
focusing ring, and droplet focusing ring 

§ Halogen lamp (12V, 5W halogen bulb and 
dichroic, infrared heat-absorbing window, 
horizontal and vertical filament adjustment 
knobs) 

§ Focusing wire (for adjusting viewing scope) 
§ Plate voltage connectors 
§ Thermistor connectors (thermistor is 

mounted in the bottom plate) 
WARNING:  Do not apply voltage to the 
thermistor connectors. 

§ Thermistor table (resistance vs. temperature) 
§ Ionization source lever (with three positions:  

Ionization ON, Ionization OFF, and Spray 
Droplet Position) 

§ Bubble level 
§ Support rod mounts and screws (to permit 

mounting of platform on a PASCO ME-8735 
Large Rod Stand, so viewing scope can be 
raised to a comfortable eye level) 

§ 3 leveling feet 
§ Plate charging switch (on a 1 meter cord to 

prevent vibration of platform during a 
switching activity) 

 
Components of Droplet Viewing Chamber 
(Figure 5) 

§ Lid 
§ Housing 
§ Droplet hole cover 
§ Upper capacitor plate (brass) 
§ Plastic spacer (approximately 7.6 mm thick) 
§ Lower capacitor plate (brass) 

o Thorium-232 alpha source (0.008 
mcurie) 

o Electrical connection to upper 
capacitor plate 

§ Convex lens 
Note:  Thorium-232 is a naturally occurring, low 
level alpha-particle emitter with a half-life of 1.41 
× 1010 years.  It is not regulated in its use and 
poses no hazard to the user of the PASCO 
Millikan Oil Drop Apparatus. 

 
 
 

It is recommended that you store the equipment in the 
original packing material.  After unpacking, remove 
the foam insert from the droplet viewing chamber.  
Store the plate charging switch on the Velcro tabs 
located on the platform. 
 
Required Equipment, Not Included: 

§ High voltage, well regulated power supply 
that delivers up to 500V DC, 10 mA 
minimum (for example, the PASCO SF-9585 
High Voltage Power Supply) 

§ Digital multimeter (to measure voltage and 
resistance)(for example, the PASCO SB-
9599A Universal Digital Multimeter) 

§ Patch cords with banana plug connectors (4) 
(for example, the PASCO SE-9415 Banana 
Plug Patch Cord) 

§ Stopwatch (for example, the PASCO SE-
8702A Digital Stopwatch) 

 
Additional Recommended Equipment: 

§ PASCO ME-8735 Large Rod Stand 
§ PASCO ME-8736 Steel Rods, 45 cm (2) 
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Equipment Setup 
 
Adjusting the Environment of the Experiment 
Room: 
 
1. Make the room as dark as possible, while 

allowing for adequate light to read the 
multimeter and stopwatch, and to record data. 

 
2. Insure that the background behind the 

apparatus is dark.. 
 
3. Select a location that is free of drafts and 

vibrations. 
 
Adjusting the Height of the Platform and 
Leveling It: 
 
1. Place the apparatus on a level, solid table with 

the viewing scope at a height which permits 
the experimenter to sit erect while observing 
the drops.  If necessary to achieve the proper 
height, mount the apparatus on two support 
rods (ME-8736) on the large rod stand (ME-
8735) (Figure 6). 

2. Using attached bubble level as a reference, 
level the apparatus with the leveling screws on 
the rod stand or the leveling feet of the 
platform, as is appropriate for your setup. 

 

 

Measuring Plate Separation 
 
1. Disassemble the droplet viewing chamber by 

lifting the housing straight up and then 
removing the upper capacitor plate and spacer 
plate (see Figure 5).  Measure the thickness of 
the plastic spacer (which is equal to the plate 
separation distance) with a micrometer.  Be 
sure that you are not including the raised rim 
of the spacer in your measurement.  The 
accuracy of this measurement is important to 
the degree of accuracy of your experimental 
results.  Record the measurement 

 
Use care when handling the brass plates and plastic 
spacer to avoid scratching them. 
 
All surfaces involved in the measurement should be 
clean to prevent inaccurate readings. 
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Aligning the Optical System 
 
Focusing the Viewing Scope 
 
1. Reassemble the plastic spacer and the top 

capacitor plate onto the lower capacitor plate.  
Replace the housing, aligning the holes in its 
base with the housing pins (See Figure 5).   
 
Note:  The thorium source and the electrical 
connection on the lower capacitor plate fit 
into appropriately sized holes one the plastic 
spacer. 
 

2. Unscrew the focusing wire from its storage 
place on the platform and carefully insert it 
into the hole in the center of the top capacitor 
plate (Figure 7). 

 

 
 
3. Connect the 12V DC transformer to the lamp 

power jack in the halogen lamp housing and 
plug it into a wall socket. 

 
Check to be sure that the transformer is the 
correct voltage:  100, 117, 220, or 240 V. 

 
4. Bring the reticle into focus by turning the 

reticle focusing ring. 
 
5. View the focusing wire through the viewing 

scope, and bring the wire into sharp focus by 
turning the droplet focusing ring. 
Note:  Viewing will be easier for 
experimenters who wear glasses if the viewing 
scope is focused without using the glasses. 

 
Focusing the Halogen Filament: 
 
1. Adjust the horizontal filament adjustment 

knob.  The light is best focused when the 

right edge of the wire is brightest (in highest 
contrast compared to the center of the wire). 

 
2. While viewing the focusing wire through the 

viewing scope, turn the vertical filament 
adjustment knob until the light is brightest on 
the wire in the area of the reticle. 

 
3. Return the focusing wire to its storage 

location on the platform. 
 
Functions of Controls 
 
Ionization Source Lever 
 
1. When the lever is at the ionization OFF 

position, the ionization source is shielded on 
all sides by plastic, so that virtually no alpha 
particles enter the area of the drops. 

2. At the ON position, the plastic shielding is 
removed and the drop area is exposed to the 
ionizing alpha particles emitted from the 
thorium-232. 

3. At the Spray Droplet Position, the chamber is 
vented by a small air hole that allows air to 
escape when oil drops are being introduced to 
the chamber. 

 

 
 
Plate Charging Switch 
 
The plate charging switch has three positions: 
 
1. TOP PLATE –: negative binding post is 

connected to the top plate. 
2. TOP PLATE +:  negative binding post is 

connected to the bottom plate. 
3. PLATES GROUNDED:  plates are 

disconnected from the high voltage supply 
and are electrically connected. 
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Adjusting and Measuring the Voltage 
 

1. Connect the high voltage DC power supply to 
the plate voltage connectors using banana 
plug patch cords and adjust to deliver about 
500 V. 

 
2. Use the digital multimeter to measure the 

voltage delivered to the capacitor plates. 
 

Measure the voltage at the plate voltage 
connectors, not across the capacitor plates.  
There is a 10 megohm resistor in series with 
each plate to prevent electric shock. 

 
Determining the Temperature of the 
Droplet Viewing Chamber 
 
1. Connect the multimeter to the thermistor 

connectors and measure the resistance of the 
thermistor.  Refer to the Thermistor 
Resistance Table located on the platform to 
find the temperature of the lower brass plate.  
The measured temperature should correspond 
to the temperature within the droplet viewing 
chamber. 
 
Although the dicroic window reflects much of 
the heat generated by the halogen bulb, the 
temperature inside the droplet viewing 
chamber should be determined periodically 
(about every 15 minutes). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experimental Procedure 
 
1. Complete the reassembly of the droplet 

viewing chamber by placing the droplet hole 
cover on the top capacitor plate and then 
placing the lid on the housing (see Figure 5). 

 
Note:  The droplet hole cover prevents 
additional droplets from entering the chamber 
once the experiment has started. 

 
2. Measure and record the plate voltage and the 

thermistor resistance (temperature). 
 
Introducing the Droplets into the Chamber 
 
1. Put non-volatile oil of known density into the 

atomizer (for example, Squibb #5597 Mineral 
Oil, density: 886 kg/m3). 

 
2. Prepare the atomizer by rapidly squeezing the 

bulb until oil is spraying out.  Insure that the 
tip of the atomizer is pointed down (90° to 
the shaft; see Figure 9) 

 

 
 
3. Move the ionization source lever to the Spray 

Droplet Position to allow air to escape from 
the chamber during the introduction of 
droplets into the chamber. 

 
4. Place the nozzle of the atomizer into the hole 

on the lid of the droplet viewing chamber. 
 
5. While observing through viewing scope, 

squeeze the atomizer bulb with one quick 
squeeze.  Then squeeze it slowly to force the 
droplets through the hole in the droplet hole 
cover, through the droplet entry hole in the 
top capacitor plate, and into the space 
between the two capacitor plates. 

 
6. When you see a shower of drops through the 

viewing scope, move the ionization source 
lever to the OFF position. 
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If repeated “squirts” of the atomizer fail to produce 
any drops in the viewing area but produce a rather 
cloudy brightening of the field, the hole in the top 
plate or in the droplet hole cover may be clogged.  
Refer to the Maintenance section for cleaning 
instructions. 
 
Note:  The exact technique of introducing drops will 
need to be developed by the experimenter.  The object 
is to get a small number of drops, not a large, bright 
cloud from which a single drop can be chosen.  It is 
important to remember that the drops are being 
forced into the viewing area by the pressure of the 
atomizer.  Therefore, excessive use of the atomizer 
can cause too many drops to be forced into the 
viewing area and, more important, into the area 
between the chamber wall and the focal point of the 
viewing scope.  Drops in this area prevent observation 
of drops at the focal point of the scope. 
 
Note:  If the entire viewing area becomes filled with 
drops, so that no one drop can be selected, either wait 
three or four minutes until the drops settle out of 
view, or disassemble the droplet viewing chamber 
(after turning off the DC power supply), thus 
removing the drops.  When the amount of oil on the 
parts in the droplet viewing chamber becomes 
excessive, clean them, as detailed in the Maintenance 
section.  Remember, the less oil that is sprayed into 
the chamber, the fewer times the chamber must be 
cleaned. 
 
Selection of the Drop 
 
1. From the drops in view, select a droplet that 

both falls slowly (about 0.02 – 0.05 mm/s) 
when the plate charging switch is in the 
“Plates Grounded” position and can be driven 
up and down by turning on the voltage. 

 
Hint:  A drop that requires about 15 seconds 
to fall the distance between the major reticle 
lines (0.5 mm) will rise the same distance, 
under the influence of an electric field (1000 
V/cm), in the following times with the 
following charges:  15 s, 1 excess electron; 7 s, 
2 excess electrons; 3 s, 3 excess electrons.  
(Note:  these ratios are only approximate) 
 
Note:  If too many droplets are in view, you 
can clear out many of them by connecting 

power to the capacitor plates for several 
seconds. 
 
Note:  If you find that too few droplets have 
net charges to permit the selection of an 
appropriately sized and charged drop, move 
the ionization lever to the ON position for 
about 5 seconds. 

 
2. When you find an appropriately sized and 

charged oil droplet, fine tune the focus on the 
viewing scope. 
 
Note:  The oil droplet is in best focus for 
accurate data collection when it appears as a 
pinpoint of bright light. 

 
Collecting Data on the Rise and Fall of the Oil 
Droplet 
 
1. Measure the rise (plates charged) and fall 

(plates not charged) velocities of the selected 
droplet about 10 – 20 times.  Maneuver the 
droplet as needed using the plate voltage 
switch. 
 
Note:  The greatest accuracy of measurement 
is achieved if you time from the instant that 
the bright point of light passes behind the first 
major reticle line to the instant bright point of 
light passes behind the second major reticle 
line.  (These lines are 0.5 mm apart.) 
 

2. Calculate the charge on the droplet.  If the 
result of this first determination for the charge 
on the drop is greater than for the charge on 
the drop is greater than 5 excess electrons, 
you should use slower moving droplets in 
subsequent determinations.  You may find it 
convenient to set up a spreadsheet calculation 
so that the charge is immediately calculated 
for any given pair of rise and fall times. 

 
3. Introduce more oil droplets into the chamber 

using the procedure previously described and 
select another droplet. 

 
4. Measure the rise and fall velocities of the 

selected droplet about 10 – 20 times or until 
the charge changes spontaneously or the 
droplet moves out of view. 
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5. Bring the droplet to the top of the field of 
view and move the ionization lever to the ON 
position for a few seconds as the droplet falls. 

 
6. If the rising velocity of the droplet changes, 

make as many measurements of the new rising 
velocity as you can (10 – 20 measurements). 

 
7. If the droplet is still in view, attempt to 

change the charge on the droplet by 
introducing more alpha particles, as described 
previously, and measure the new rising 
velocity 10 – 20 times, if possible. 

 
8. Repeat step (7) as many times as you can. 
 
9. Record the plate potential, the oil density, the 

viscosity of air at the temperature of the 
droplet viewing chamber (see appendix A), 
and the barometric pressure for each set of 
velocity measurements. 

 
Notes:   

1. It is desirable to observe as many 
different charges on a single drop as 
possible. 

2. Make sure that you use the 
PLATES-GROUNDED setting in 
measuring the fall time, not the 
voltage polarity which drives the 
drops down. 
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Appendix A:  Viscosity of Dry Air as a Function of Temperature 
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Appendix B:  Millikan Oil Drop Apparatus Thermistor Resistance at Various 
Temperatures 
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End legally restricted use material.

In addition to recording measured rise and fall times, all measurements for temperature and pressure

should also be recorded.

15.5 Analysis and Discussion

1. For each set of rise times and each set of fall times which are consistent within the set,

calculate the average rise time and average fall time.

2. Create a table with one column being a drop label, the second column being the rise velocity,

the third column the fall velocity, and the fourth column the calculated charge. The rise and

fall velocities should be calculated from the average rise and fall times. There should be an

entry in the table for each pair of rise and fall velocities. Show a sample calculation of the

charge.

3. Take the difference between all possible pairs of charges. The number of possible pairs of

charges for N charges is 1
2N(N − 1). Convert signed quantities to magnitudes. Tabulate the

results.

4. Histogram the measured charges in one plot and all measured charge differences in a second

plot.

5. Use whatever analysis method you like to discern any evidence for a fundamental electric

charge. Comment on the evidence or lack of it for a fundamental unit of charge. In the case

your data favor the existence of a fundamental charge, estimate its magnitude and assign an

uncertainty to your estimate.

PH255: Mod. Phys. Lab P. LeClair, J. Busenitz, A. Piepke, D. Williams
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When you are finished

2 Turn the voltage on the accelerating supply to zero, and turn the power off.

2 Unplug the halogen light from the Millikan apparatus.

2 Clean up your work area

15.6 Viscosity of dry air as a function of temperature

The viscosity of air can be computed using Sutherland’s formulavi

η(T ) = ηo

(
T

To

)3/2 To + S

T + S
(15.14)

Here η is the viscosity in poise (Ns/m2) at the input temperature T , µo is the reference viscosity in

poise (Ns/m2) at a reference temperature To, T is the input temperature in Kelvin, To is a reference

temperature in Kelvin, and S is an effective temperature called Sutherland’s constant. For dry air,

ηo=1.716× 10−5 Ns/m2 at To=273 K, S=111 K, valid over a temperature range of 0−555 K. vii

viFrom http://www.epa.gov/EPA-AIR/2005/July/Day-13/a11534d.htm and http://en.wikipedia.org/wiki/

Viscosity.
viiReference data: at 300 K, η=1.846×10−5 Ns/m2. Table A.4 in F.P. Incropera and D.P. DeWitt, Fundamentals of

Heat and Mass Transfer, 3rd ed, John Wiley, New York, NY, 1990. See also table B.4 in D.R. Poirier and G.H. Geiger,
Transport Phenomena in Materials Processing, TMS, Warrendale, PA, 1994)

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab
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15.7 Derivation of Stoke’s law and the Navier-Stokes Equation:

A crash-course in fluids

Continuity Equation

Firstviii, we need the continuity equation for a fluid. Qualitatively, a general continuity equation

reads something like this:

(rate of mass accumulation) + (rate of mass out)− (rate of mass in) = 0 (15.15)

We can be a bit more precise by applying our continuity equation to a specific volume of space V ,

which is defined by a bounding surface S. In this case, the net rate at which mass accumulates

inside V depends on the net rate at which mass passes through S, either coming in or going out:

(rate of mass accumulation in V ) + (net rate of mass crossing S) = 0 (15.16)

This is basically just bookkeeping, or conservation of matter if you like. If the amount of mass in

V is static, then it must be true that the amount of matter entering through S is the same as the

amount of matter leaving through S. If the amount of mass in V is increasing, then there must be

a net flow of matter in through S.

For a fluid, or any continuous substance, our continuity equation is just an expression of conserva-

tion of matter. Since we wish to deal with continuous substances like fluids, rather than particles,

it is most convenient to put our equations in terms of the density of the substance ρ. Consider a

tiny cube of our substance of dimensions ∆x∆y∆z. The mass of this cube is simply ρ∆x∆y∆z.

If we have a net flow of our substance through this cube, let’s say in the x direction, how does

the mass of the cube change with time? If the substance is incompressible, and the cube remains

completely full, then the mass doesn’t change, of course. However, in the general case, we just need

to keep track of how much mass is in the cube at any moment, and how much mass enters and leaves.

We will presume that our cube is nicely aligned along the x, y, and z axes, and that there is a net

flow of our substance with velocity ~v , as shown in Fig. 15.2. We will assume that the density of

our substance is constant. If we look first at the faces of the cube perpendicular to the x axis (i.e.,

the faces whose area normals are parallel to the x axis), the net flow through the cube along the x

axis can be found be comparing the rate at which mass enters one side and leaves the other. The

rate of mass flowing through the left side face at x is

∂m

∂t

∣∣∣∣
x

=
∂

∂t
(ρV )

∣∣∣∣
x

=
∂

∂t
(ρ∆x∆y∆z)

∣∣∣∣
x

= ∆y∆z (ρvx)

∣∣∣∣
x

(15.17)

viiiMost of this section is based on Ch. 2 of D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials
Processing, TMS, Warrendale, PA, 1994) and Ch. 40-41 of the Feynman Lectures on Physics, vol. II
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x

y
z

∆x

∆y

∆z

(x,y, z)

(x + ∆x,y + ∆y, z + ∆z)

(ρvx)|x (ρvx)|x+∆x

Figure 15.2: Volume element fixed in space with fluid flowing through it.

This is just the familiar result that the mass flow rate through a pipe is product of the velocity of

the flow, the fluid density, and the pipe’s cross-sectional area. In the same manner, we can find the

flow rate through the right side face at x+ ∆x,

∂m

∂t

∣∣∣∣
x+∆x

= ∆y∆z (ρvx)

∣∣∣∣
x+∆x

(15.18)

We can proceed similarly for the other two pairs of faces perpendicular to the y and z axes, and then

add up all the terms for fluid entering or leaving the cube to come up with a mass balance. If, when

we add up the rates for all the sides, we have a non-zero result, then we must be either accumulating

mass inside our cube, or it is experiencing a net loss in mass. Either way, the accumulation in mass

inside our cube of constant volume can only reflect a change in density,

(mass accumulation) =
∂

∂t
ρV = ∆x∆y∆z

∂ρ

∂t
(15.19)

Our mass balance is then simply relating this rate of mass accumulation to the net flow through

the cube:

∆x∆y∆z
∂ρ

∂t
= ∆y∆z

(
ρvx

∣∣∣∣
x

−ρvx
∣∣∣∣
x+∆x

)
+ ∆x∆z

(
ρvy

∣∣∣∣
y

+ρvy

∣∣∣∣
y+∆y

)

+ ∆x∆y

(
ρvz

∣∣∣∣
z

−ρvz
∣∣∣∣
z+∆z

)
(15.20)

Next, we can divide by ∆x∆y∆z and then take the limit of infinitesimal dimensions, and after

recalling the definition of the derivative, we arrive at the continuity equation:

∂ρ

∂t
= −

(
∂

∂x
ρvx +

∂

∂y
ρvy +

∂

∂z
ρvz

)
= −∇ · ~v (15.21)

Hopefully, at least some of this material is familiar. For the present experiment, conducted in

air at very low velocities, we may assume the air has approximately constant density (i.e., it is
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incompressible), and the continuity equation simplifies to ∇ · ~v =0.

Using the vector form of the continuity equation, we can reformulate it for different coordinate

systems relevant to specific problems by expanding the divergence operator ∇· appropriately. In

spherical coordinates, we have

∂ρ

∂t
+

1

r2

∂

∂r

(
ρr2∂vr

)
+

1

r sin θ

∂

∂θ
(ρvθ sin θ) +

1

r sin θ

∂

∂ϕ
(ρvϕ) = 0 (15.22)

Our problem of interest is the slow flow of a fluid past a dense sphere. If the fluid flow is along

the z axis, the problem is symmetric about the z axis, and we may neglect the ϕ components

of velocity. In other words, the problem is essentially two-dimensional, thanks to the rotational

symmetry about the z axis. In this special case,

∂ρ

∂t
+

1

r2

∂

∂r

(
ρr2∂vr

)
+

1

r sin θ

∂

∂θ
(ρvθ sin θ) = 0 (15.23)

As an aside, the equivalent continuity equation in electromagnetism is conservation of charge, which

you might have seen:

∂ρ/∂t+∇ · ~j = 0 (15.24)

where ρ is charge density and ~j current density. The charge density in a region can only change if

there is a net flow of charge, a current, into or out of that region.

Static fluids

Next, we will need the equation for the forces and momentum in the fluid. Let us consider a com-

pletely static volume of fluid, with no net flow in any direction. If we know the pressure at some

point within the fluid (say, at its bottom surface) is Po, then at any point a height h above that

level, the pressure is just P = Po − ρgh where g is the gravitational acceleration, and ρ the fluid

density. Put another way, the pressure as a depth h differs from our reference level only by the

weight of the fluid in a column of height h.

Of course, we can turn this equation around: if Po is just an arbitrary, constant reference pressure,

then this also implies that anywhere in the fluid P + ρgh=Po must be constant! Actually, this is

not so surprising either, if we multiply everything by a volume of interest:

PoV = PV + ρV gh = PV +mgh (15.25)

What we have is simply a result of the work-energy theorem: the work done in increasing the

pressure on a given constant volume is P (V − Vo), and this must be accounted for by the change

in gravitational potential energy, mgh. Again, in dealing with continuous matter such as a fluid, it

is more convenient to recast all of our equations in terms of density rather than mass and volume.
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In this light, gh is just the gravitational potential per unit mass, so what we are really saying is

that pressure plus gravitational potential is a constant for a fluid, or that pressure itself is a sort of

volumetric potential. Thus, we define a gravitational potential per unit mass φ=mg, giving us

P + ρφ = const (15.26)

Now we have an energy balance for our static fluid, it is only a bit of mathematics to find a force

balance. If we consider a one-dimensional fluid, we know that force is just the spatial derivative

of the potential energy. The same will hold true of the potential energy per unit volume. If we

consider only fluids of constant density, we can take the spatial derivative of both sides of Eq. 15.26:

∂P

∂x
+ ρ

∂φ

∂x
= 0 (15.27)

In three dimensions, we need only replace the spatial derivative with a gradient:

∇P + ρ∇φ = 0 (15.28)

This is nothing more than a Newton’s law force balance for our stationary fluid, if we recognize

that ρ∇φ is the force (per unit volume). In static equilibrium, the force per unit volume is precisely

balanced by a gradient in pressure.

This equation is the complete description of hydrostatics, though it is quite a bit more complicated

than it looks: there is no general solution. If the density of the fluid varies spatially (∇ρ = 0

somewhere), our continuity equation above tells us that there is no way that a static equilibrium

can be maintained, we must have also have time-varying density. ix Only if ρ is constant in space

do we have a simple solution for hydrostatics, viz., P + ρϕ=const.

Equations of motion without viscosity (“Dry Water”)

What to do if the fluid is not static? We already know the continuity equation in general, but we

still need to consider a more general force balance for our fluid. What we have derived above is the

equilibrium condition for a static fluid, generalizing just means letting the pressure and potential

gradient terms become unbalanced to yield a net acceleration. In the absence of viscous forces, this

would simply be

ρ× (acceleration) = −∇P − ρ∇φ (15.29)

The left side is the net force per unit volume, and the first two terms on the right are our pressure

and potential gradients. Already, if these terms on the right are unbalanced (e.g., if we have a

spatially-varying density) we will have a net acceleration of the fluid, and hence motion. What

ixStrictly, for a fluid of constant density, a spatially-varying density in Eq. 15.21 implies that the velocity field
must have zero divergence, or be zero everywhere to have a density which does not vary in time. Only the case v=0
corresponds to a truly static situation, and thus, if ρ has any spatial variation, a time variation is implied.
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does the acceleration term look like?

What we really need to find is ∆~v /∆t for infinitesimal ∆t, that is our acceleration. Just from the

mathematics of partial derivatives, we can say quite a lot already. Say we know the velocity of a

infinitesimal volume of fluid at some particular point in space and time, ~v (x, y, z, t). What is the

velocity of the same bit of fluid at some later time t+ ∆t when the bit of fluid is at a neighboring

point (x+ ∆x, y + ∆y, z + ∆z)? From the definition of partial derivatives, for small changes in x,

y, z, and t (i.e., to first order) we can write the change in velocity as

∆~v = ~v (x+ ∆x, y + ∆y, z + ∆z, t+ ∆t)− ~v (x, y, z, t) (15.30)

=
∂~v

∂x
∆x+

∂~v

∂y
∆y +

∂~v

∂z
∆z +

∂~v

∂t
∆t (15.31)

This is not incredibly useful, as such, but we can multiply and divide every spatial derivative by

∆t to put this in a more interesting form:

∆~v =
∂~v

∂x
∆x+

∂~v

∂y
∆y +

∂~v

∂z
∆z +

∂~v

∂t
∆t (15.32)

=
∂~v

∂x

∆x

∆t
∆t+

∂~v

∂y

∆y

∆t
∆t+

∂~v

∂z

∆z

∆t
∆t+

∂~v

∂t
∆t (15.33)

=
∂~v

∂x
vx∆t+

∂~v

∂y
vy∆t+

∂~v

∂z
vz∆t+

∂~v

∂t
∆t (15.34)

=

(
∂~v

∂x
vx +

∂~v

∂y
vy +

∂~v

∂z
vz +

∂~v

∂t

)
∆t (15.35)

The acceleration d~v /dt then becomes, in the limit ∆t→0,

d~v

dt
=
∂~v

∂x
vx +

∂~v

∂y
vy +

∂~v

∂z
vz +

∂~v

∂t
(15.36)

This might not look like much, but if we look and rearrange it carefully we can recognize a nicer

vector form:

d~v

dt
= vx

∂~v

∂x
+ vy

∂~v

∂y
+ vz

∂~v

∂z
+
∂~v

∂t
(15.37)

=

[
(vx x̂ + vy ŷ + vz ẑ) ·

(
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ

)]
~v +

∂~v

∂t
= (~v · ∇) ~v +

∂~v

∂t
(15.38)

Can you see why it must be (~v · ∇) ~v and not, e.g., ~v · (∇~v )? (If for no other reason, the former

is a vector while the latter is a scalar!)

Having found the acceleration, in the absence of viscous forces our equation of motion is complete:

d~v

dt
= ρ (~v · ∇) ~v + ρ

∂~v

∂t
= −∇P − ρ∇φ (equation of motion, no viscosity) (15.39)
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We can add a bit more physical content to our equation of motion by defining a new field from the

curl of the velocity, ~Ω =∇×~v . This quantity is called the vorticity of the fluid, and it characterizes

the circulation of the fluid. If ~Ω =0 everywhere, the fluid is said to be irrotational. By introducing

the vorticity, we can separate the terms in our equation of motion to characterize two basic cases:

fluids that swirl, and those that do not.x If we are only interested in fluids that do not circulate,

this will allow considerable simplification.

In order to achieve this separation, we can also make use of the following vector identity to introduce

terms that contain ∇× ~v :

(~v · ∇) ~v = (∇× ~v )× ~v +
1

2
∇ (~v · ~v ) = ~Ω × ~v +

1

2
∇v2 (15.40)

This allows us to put our equation of motion in the following form:

ρ
∂~v

∂t
+ ρ~Ω × ~v +

1

2
ρ∇v2 = −∇P − ρ∇φ (15.41)

Now, taking advantage of this new form, we can consider only irrotational fluids for which ~Ω = 0

(as is the case in our experiment), in which case we have the simpler result

ρ
∂~v

∂t
+

1

2
ρ∇v2 = −∇P − ρ∇φ (equation of motion, no viscosity, irrotational) (15.42)

Finally, there is one more simplification we can make for many reasonable cases: the assumption

of steady flow. This doesn’t mean we have nothing happening, it is merely the condition that we

have motion of the fluid at constant velocity, ∂~v /∂t=0. In this case,

1

2
ρ∇v2 = −∇P − ρ∇φ (equation of motion, no viscosity, irrotational, steady flow) (15.43)

Since every term in this equation involves a gradient, we may simply integrate both sides to get rid

of a gradient from every term, and once we remember to add in an integration constant, we have

1

2
ρv2 + P + ρφ = (const) (15.44)

This is Bernoulli’s theorem, which is basically a statement of conservation of energy per unit volume

for the fluid. Compare this to our starting point, P + ρφ=(const.), and you will see that the new

term 1
2ρv

2 is nothing more than the kinetic energy of the moving fluid!

xIt might help to recall the fundamental theorem of vector calculus, which roughly states that we can build any
reasonable vector field out of the sum of an irrotational (zero curl) field and a solenoidal (zero divergence) field.
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Viscosity in one dimension

Adding a viscous (drag) force to our equation of motion is not much of a problem, in principle. If

we have a viscous force ~f v per unit volume, then Newton’s law yields

ρ (~v · ∇) ~v + ρ
∂~v

∂t
= −∇P − ρ∇φ+ ~f v (15.45)

The problem is, what is the viscous force? The model of fluid flow above basically ignores the pres-

ence of any lateral shear forces, or forces perpendicular to the direction of the fluid flow. In other

words, our first model assumes that the fluid will put up no resistance to being pushed around,

which is clearly unrealistic. This is not even realistic for a solid: when we deform a solid, we know

that it will produce a restoring force proportional to the strain it experiences, giving rise to Hooke’s

law macroscopically. Real fluids will also react to an applied force or pressure, but more important

in this case than the amount of strain is the rate at which strain is produced. For example, in most

fluids it is easier to move slowly than it is to move rapidly – think about swimming or stirring a

jar of thick syrup.

Our previous model ignored any interactions between a moving fluid and a solid surface it encoun-

ters. In fact, it would have all but impossible to do so without some sort of empirical guidance

or at least a hint at the answer. In this, we are lucky, however. One important experimental fact

severely constrains models of viscous forces: the velocity of a fluid is exactly zero at the boundary

of a solid surface. This is not an obvious fact, but one you can easily verify: how else would your

fan blades have dust on them? Shouldn’t it blow off?

With this fact, we can attempt a model of viscous forces. Image that we have two flat parallel plates

of area A immersed in an initially stationary fluid, separated by a distance d. We hold one plate

at rest in the fluid, and move the other plate at velocity vo through the fluid. In a fluid without

viscosity, the moving plate would not disturb the fluid at all, and the fluid velocity would be zero

everywhere. However, if the relative velocity of fluid and plate must be zero at each plate’s surface,

that means that the fluid velocity varies from 0 to vo moving from the stationary to the moving

plate! At the surface of the moving plate, the fluid must have velocity vo, and at the surface of the

stationary plate, it must have v=0.

If you measure the force per unit area required to keep the top plate moving, it turns out to be

proportional to the velocity of the plate divided by the spacing between the plates.

F

A
= η

vo
d

(15.46)

The constant of proportionality η is known as the coefficient of viscosity, and to some extent it is

a measure of how much force must be supplied to produce motion in a fluid. Noting that power is
~F · ~v , you can see that the power required to maintain a speed v in a fluid scales as ηv2.
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d

v = 0

v

�F
vo

Figure 15.3: Viscous drag between two parallel plates in a fluid.

In moving beyond a single dimension, we have even more basic problems to consider: if we press

on a fluid in one direction, it will move in all directions, not just along the direction of the applied

force. This is in sharp contrast to our usual considerations of infinitesimal particles, or rigid objects.

What do we do when the object can “squish?” In the example above, the moving plate will displace

the fluid it is moving through, imparting velocity in the directions perpendicular to the motion of

the plate. Evidently, what we lack is a way to relate displacement along one direction with force

along another. The mathematical tool we are missing is the tensor, a generalization of vectors and

scalars which turns out to be indispensable for many areas of physics.

The Stress Tensor

Tensors

So far as we need them, a tensor is a set of numbers (or a matrix) that when multiplied by a

vector gives back a new vector. Of course, this much can be accomplished by vector or scalar

multiplication, but what makes tensors special is that the two vectors need not be simply parallel

or perpendicular. This is exactly what we need to understand stress and pressure in materials:

relating a displacement or force in one direction to a resulting force along a different direction,

particularly when materials are allowed to deform. A close analogy to the type of mathematical

object we need is the rotation matrix: a multiplying a given vector by a rotation matrix gives a

new vector of the same length, but pointing in a new direction. A tensor is a more general type of

matrix, in which both the length and direction of the resulting vector are generally different.

As an example, let’s say we want to consider the conductivity of a material, σ. Ohm’s law states

that the current density is proportional to the electric field via the conductivity:

~j = σ ~E (15.47)
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In an isotropic, homogeneous material, σ is just a scalar, a plain number, that characterizes how

much current density results from a specific electric field. As such, a scalar conductivity results

in a current density which is always parallel to the electric field. In many materials, this is a

perfectly reasonable assumption. However, this is clearly a simplification: what about crystals? In

a perfect crystal, we have a symmetric arrangement of atoms which is clearly not isotropic, and it

is unphysical to expect the conductivity to be the same along every direction in the crystal. If we

have a simple cubic crystal, it would be reasonable to expect the conductivity to be the same along

all three crystallographic directions, but we would certainly expect a different conductivity along

other directions.

Consider a simple two-dimensional crystal, with a square grid of atoms along the x and y directions.

If the spacing of atoms along x and y is the same, we expect that a given electric field applied along

the x or y direction would lead to the same current density. However, if we applied the electric

field along the line y = x, 45◦ with respect to the rows of atoms, we should expect a different

current density. Thus, at the very least, our conductivity must be direction-dependent so long as

the crystal is not isotropic! Moreover, this means that we can’t even reasonably expect that the

current density is along the same direction as the electric field. If the field is along the the line

y = x, and we have different conductivities in the x and y directions, we should expect that the

resulting current density has both x and y components, and they will not be the same. Even in an

isotropic material we have to worry about this to an extent, current will spread out in all directions

in a uniform conductor.

In general, the conductivity actually has nine components relating electric field to current density,

since we have three directions for E combined with three components for j. The conductivity, then,

is really a matrix:

ji =
∑
j

σijEj or

jxjy
jz

 =

σxx σxy σxz

σyx σyy σyz

σzx σzy σzz


ExEy
Ez

 (15.48)

The nine components of σ make a tensor, relating ~E along an arbitrary direction to a resulting

~j along a different direction. The indices of σ signify which component of ~E is being related to

which component of ~j : the first index is the component of ~E , the second the component of ~j .

Incidentally, the fact that we require two indices to tabulate all of the components of σ makes it a

“second rank” tensor.xi Thus, for the x component of ~j , we have

jx = σxxEx + σxyEy + σxzEz (15.49)

On the other hand, if we apply an electric field along the x direction only, ~j has components in all

xiBy the same logic, we can call vectors “first rank” tensors, needing only one index, and scalars “zero rank”
tensors.
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three directions:

jx = σxxEx jy = σyxEx jz = σzxEx (15.50)

Usually, we don’t need to deal with all nine components, and we can make use of symmetry to

reduce the number of independent components. For instance, the conductivity tensor is symmetric,

meaning that σij =σji. In fact, it is possible to simplify the conductivity even further. Our choice of

axes along which to decompose the electric field and conductivity vectors, and thus the conductivity

tensor, was completely arbitrary. In fact, it is always possible to choose axes such that the tensor

is diagonal, e.g., such that only σxx, σyy, and σzz are non-zero:jxjy
jz

 =

σxx 0 0

0 σyy 0

0 0 σzz


ExEy
Ez

 (15.51)

In a crystal, finding the diagonal representation of a tensor typically corresponds to choosing the

natural crystallographic axes for decomposing the electric field and current density. Finally, in an

isotropic material, in which the conductivity is independent of direction, σxx = σyy = σzz, and we

may treat the conductivity as a simple scalar.

Other examples of tensors

In fact, you’ve already encountered tensors many times, probably without knowing it. Generally

speaking, if you need to relate two vectors, and they in general need not be strictly parallel or

perpendicular, a tensor is probably involved. For instances, the moment of inertia is really a 2nd-

rank tensor, since angular momentum and angular velocity are not in general parallel. Torque is

also a 2nd-rank tensor, and anti-symmetric (τij =−τji), but happens to transform like a vector in

three dimensions. For that reason, we usually just treat it as a vector (or pseudovector, really)

since we can get away with it!

Stress

So what is stress? Essentially, it is nothing more than a generalization of pressure, a net force per

unit area. Hydrostatc pressure we are used to dealing with is just a special type of stress, when

the net force is normal to area of consideration. In a static fluid, the force on each side of an

infinitesimal cube of fluid is the same in magnitude and always normal to the surfaces of the cube.

In this case, the stress is just the hydrostatic pressure, and it is a simple scalar: ~F =PAn̂, where

n̂ is a unit vector normal to the area A.

When we wish to deal with the internal forces in continuous objects, however, this need not be

true. Inside a solid object or a fluid, we know there are internal forces between neighboring parts of

the material holding it together. Consider first a cube of a nice squishy substance like gelatin, and

cut it into two pieces. Clearly, before we cut the gelatin, there must have been a force holding the
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two pieces together. Before the cut, each half exerted a force ∆F on the other to hold the block of

gelatin together, so the stress in the material was simply this force divided by the area of the cut

surface. However, the net force between the two pieces was not simply perpendicular to the cut

surface. If that were true, any infinitesimal force along the cut plane would have separated the two

pieces. Thus, there must be forces acting not just normal to any surface in the block, but also along

the two tangential directions. In order to properly treat a patch of surface within a continuous

object, we must deal with all three components of force acting on the surface. This is what stress

is, a generalization of pressure to encompass forces acting on a surface in all three directions.

Let us go back to the example above, where we have a flat plate moving at velocity vo through

a fluid. In that case, we had two types of forces present. First, we had a force per unit area on

the surfaces of the plate due to the hydrostatic pressure of the fluid, which acted equally in all

directions and normal to each surface. This force can be described by a simple scalar, the pressure,

and the area of the plate. Second, we had a force acting antiparallel to the velocity due to the

viscous drag of the fluid. This is what we would call a shear force, being tangential to the surface

of the plate. The force per unit area due to viscous drag is thus a shear stress, acting in the −x
direction, and it depends on a velocity in the x direction and an area in the xy plane. A com-

plete description of such forces will require a tensor, the stress tensor. As another quick example,

let’s go back to our cube of gelatin. Say we press down on the upper face lying in the xy plane.

This will clearly lead to a net force in the z direction on both faces in the xy plane, and a net

shortening of the cube along the z direction. If the gelatin is incompressible, however, conserva-

tion of matter requires that the cube bulge out in the x and y direction, meaning there must be

outward forces on the other four faces of the cube! Again, we will need a tensor to describe this

situation, since we have an applied force in one direction leading to net forces in all three directions.

How can we figure out what the stress tensor looks like? Let’s consider a volume of continuous

incompressible material, of constant density ρ. Now, take a small slice of this material perpendicular

to the x axis, making a little square of sides ∆y and ∆z with area normal x̂. If we apply a force

∆~F 1 to this surface along an arbitrary direction, we can break it up into components ∆F1x normal

to the surface and ∆F1y and ∆F1z tangential to the surface. The components of stress are just

these forces divided by the area of our surface, labeled with two indices: the first labeling the

direction of the force component, the second the area normal. For example, the force per unit area

along the y direction is just

τyx =
∆F1y

∆y∆z
=

∆F1y

∆ax
(15.52)

where ∆ax is just the area of our element of surface perpendicular to the x direction. Similarly, we

have net forces per unit area in the x and z directions,

τzx =
∆F1z

∆y∆z
τxx =

∆F1x

∆y∆z
(15.53)
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The stress τxx acts normal to our little area, just as a simply hydrostatic pressure would, while the

stresses τyx and τzx act along the transverse directions. In total, just to describe the stress along

a single axis, we need three components, which means that a full description of all the stresses

on an object will require nine components. For example, if we now take a slice of material lying

perpendicular to the y axis, lying in the xz plane, this area will have a net force ∆~F 2 acting on

it, and resolving it along the three axes leads to stresses τxy, τyy, and τzy. We can make a similar

construction for a slice perpendicular to the z axis, and in total the stress on our object will be

characterized by nine numbers, which we can conveniently express as a matrix:

τij =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 (15.54)

The diagonal components τii are normal stresses, representing forces per unit area acting perpen-

dicular to the area of a given face. These components are what we would usually just call pressure,

the net force per unit area acting perpendicular to a given face. The off-diagonal components

are the shear stresses acting along the two directions tangential to a given face, analogous to the

tangential frictional force present when we slide two objects past one another. Our nine numbers

τij in total make up the stress tensor, where i indicates the direction along which the stress acts,

and j indicates the surface normal of the relevant face. Thus, τxy represents a shear stress acting

in the x direction on a face whose area normal points in the y direction.

At this point, it is probably useful to draw a little picture. Take a small cube of material, aligned

along the x, y, and z axes. Looking down the z axis at one side of the cube, the components of the

stress in the x and y directions acting on four of the faces looks like this:

τxx

τxx
τyx

τyx

τyy

τyy
τxy

τxy

Figure 15.4: The forces in the x and y directions on the faces of an infinitesimal cube. The diagonal components of stress
τii act normal to each face, while the off-diagonal components τij act tangentially to each face. Since the cube is very small,
the stresses do not change appreciably across the cube.

As you can see, the forces on real continuous objects are rather complicated. From our initial
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discussion of a static fluid, requiring only a simple scalar pressure, we now have a nine-component

second-rank tensor. However, it is not as bad as it seems: the stress tensor turns out to be symmet-

ric, and we don’t need all nine components. If we consider an infinitesimally small cube of material,

then we can imagine that the stresses do not change appreciable from one side to the other. As

shown in the figure above, the forces on opposing sides of the cube must be equal and opposite in

this case. This also implies that the torque about the center of the cube is zero – if it were not,

the cube would start spinning, which would be unphysical for an infinitesimally small object. If

our cube has sides of dimension ∆a, then we can easily write down the torque about the center as

∆a(τyx − τxy) = 0, which means τxy = τyx. We can apply the same logic looking at the other faces

of the cube, and just by considering that the cube must be in rotational equilibrium we find that

the stress tensor must be symmetric, τij =τji. In short, we have only have six unique components

of stress, rather than nine.

Since our stress tensor is symmetric, it can be described by a symmetric matrix. If you have taken

linear algebra, you might recall that this leads us to an even more important property of the stress

tensor: since it is symmetric, it is always possible to find a choice of coordinate axes for which

it is diagonal. That is, if we choose our coordinate axes carefully, it is always possible to find a

special orientation for which our stress tensor has only the three components τxx, τyy, and τzz. In

a perfect crystalline material, this special choice may correspond to the crystallographic axes, for

instance. However, in general, the stress tensor varies from point to point in a material, meaning

it is actually a tensor field. Just like we have a scalar field T (x, y, z) describing the temperature

everywhere in a room, or a vector field ~E (x, y, z) describing the electric field through all space, our

stress tensor field describes the components of stress at all points in a material. At every point in

space, the stress tensor gives us nine numbers – six unique numbers – describing the forces at that

point, and thus a full description of the forces in a body require six functions of position.

Viscosity and stress in three dimensions

After a long detour, we can finally return to our parallel plates moving within a fluid from Sect. 15.7.

Recall our setup:

To be a bit more concrete, let the x axis be in the direction of the applied force, the y direction

upward, and the z direction out of the page. Using our new tensor machinery, we can write the

force per unit area along the x direction required to keep the top plate moving as a stress:

τyx =
Fx

∆y∆z
= η

vo
d

(15.55)

Thus, what we have previously considered is a shear stress acting tangential to the plates due to

a viscous force along the x axis, and empirically it is found to be proportional to the speed of the

upper plate through a scalar coefficient we call the viscosity.
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d

v = 0

v

�F
vo

Figure 15.5: Viscous drag between two parallel plates in a fluid.

As a slightly more general case, we could forget about the plates, and only consider artificial surfaces

within the fluid itself, moving at different velocities. In Fig. 15.6 below, we look at an extended

region within a moving fluid, with its faces parallel to the fluid flow. In general, the velocity of

the fluid will vary along the vertical direction (y), such that at the top of our cell the velocity is

v + ∆v, and at the bottom it is just v. Based on our simpler model above, the net shear force

acting on the cell in the x direction will the difference between the forces on the top and bottom of

the cell, divided by the area of the plate ∆A. By analogy with the situation with two plates, the

shear stress is then proportional to the difference in velocity between the top and bottom of the

cell divided by the vertical extent of the cell:

∆Fx
∆A

= η
∆v

∆y
= η

∂vx
∂y

= τyx (fluid velocity along x only) (15.56)

This net shear stress acts to the right on the top face, and would tend to either deform our cell

into a parallelogram or lead to a rotation of our cell in the clockwise direction. The only way that

the fluid will be irrotational is if ∂vx/∂y = 0, that is, the velocity is constant along the vertical

direction and there is no net force at all. Otherwise, a variation in fluid velocity along the vertical

direction leads to a horizontal shear stress.

What if the velocity of the fluid isn’t strictly parallel to the faces of our cell? Let’s say the vertical

component of the velocity varies across the top and bottom faces, with the velocity being higher

on the left side of the cell. This situation would also tend to cause a clockwise rotation of our cell,

meaning that there must also be stress components along the x direction due to the variation of

fluid velocity in the x direction (as well as normal components along the y direction). For a general

fluid velocity, the horizontal shear stress must then have two components:

τyx = η
∂vy
∂x

+ η
∂vx
∂y

(15.57)
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∆y

∆A ∆F v + ∆v

v

Figure 15.6: A small volume of fluid within a flow.

We could find the other shear components τyz and τzx similarly. Note that this equation immedi-

ately satisfies our symmetry requirement τxy = τyx. We can also see from this general expression

that there are only three cases in which there is no shear stress in the fluid: either the fluid is static

(~v =0, the fluid’s velocity varies only along the out-of-plane z direction (∂vx/∂y=∂vy/∂x=0), or

the fluid is uniformly rotating (∂vx/∂y=−∂vy/∂x). Of course, there are also no shear forces in a

fluid with zero viscosity, but such things are incredibly rare.xii

Along these same lines, we can also find the normal stresses, those acting perpendicularly to the

faces of our cell. For example, if there is a variation in velocity along the vertical direction, then

there will also be a net force on the cell in the vertical direction, along with the shear component:

τyy = 2η
∂vx
∂x

(15.58)

The normal components of the stress, τii, are what we would simply call pressure if the fluid were

static. In the case of a moving fluid, the total normal force per unit area would be the static

pressure P plus the normal stress due to the fluid motion.

In general, so long as the fluid is incompressible, based on our description above you should be able

to convince yourself that the stress components are given by

τij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
(15.59)

xiiLiquid helium is a so-called “superfluid” with zero viscosity, a macroscopic quantum-mechanical effect that can
be observed only at very low temperatures.
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Viscous forces in three dimensions

Now that we have the shear stresses in the fluid in the presence of viscosity, we can complete our

equation of motion. All we need to do is work backwards to determine the forces on an arbitrary

cell within a moving fluid from the stress components. Imagine we have again a small cube of fluid,

Fig. 15.7, whose faces are aligned with our coordinate axes, with sides of length ∆x, ∆y, and ∆z.

In addition to any hydrostatic pressure, our cube will have a force on each of its six sides due to the

stress in the moving fluid fluid, whose velocity we will assume to vary in magnitude and direction.

τxx

τxx
τyx

τyx

τyy

τyy
τxy

τxy

x x + ∆x

y

y + ∆y

12

3

4

Figure 15.7: The stresses in the x and y directions on the faces of a cube cube of fluid.

First, we can tabulate all of the forces along a given axis, starting with x. All six faces of the cube

will have a stress component in the x direction: four shear forces, and two normal forces. On face

1, we have a normal stress component τxx acting over an area ∆y∆z, and net x component of the

force on face 1 will be the product of stress and area. However, we must be careful: the stress

is really a tensor field, and it varies with position, so the value of τxx is different for face 1 and

face 2, for instance. Thus, we should explicitly note at which position we are evaluating the stress

components. With that in mind,

Fx1 = τxx

∣∣∣∣
x+∆x

∆y∆z (15.60)

The x component force on face two will be similar and opposite in sign, the only substantial

difference is that we are evaluating the stress tensor at a different position:

Fx2 = −τxx
∣∣∣∣
∆x

∆y∆z (15.61)

Faces 3 and 4 will also have forces in the x direction through the shear stress τxy. Face 3 has area

∆x∆z and it is located at vertical position y + ∆y. Face 4 has the same area, but the force is in
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the opposite direction and τxy should be evaluated at a vertical position y.

Fx3 = τxy

∣∣∣∣
y+∆y

∆x∆z (15.62)

Fx4 = −τxy
∣∣∣∣
y

∆x∆z (15.63)

(15.64)

Finally, faces 5 and 6 (on the front and back of the cube in Fig. 15.7) also have forces along the x

direction through the shear stress τxy:

Fx5 = τxz

∣∣∣∣
z+∆z

∆x∆y (15.65)

Fx6 = −τxz
∣∣∣∣
z

∆x∆y (15.66)

(15.67)

All that is required now is to tabulate the net force along the x direction for the whole cube:

Fx = Fx1 + Fx2 + Fx3 + Fx4 + Fx5 + Fx6 (15.68)

=

(
τxx

∣∣∣∣
x+∆x

−τxx
∣∣∣∣
x

)
∆y∆z +

(
τxy

∣∣∣∣
y+∆y

−τxy
∣∣∣∣
y

)
∆x∆z +

(
τxz

∣∣∣∣
z+∆z

−τxz
∣∣∣∣
z

)
∆x∆y (15.69)

= ∆τxx∆x∆z + ∆τxz∆x∆z + ∆τxz∆x∆y (15.70)

As with our equation of motion without viscosity, it is more useful to consider the force per unit

volume along x, which we’ll call fx:

fx =
Fx

∆x∆y∆z
=

∆τxx
∆x

+
∆τxy
∆y

+
∆τxz
∆z

(15.71)

If we take the limit that the dimensions of our cube become infinitesimally small, what we have is

the definition of a partial derivative:

fx =
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z
(15.72)

We can repeat the analysis for the forces along the other directions, and our general expression for

an incompressible fluid is

fi =

3∑
j=1

∂τij
∂xj

with τij = η

(
∂vi
∂xj

+
∂vj
∂xi

)
(15.73)

The stresses in a fluid depend on the velocity gradients in the fluid (or, equivalently, the rate of
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change of shear strain), while the forces depend on the stress gradients. There will only be a net

force on a volume of fluid if there is a net spatial variation of stress, and there will only be stress if

there is a net spatial variation in velocity. Combining the two relationships above, we can cut out

the middleman and relate the viscous force per unit volume directly to the velocity distribution:

fi = η

3∑
j=1

∂

∂xj

[
∂vi
∂xj

+
∂vj
∂xi

]
(15.74)

If we write out all three components of the force and rearrange the terms, we can recover a much

more compact vector equation. Let’s rearrange the sum and see what comes out:

fi = η

3∑
j=1

∂

∂xj

[
∂vi
∂xj

+
∂vj
∂xi

]
= η

3∑
j=1

∂2vi
∂x2

j

+ η
∂

∂xi

3∑
j=1

∂vj
∂xj

= η∇2vi + η
∂

∂xi
∇ · ~v (15.75)

Considering all three components of the force per unit volume, we have a nice vector equation in

the end:
~f = η∇2~v + η∇ (∇ · ~v ) (15.76)

Here we have used the vector Laplacian ∇2~v , which is just ∇2vxx̂ + ∇2vyŷ + ∇2vzẑ. We can

make this still simpler, however, by remembering that for an incompressible fluid, the continuity

equation reads ∇ · ~v =0. With that in mind, after much pain we ultimately have a simple form for

the viscous force in an incompressible fluid

~f v = η∇2~v (viscous force, incompressible fluid) (15.77)

Our pervasive assumption of an incompressible fluid does come at a price. For instance, we will

not be able to treat density variations in the fluid, such as sound waves. However, a wide variety of

interesting fluids are essentially incompressible, and the form of the viscous force per unit volume

above is sufficient. This assumption serves quite well for, e.g., air flowing at low speeds compared

to the speed of sound.

The equation of motion with viscosity for incompressible fluids

The general equation of motion we developed was

ρ (~v · ∇) ~v + ρ
∂~v

∂t
= −∇P − ρ∇φ+ ~f v (15.78)

where fv was our yet-to-be-determined viscous force. For an incompressible fluid, using the form

of the viscous force from Eq. 15.77, our equation of motion reads

ρ (~v · ∇) ~v + ρ
∂~v

∂t
= −∇P − ρ∇φ+ η∇2~v (15.79)

This non-linear partial differential equation is the Navier-Stokes equation for flow of Newtonian
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incompressible fluids. The Navier-Stokes equation is not straightforward to interpret qualitatively,

and famously difficult to solve in even the simplest cases. Another more common form substitutes

the potential per unit mass ∇φ=−~g :

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇P + ρ~g + η∇2~v (15.80)

This form is more easily interpreted as a statement of Newton’s law: mass (ρ) times acceleration

equals the sum of forces, namely pressure (−∇P ), viscous forces (η∇2~v ), and gravity (ρ~g ). Since

we are assuming constant density (incompressible fluid), the continuity equation is simply ∇·~v =0,

which is a statement of conservation of fluid volume.

Incidentally, we can also reintroduce our vorticity ~Ω =∇× ~v :

ρ

(
∂ρ

∂t
+ ~Ω × ~v +

1

2
∇v2

)
= −∇P + ρ~g + η∇2~v (15.81)

That means that for an irrotational fluid (~Ω =0), we have

ρ

(
∂ρ

∂t
+

1

2
∇v2

)
= −∇P + ρ~g + η∇2~v (15.82)

The steady-state (∂ρ/∂t=0) equation for an irrotational fluid reads

1

2
ρ∇v2 = −∇P + ρ~g + η∇2~v (15.83)

Finally, if we are interested in the steady-state behavior of fluids at ve

Stoke’s flow around a solid sphere

If we are only interested in slow and steady flow (small Reynolds’ numbers) of an incompressible

fluid, we may neglect the “acceleration” term in the Navier-Stokes equation 1
2ρ∇v2:

−∇P + η∇2~v + ρ~g = 0 (15.84)

This is just one step up from our equation of state for a completely static fluid, we now retain only

the viscous force η∇2~v . Further simplification is possible due to the symmetry of the problem. Let

the fluid flow be along the z axis with constant velocity V∞, with the solid sphere of radius R at

the origin. In this case, by symmetry the fluid momentum is clearly independent of ϕ (the angle

in the xy plane). In spherical coordinates the Navier-Stokes and continuity equations read
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−∂P
∂r

+ η

[
∇2vr −

2vr
r2
− 2

r2

∂vθ
∂θ
− 2

r2
vθ cot θ

]
+ ρgr = 0 (15.85)

−1

r

∂P

∂θ
+ η

[
∇2vθ +

2

r2

∂vr
∂θ
− vθ

r2 sin2 θ

]
+ ρgθ = 0 (15.86)

1

r2

∂

∂r

(
r2vr

)
+

1

r sin θ

∂

∂θ
(vθ sin θ) = 0 (15.87)

Here we have expanded the θ and r portions of the gradient operators in spherical coordinates.

Perhaps surprisingly, the stress distribution, pressure distribution, and velocity components can be

found analytically:

τrθ =
3

2

ηV∞
R

(
R

r

)4

sin θ (15.88)

P = Po − ρgz −
3

2

ηV∞
R

(
R

r

)2

cos θ (15.89)

vr = V∞

(
1− 3

2

(
R

r

)
+

1

2

(
R

r

)3
)

cos θ (15.90)

vθ = −V∞
(

1− 3

4

(
R

r

)
− 1

4

(
R

r

)3
)

sin θ (15.91)

Note the following boundary conditions: at the sphere’s boudnary r = R, vr = vθ = 0, and at

r=∞, vz =V∞. Equation 15.89 is readily parseable: Po is the pressure in the plane z=0 far from

the sphere, −ρgz is the hydrostatic pressure effect, and the term with V∞ results from fluid flow

around the sphere. These equations are valid for Reynolds numbers less than approximately one.

In Fig. 15.8, we show fluid flow around a sphere under these conditions.

What we are interested in now is the force on the sphere due to this flow. The normal force (along

the z axis) acting on the solid sphere is due to the pressure given by Eq. 15.89 with r = R and

z=R cos θ:

P (r = R) = Po − ρgR cos θ − 3

2

ηV∞
R

cos θ (15.92)

The net upward force in the z direction due to the pressure difference on the ‘top’ and ‘bottom’

portions of the sphere is found by multiplying this pressure times the infinitesimal bit of surface

area over which it acts, R2 sin θdθ dϕ and integrating over the surface of the sphere:

Fn =

2π∫
0

π∫
0

[
Po − ρgR cos θ − 3

2

ηV∞
R

cos θ

]
R2 sin θdθ dϕ (15.93)

Fn =
4

3
πR3ρg + 2πηRV∞ (15.94)
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Figure 15.8: Forces on and streamlines around a sphere in Stokes flow. From http: // en. wikipedia. org/ wiki/ File:

Stokes_ sphere. svg .

We recover two terms for the normal force: the first is the buoyant force and the second the form

drag. At each point on the surface, there is also a shear stress acting tangentially, −τrθ. This

tangential force, since we are dealing with a curved surface, has both x − y and z components.

Over the whole sphere, the former will vanish by symmetry, but the latter will give rise to a net

force for any non-zero fluid velocity. On any infinitesimal patch of surface, the z-component of

this tangential force is (−τrθ) (− sin θ)R2 sin θdθ dϕ, and once again integrating over the sphere’s

surface we find

Ft =

2π∫
0

π∫
0

(τrθ|r=R sin θ)R2 sin θ dθ dϕ (15.95)

From Eq 15.88,

τrθ

∣∣∣∣
r=R

=
3

2

ηV∞
R

sin θ (15.96)

which results in a net frictional drag from the tangential flow of

Ft = 4πηRV∞ (15.97)

Thus, the total force on our sphere in the flowing fluid is

F =
4

3
πR3ρg + 6πηRV∞ (15.98)

The force has two terms, as expected: the first due to gravity (the weight of the fluid), exerted

even if the fluid is stationary, and the second associated with fluid motion, sometimes called the
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“drag force.” Both forces act in the same direction, opposing the direction of fluid flow.

Equation 15.98 is known as Stoke’s law, and from it we may determine the terminal velocity of

a falling sphere. Consider a sphere falling in a stagnant fluid of density ρs. In this case V∞ is

the relative velocity of the fluid with respect to the sphere, which in this case is just the velocity

of the falling sphere since the fluid is stationary. The static and drag Stoke’s forces act opposite

the direction that the sphere falls, and at the terminal velocity Vt, precisely balance the sphere’s

weight. If the sphere has density ρs, this means

4

3
πR3ρg + 6πηRVt =

4

3
πR3ρsg (15.99)

This leads to a terminal velocity of

Vt =
2gR2 (ρs − ρ)

9η
(15.100)

As expected, it is the relative density of fluid and solid that determine the behavior of the sphere:

if the sphere is more dense than the fluid, it sinks, and if it is less dense than the fluid, it rises.

In the present experiment, the fluid density (air) is negligible compared to the ‘solid’ density (oil),

and we arrive at Eq. 15.5.

Millikan’s correction to Stoke’s flow for low velocities

Under construction....
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16
Gamma ray spectroscopy

Note: It is assumed that you have read the introduction to the previous experiment, gamma ray

attenuation. See Sec. 6.

16.1 Introduction

The purpose of this lab is to become familiar with the response of a NaI detector to gamma rays and

to identify unknown gamma sources. NaI, doped with thallium, is an inorganic scintillator detector,

that is, it produces scintillation light when excited by the ionizing radiation of charged particles.

Gamma sources are unstable nuclei which emit photons when they decay. The combination of

gamma rays emitted by an unstable nucleus is unique. Besides gamma rays emitted due to nuclear

de-excitations, annihilation radiation may be produced if the decay products include a positron:

the positron annihilates with an atomic electron to produce two 511 keV photons.”i

16.1.1 Scintillation Counters

When radiation interacts with certain substances, a small flash of visible light (a scintillation) is

produced. This flash of light can be detected by a special kind of photocell (called a photomultiplier

tube) which is capable of multiplying the resulting signal by a very large factor. The combination

of a scintillator mounted on a photomultiplier tube is referred to as a scintillation counter.

Depending on the type of scintillator, these counters are capable of detecting as well as determining

the energy of alpha, beta, gamma, and x-rays. To detect alphas, zinc sulphide and plastic phosphors

may be used, while betas are usually best detected by anthracene or plastics. The best scintillator

for gammas (the type of radiation studied in this experiment) is a large crystal of sodium iodide

containing a trace of thallium as an activant. This is referred to as a NaI(Tl) crystal. The crystal

used in this experiment is roughly 4 cm in diameter and 2.5 cm thick, and it is mounted in an alu-

minum can which is optically coupled to the end of the photomultiplier tube. The entire detector

assembly is contained within the aluminum can to shield it from external light.

The scintillation counter has several advantages over the Geiger-Müller counter for the detection

of gamma rays. These advantages include:

• greater detection efficiency, due to the use of a solid (rather than a gaseous) detector

• capability for handling higher counting rates (due to shorter resolving times)

• capability for energy analysis (due to the fact that the amplitude of the output pulse is

proportional to the energy absorbed in the scintillator)

iMuch of this procedure is reproduced from ref. [4]. This version is only for use in PH255 at the University of
Alabama.
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192 16.1 Introduction

16.1.2 Compton Scattering

The energy of gamma rays is transferred to the NaI(Tl) scintillator chiefly by two processes: the

photoelectric effect and the Compton effect. At higher energies (> 1.022 MeV), pair production

also plays a role, and will be discussed further below. In the photoelectric effect, the entire energy

of the gamma ray is transferred to the phosphor, resulting in what is known as a photopeak or full

absorption peak. Put another way, the photons in the incident radiation are of high enough energy

to release electrons from atoms and molecules in the detector crystal. Photons in the beam are

thus annihilated, leading to a corresponding reduction in intensity. This photoeffect will lead to a

peak in the γ energy spectrum, known as the photopeak or full absorption peak.

In a real experiment, however, you will notice more structure in your spectrum than just photopeaks

corresponding to gamma emission. Specifically, we must also consider the scattering of gamma pho-

tons by electrons in the detector, i.e., the Compton effect. This will lead to two additional features:

a “Compton edge” and a “backscatter peak.” Recall that the Compton effect is a “collision” of

a photon with an electron in which relativistic energy and momentum must be conserved. After

the collision, the photon imparts some of its energy and momentum to an electron, and thus the

photon exits the collision with a slightly lower energy and a new direction. This process is shown

schematically in Fig. 16.1.

θ

ϕ

Eγ

E�
γ

e−Ee−

pγ = hk

p�
γ = hk�

pe−

Figure 16.1: Illustration of Compton scattering. An incident photon of energy Eγ and momentum hk scatters off of an
electron at rest. The photon emerges at angle θ with reduced energy E′γ and momentum hk′. The electron is ejected with
energy Ee− and momentum pe− .

Analyzing the collision and conserving relativistic energy and momentum, one can readily determine

the exiting photon’s energy as a function of its energy and ejection angle:

E′γ =
mc2

(1− cos θ) +mc2/Eγ
(16.1)

Here mc2 is the electron rest mass, approximately 511 keV. This formula might appear more familiar

in terms of the incident and exiting photon wavelengths:
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λ′ = λ+
h

mc
(1− cos θ) (16.2)

In short, a gamma enters the detector crystal and Compton scatters off of an electron which is

then detected by scintillation. The Compton-scattered gamma leaves the detector, and the amount

of detected energy is thus the kinetic energy given to the electron, or the difference between the

incident and exiting photon energies. Compton scattering necessarily results in a small energy

transfer than the photoelectric process, where the entire incident photon energy is transferred to

an electron. The maximum possible energy transfer defines the so-called “Compton edge,” and

occurs when the gamma is scattered backwards at θ=180◦. This maximum energy transfer is thus:

Ece = Eγ − E′γ(θ=180◦) =
2E2

γ

mc2 + 2Eγ
(16.3)

The Compton edge represents the maximum energy transfer to an electron, or the maximum energy

loss by the photon. Of course, the collision may be considerably more gentle and result in a smaller

energy transfer. Considering all possible collisions, one arrives at a broad distribution of events at

energies less than the Compton edge, and a cutoff at the edge itself. For a 662 keV 137Cs gamma,

the Compton edge occurs at approximately 478 keV.

Still one more effect of Compton scattering must be considered. Gammas may also interact with

electrons outside the detection region, and these electrons may be Compton-scattered back into the

detector and be detected by the photoeffect. Only a few angles near 180◦ will result in electrons

entering the detector, which results in a peak in the energy spectrum at an energy corresponding

to that of the exiting photon:

Ebsc = Eγ − Ece = E′γ(θ=180◦) =
Eγ

1 + 2Eγ/mc2
(16.4)

Essentially, the backscatter peak arises from absorption in the detector of scattered gammas from

Compton interactions in the material surrounding the scintillator, mainly in the glass layer between

the crystal and the cathode of the photomultiplier. For a 662 keV 137Cs gamma, the backscatter

peak should occur at approximately 184 keV. In Fig. 16.2 we show what the gamma ray spectrum

from 137Cs might look like as measured with an ideal detector (in which backscattering does not

occur). At the lowest energies, an x-ray emission from the 137Ba daughter is visible, followed by

the Compton spectra. The Compton spectrum increases monotonically until the Compton edge is

reached, after which the photopeak is observed. The real 137Cs spectrum, however, shows several

other features, most notably the backscattering peak.

In the analysis of complex scintillation spectra, care must be taken to identify backscatter peaks and

Compton electron distributions to avoid confusing this with photoelectron peaks. It is also notable

that the photopeak obtained with a real detector is broadened compared to the ideal case. The

amount of broadening depends on the properties of the particular scintillator and photomultiplier
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Figure 16.2: Left: Gamma spectrum of 137Cs for an ideal detector and no backscattering. Right: Measured gamma spectrum
of 137Cs. Aside from the main photopeak at ≈660 keV, clear Compton edge and backscatter oeaj are visible, as well as X-ray
absorption edges. Note the logarithmic scale on the vertical axis.[3]

used. A quantitative measure of the broadening is the resolution, which is calculated as the ratio

of the width of the photopeak at one half its maximum intensity (the full width at half-maximum,

or FWHM) divided by the pulse height (or energy where the maximum occurs, expressed as a

percentage.

16.1.3 Pair Production

The antiparticle of the electron (e− or β−) is the positron (e+ or β+). When a positron and electron

collide, they annihilate each other and produce two photons, each of energy corresponding to their

rest energy of 511 keV and traveling in opposite directions to conserve linear momentum. Some

radioactive isotopes, particularly those with proton-rich nuclei, decay by positron emission. This

reduces their nuclear charge and atomic number by one. The 511 keV photons (gammas) from the

subsequent annihilation of the positron can be observed in gamma ray spectroscopy, clear evidence

of nuclear annihilation.

A positron can also be produced along with an electron as a pair by a gamma ray with energy

greater than two electron masses (1.022 MeV). That is, the photon be annihilated into an electron-

positron pair. This process conserves charge as well as linear and angular momentum, and is usually

referred to as pair production. Any excess energy above 1.022 MeV is found as kinetic energies of

the pair. After pair production, the positron will be annihilated by another electron, producing

two 511 keV gammas. This is shown schematically in Fig. 16.3.

Pair production and positron emission have a number of effects on gamma ray spectra. Annihilation

will produce two 511 keV gammas moving in opposite directions, only one of which may possibly

enter your detector if the annihilation occurs outside the detector. Positrons can only travel very
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511 keV

511 keV

Eγ > 1.022 MeV
e+(β+)

e−(β−)

Figure 16.3: Illustration of pair production. A gamma enters the detector from the left with energy Eγ>1.022 MeV, producing
an electron-positron pair in the detector. The positron is annihilated producing two 511 keV gammas.

short distance before being annihilated, meaning annihilation almost always occurs in the source

material. The result is a 511 keV photopeak and Compton distribution in the gamma spectrum, as

shown in Fig. 16.4.

Gammas with energies greater than 1.022 MeV can enter your detector and interact by pair pro-

duction, producing a positron inside the detector, as shown in Fig. 16.3. Annihilation occurs so

rapidly that the light produced by the two 511 keV gammas combines with the light produced from

the total kinetic energies of the electron and positron to produce a pulse that represents the energy

of the original gamma. This appears as a photopeak pulse. Sometimes one or both of the 511 keV

gammas escape the detector, and this creates photopeaks that are missing 511 keV of energy (first

escape peak) or 1.022 MeV (second escape peak).
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Figure 16.4: Gamma spectra of 22Na, showing a 511 keV annihilation peak..

Two other mechanisms are worth noting, though they do not change the essential physics of the

problem.ii A fourth mechanism, Rayleigh scattering, corresponds to the elastic (photon-energy-

iiOf course, there are still other mechanisms, such as nuclear-resonance scattering and Delbrück scattering, but
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conserving) scattering of light, which simply changes the direction of incident photons. Since no

energy is lost, this process will merely reduce the measured intensity of radiation (because some

photons will be deflected out of the detection region) and will not alter the spectrum.

Finally, in principle must also consider direct absorption of incident photons by the nucleus itself,

photonuclear absorption. This process usually results in the ejection of one or more neutrons and/or

protons. This interaction can contribute ∼5−10% to the total photon interaction, though within

a fairly narrow energy region usually occurring somewhere between 5 MeV and 40 MeV. At the

energies of the present experiment (<2 MeV), this effect is negligible.

16.2 Objective

The objective of this experiment is to apply understand the interaction of high-energy gamma-ray

photons with matter. You will perform spectroscopic measurements on known materials to identify

and explain the key features in the spectra, and apply your knowledge to the determination of an

unknown material by analysis of its gamma spectrum. You will also be able to determine the rest

mass-energy of electrons.

Hypothesis: Gamma ray spectra are characteristic of particular nuclei, and may be used as an

analytical tool. The spectra can be explained by considering the photoelectric effect, Compton

scattering, pair production, and characteristic x-ray emissions.

16.3 Preparatory Questions

You should touch on these questions in your report.

1. How does a photomultiplier tube work?

2. How does a scintillation detector work?

16.3.1 Relevant Reading

Taylor[1], Ch.

Pfeffer & Nir[2], Ch.

http://en.wikipedia.org/wiki/Gamma_ray

See [5–7] for relevant nuclear data and [8] for example gamma spectra.

16.4 Supplies

1. Spectech UCS30 spectrometer

they are negligible from our point of view.
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2. NaI(Tl) detector

3. Multi-channel analyzer (MCA) / control electronics

4. Pb cylinder for shielding

5. radioactive sources

6. lab notebook and USB drive for saving spectra

Pb brick

Pb cylinder

detector

detector
housing

sources

control electronics

calipers

Pb, Al, Cu
sheets

Figure 16.5: The Spectech UCS30 spectrometer and accessories.

16.5 Suggested procedure

16.5.1 Startup

1. Turn on the power to the Spectech UCS30

2. run the program “USX USB” from the shortcut on the desktop

3. place the 60Co source on top of the table, and place the lead cylinder around it

4. place the cylindrical NaI detector inside the lead cylinder

5. Turn the high voltage on and set to 650 V.

6. Expose the detector to the 60Co source. Set the gain in UCS30, by adjusting the coarse gain

and fine gain, such that two peaks (the 1173 and 1333 keV photopeaks) are visible in the

collected spectrum on the right hand (high energy) side. If these peaks are too far to the left,

you will have insufficient dynamic range for your measurements.

16.5.2 Running the experiment

1. Once you have set the detector to a reasonable gain, giving you sufficient dynamic range to

detector the gammma radiation of all sources, perform an energy calibration. This is done

by accumulating gamma ray spectra with a sufficient number of sources. Press the green

diamond to start collecting data and the red octagon to stop, and use the “X” to clear the

spectrum. Before clearing a spectrum to take the next measurement, save the data to the
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198 16.6 Data analysis

computer’s hard disk (to be transferred to your thumb drive) as a Comma Separated File so

you can get back to the data and analyze it in Excel on your own computer. Collect data for

at least 5 minutes for each source. To analyze your data highlight the characteristic peaks

that become visible. These correspond to the full absorption of the radiation emitted in the

decay of the excited nuclear states. When you hold the pointer over the highlighted areas the

computer will display the number of accounts within the highlighted area, the average ADC

count (sometimes called peak centroid, and the FWHM (Full Width at Half Maximum) value.

FWHM is another measure for the standard deviation, σ, of a Gaussian. They relate to each

other as FWHM = 2 ·
√

2 · ln(2) ≈ 2.36 · σ. Further record the counting time of each source

measurement. Record all these data in an Excel spread sheet. You will use Excel for your

data analysis.

Using Excel plot the measured gamma ray peak centroid (in ADC counts) versus their tabu-

lated energy values. You will have to look up the known energies of the gamma lines on the

web. The instructor can help you figure out how. Tip: the US national labs are wonderful

sources of online data. The data points you collected should more or less line up on a straight

line. The slope of this line gives you the energy calibration. If you are adventurous try to

describe the data with a parabola. Does this give a better fit to the experimental data? The

tabulated data and the energy calibration plot with fit need to be part of your written report.

In your Excel spread sheet convert the FWHM values into σ. Plot σ as a function of their

corresponding peak centroids. Is there a trend? Can you fit the data with some appropriate

mathematical function? Explain your data and choice of fit function in your report.

2. Put the unknown source on the detector and collect data for 5 minutes. Using your newly

found energy calibration identify the radio nuclide(s) contained in this radioation source.

Your report needs to explain how you identified the unkonwn material.

16.6 Data analysis

For each source, measure the photopeak, the Compton edge, and the backscatter peak energies.

The Compton edge is at an energy corresponding to about half the change in the count rate from the

trough between the photopeak and edge to the immediate maximum in the edge. The photopeak

should be easily identified, and the backscatter peak should be more triangular and asymmetric in

shape, with the peak flat or slightly rounded. The energy of the backscatter peak corresponds to

the lowest energy of the top of the peak. Test your energy measurements by verifying that

Eγ = Ece + E′γ = Ebsc + Ece (16.5)

Compute the position of the Compton edges and backscatter peaks for each gamma and indicate

their ideal locations on the spectra.

Solve Eq. 16.3 for mc2 as a function of Eγ and Ece. Using the photopeak and Compton edge en-
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ergies, calculate the mass energy of the electron and the measurement error in that mass. Average

your results to obtain one value for the electron’s rest mass energy and the standard deviation in

that value.

Compute the percent resolution for each peak.

The resolution should improve (get smaller) as the energy increases. Is that what you observe?

Further, if the distribution of channel numbers for a given energy deposit truly follows gaussian

statistics, the resolution is proportional to E−1/2. How does the expectation of gaussian statistics

compare with your observations?

For each of the unknown sources:

1. Estimate the energies of all prominent peaks. (If one of the peaks has an energy consistent

with 511 keV, you may assume that it is the annihilation peak and thus that the parent emits

positrons.)

2. Identify the parent. Show your reasoning. You may use the on-line table of gamma energies,

in http://nucleardata.nuclear.lu.se/toi/radSearch.asp. (Use your uncertainty in the measure-

ment of the peak energy as a guide in setting the width of the window of gamma ray energies

in which you search.) You may assume that the half-life of the unknown source is at least 1

month.

3. If there are several candidates, look at the list of gamma energies and corresponding branching

ratios for each candidate. Are there any other gammas with a comparable or larger branching

ratio than the ones you see? (The branching ratio is labeled as Ig(%) in the on-line tables.)

The branching ratio indicates the fraction of decays in which the gamma is emitted, smaller

is less likely.) If so, are peaks present in the spectrum corresponding to these gammas? If

not, the candidate is ruled out.

4. Identify the source of each peak, e.g. gamma from nuclear decay, sum of two gammas from

nuclear decay, sum of a gamma from nuclear decay and annihilation gamma, etc.

16.7 Format of report

You may choose one of the following formats for your report:

1. two-page memo (excluding required plots)

2. group oral presentation

3. formal written lab report

4. research proposal
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Further details and templates are provided for each of these formats. Keep in mind that over the

course of all of the one-week experiments you must do each type of report (and two formal lab

reports).

16.8 Discussion and topics for your report

The backscatter peak in each spectrum should change in intensity with the addition of a lead sheet.

Could any other material work as well? It is the product of the electron density and the material

thickness that correlates directly with the intensity of the backscatter peak.

Gamma sources available

Table 16.1: Disk gamma source set

Isotope Activity (µCi) Half-life Peaks (keV)

133Ba 1 10.8 yrs 81, 276, 303, 356, 384
109Cd 1 462 days 88
137Cs 1 30.2 yrs 662
57Co 1 272 days 122, 136
60Co 1 5.27 yrs 1173, 1333

54Mn 1 313 days 835
22Na 1 2.6 yrs 511, 1275
207Bi 31.6 yrs 569.7, 894, 1063.66, 1770.2

unknown 1.5 ? ?

Sources from Spectrum Techniques, Oak Ridge, TN (www.spectrumtechniques.com). USNRC

and state license exempt quantities.

P. LeClair, J. Busenitz, A. Piepke, D. Williams PH255: Mod. Phys. Lab
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Decay of Radon Daughters from Air

In this experiment you will study natural radioactivity and the radioactive decay law. The inves-

tigation of a complex decay sequence will allow you to utilize coupled differential equations in the

description of the data. Decay data of unstable radon daughters, sampled from the air, will be

used to determine the concentration of the radioactive noble gas 222Rn in the air and therefore

demonstrate the presence of natural radioactivity in your environment. To do that radon (222Rn)

decay products are collected by sucking a known volume of air through a filter. Their subsequent

decay will be measured by counting the filter with a NaI scintillation detector. This detector will

measure the gamma radiation emitted in the decay of Rn daughters. The collected data will be used

to determine the activities of the Rn daughters by means of statistical analysis of the gamma-ray

spectra. You will then infer the specific radon activity of the air.

17.1 Objectives

Determine the specific 222Rn activity of air. Determine the half lives of the radon daughters 214Pb

and 214Bi (optional).

17.2 Tools

• A calibrated blower and filter are used to catch radon-daughter loaded aerosols from the air.

• A NaI scintillation detector is used to measure the gamma radiation emitted by the filter.

• Statistical data analysis is performed to determine the time dependent activity content of

the filter, allowing to infer the specific Rn-activity of the air and the half lives of the radon

daughters.

17.3 Tasks

1. Read and understand the experiment description.

2. Solve the pre-lab problems given in this write-up.

3. Collect Radon decay daughters from the air on a filter.

4. Count the filter in order to quantify the activities of the unstable Radon daughters as a

function of time.
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5. Determine the half lives and activities of 214Pb (and 214Bi) by means of a statistical analysis.

In your write-up you have to show graph of the 214Pb (and 214Bi) activity versus time since

end of filtering.

6. Determine the Rn activity per unit air volume from your data.

17.4 Introduction

Radioactivity is the spontaneous disintegration of an unstable atomic nucleus and the emission of

particles, sometimes together with very energetic electromagnetic radiation. Ionizing radiation is

emitted during radioactive decays. This is what is measured. Radioactivity is categorized into α

or β-decay or spontaneous fission.

The earth is radioactive and has been since it formed 4.54 × 109 y ago. Many radio nuclides can

be found in the environment. They are generally categorized as:

1. Natural or primordial - from before the formation of the earth

2. Cosmogenic - formed as a result of cosmic ray interactions

3. Human produced or anthropogenic - enhanced or formed due to human actions (typically

minor amounts compared to natural, except after incidences)

Radio-nuclides are found in the soil, air, and water. They are even found in us, being that we are

products of our environment. Every day, we ingest and inhale radio-nuclides in our air, food, and

the water. Natural radioactivity is common in the rocks and soil that makes up our planet, in

water and oceans, and in our building materials and homes. There is nowhere on earth that you

can not find natural radioactivity. The radio-nuclides 40K, 232Th, and 238U (along with their decay

products) are called natural radioactivity. Their half lives (the time taken for the radioactivity

of a specified isotope to fall to half its original value) are with 1.28 × 109 y, 1.41 × 1010 y, and

4.49× 109 y comparable to the age of the earth and they have thus not yet decayed away.

17.4.1 Units of Radioactivity

There is a confusing multitude of units measuring different things. The nuclear decay rate is

measured in units of Becquerel (Bq). 1 Bq is equivalent to one decay per second. This is the SI

unit for activity. Sometimes you will encounter an outdated unit for activity the Curie (Ci). The

Curie is a historical unit, defined as the activity of 1 g of the radionuclide 226Ra. This definition is

not very practical for standard keeping and comparison. 1 Ci = 3.7 × 1010 Bq. The activity A is

proportional to the amount of radionuclide present in the sample. If the sample contains N atoms

of a radionuclide with a mean life time of τ =
T1/2
ln(2) then:

A =
N

τ
. (17.1)
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The rad (radiation absorbed dose) is a unit used to measure a quantity called absorbed dose. This

relates to the amount of energy actually absorbed in some material, and is used for any type of

radiation and any material. It measures the effect of the radiation on matter. One rad is defined as

the absorption of 100 ergs (1 erg = 10−7 J) per gram of material. The unit rad does not describe

the biological effects of the different radiations. The modern SI unit for radiation exposure is the

Gray (Gy), defined as an energy deposit of 1 J/kg. rad and Gy measure the same effect, their

relation is: 100 rad = 1 Gy.

The unit röntgen (R), adopted in 1928, measures the exposure of air to ionizing radiation in units

of the free charge induced per volume of air. It is defined as the charge of one esu per cm3 of dry air

at standard temperature and pressure. It is now stated in terms 1 R = 2.58 · 10−4 C/kg. Because

this unit is a measure of the exposure of air only it is not used as often as rad.

Sometime you will find the unit rem (roentgen equivalent man). The rem is a unit used to derive

a quantity called equivalent dose. This relates the absorbed dose in human tissue to the effective

biological damage of the radiation. Not all radiation has the same biological effect, even for the

same amount of absorbed dose. Equivalent dose is often expressed in terms of thousandths of a rem,

or mrem. The unit rem has been replaced by the modern SI unit Sievert (Sv), with the definition

1 rem = 0.01 Sv. To determine the equivalent dose (rem), you multiply absorbed dose (rad) by a

quality factor (Q) that is unique to the type of incident radiation. The following quality factors

are applied:

• Photons, all energies : Q = 1

• Electrons and muons, all energies : Q = 1

• Protons and charged pions : Q = 2

• Neutrons : Q is a continuous function of neutron energy

• Alpha particles and other atomic nuclei : Q = 20

The natural background effective dose rate varies considerably from place to place, but typically is

around 2.4 mSv/year or 240 mRem/y.

In this lab we will determine activities in Bq. We will not work with absorbed dose or equivalent

dose. These units have only been stated for your orientation.

17.4.2 Natural Radioactivity

As already stated in section 17.4 the radio-nuclides 40K, 232Th, and 238U are called natural ra-

dioactivity. 40K undergoes beta decay into 40Ca which is stable. The time (t) dependence of the

number of K-atoms, N(t), is governed by the well known radioactive (exponential) decay law. The

exponential decay law is a consequence of the requirement that the decay probability of each atom

is equal and independent of its age. Let d N
d t be the decay rate. As the decay probability per unit
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time is equal at any time and for any atom the decay rate has to be proportional to the number of

unstable atoms, thus N . This proportionality can be converted into an equality by introducing a

constant of proportionality. To match the units on both sides the constant of proportionality needs

to have dimension time−1, we use the inverse mean life time 1/τ :

d N

d t′
= −N

τ

⇒ d N

N
= −d t

′

τ

⇒
∫ N(t)

N(0)

d N

N
= −1

τ
·
∫ t

0
d t′

⇒ [ln N ]
N(t)
N(0) = − t

τ

⇒ ln N(t)− ln N(0) = ln
N(t)

N(0)
= − t

τ

⇒ N(t) = N(0) · e− t
τ (17.2)

N(0) denotes the number of atoms present at time zero t = 0. So the assumption of equal decay

probability and simple integration of the resulting first order linear differential equation yields the

well known radioactive (exponential) decay law.

For 232Th, and 238U the situation is more complicated: something unstable decays into something

Figure 17.1: 238U decay series.

that is again unstable and so forth. This situation is illustrated for 238U in figure 17.1. 238U decays

into 206Pb but via many unstable intermediate radio-nuclides.

The radioactive noble gas 222Rn (T1/2=3.8 d) is a member of the 238U decay series. It can be

found in trace concentrations everywhere, as it is gaseous and relatively long lived. It is released by

minerals into the air where it exists in some equilibrium concentration. There is another species of

Rn present in the air: the 232Th decay series, also naturally present in our environment, has 220Rn
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(T1/2=55.6 s) as a member. Due its short half live its equilibrium concentration is much lower

than that of 222Rn. We can hence neglect its effect in this experiment. Airborne Rn-gas is one of

Figure 17.2: Fractional contribution of various radiation sources to the dose rate received by humans.

the principal components of our natural radiation exposure, as shown in figure 17.2. Depending on

geographical location about half of your radiation exposure is due to radon gas!

Problem 1:

Show that the activity A = −dN
dt , or number of decays per unit time, of a radioactive species is

given as A = N
τ , where τ denotes the mean life time.

17.5 Radon Decay

Rn decays into unstable elements having short half lives. Equation 17.3 shows part of the 222Rn

decay sequence. This sequence offers a convenient way to study radioactive decays in the laboratory

without the need to produce costly isotopes at a particle accelerator or by neutron activation at

a nuclear reactor. Nature delivers them to us gratis! Here part of the decay sequence (mean life

times are given too):

222Rn
5.52 d−→ 218Po

4.40 m−→ 214Pb
38.7 m−→ 214Bi

28.6 m−→ 214Po (17.3)

or

A
τA−→ B

τB−→ C
τC−→ D

τD−→ E

222Rn and 218Po undergo α-decay, 214Pb and 214Bi beta decay. During the beta decays of 214Pb

and 214Bi energetic gamma radiation is emitted. This is not so for the alpha decays. The NaI

detector used in our experiment is only sensitive to gamma radiation and thus cannot measure
222Rn decays directly. It is only sensitive to the radon decay products 214Pb and 214Bi. You will

be able to measure activities C and D with the NaI detector. Two practical questions arise:

1. How do we determine the 222Rn activity from measured 214Pb and 214Bi activities? Is there

a reason why they should be the same?
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206 17.5 Radon Decay

2. What time dependence do we expect to observe for the 214Pb and 214Bi decay rates?

17.5.1 Sequential Radioactive Decays

As explained above the radon decay products are filtered out of the air. Radon itself is a noble gas

and will thus not be collected by a filter. How are the radon decay products captured?

The 222Rn decay product, in this case 218Po, is originating from an alpha-decay and left in a doubly

charged (ionized) atomic state after its birth. The charged Po atoms tend to adhere to small dust

particles (aerosols) suspended in the air. In order to collect the aerosols we will suck a calibrated

volume of air through a filter. A suitable calibrated blower is available. Our filter then catches

the aerosols and together with them the Po. The 218Po (from here on called activity B) α-decays

quickly within a few minutes. You are then left with 214Pb (activity C) which β-decays into 214Bi

(activity D), which is β-unstable and decays into 214Po. What we want to know is the 222Rn

activity (A). The collected 218Po is unstable. So some of it will already decay while still running

the blower. This poses a third question:

3 How do we quantify the fraction of the radon decay products that were collected but decayed

before we started counting?

When staring the blower no radon decay products are present on the filter. 218Po is collected

and decays into 214Pb and 214Bi, the nuclides that are actually being measured. We thus need to

determine how to relate the observable quantities (214Pb and 214Bi activities) to amount of filtered

gas, filtering time, counting time.

17.5.2 Mathematical Treatment of Sequential Decays

17.5.2.1 Collection Phase

Let’s examine the math describing both build-up and decay of the activities during the filtering.

When the blower is on, activities B, C and D are building up on the filter. At the same time some

of it already decays because these elements are unstable. There is no buildup of activity A, the

gaseous radon, on the filter. We thus don’t need to set up an equation for radionuclide A. The

build up of species B, C, and D is described by the following differential equations:

dNB

dtf
= k · nB −

NB

τB
(17.4)

dNC

dtf
= k · nC +

NB

τB
− NC

τC
(17.5)

dND

dtf
= k · nD +

NC

τC
− ND

τD
(17.6)

Here NB, NC , and ND are the numbers of atoms of species B, C and D on the filter (unitless). nA,

nB nC , and nD are the numbers of atoms of species A, B, C and D per unit volume of air (unit

[l−1]). k is the volume of air passing through the filter per unit filtering time tf (unit is [l/s]). We
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are assuming that the collection efficiency for nuclide A is 0% (gas doesn’t get stuck in a filter),

and that of nuclide B to be 100%. You also note that the positive terms (k · n) used in all three

equations assumes equal efficiency for catching all three decay products of Rn on the filter. This is

in fact not a very good assumption but we will stick with it to simplify the math.

How do we come up with these equations? Let’s examine equation 17.5. dNC
dt describes the change of

the number of nuclei of species C. It is hence a measure of the decay rate (unit is [Bq] equivalent to

[s−1]). This is what we can directly measure with our radiation detector. The parent concentrations

have then to be inferred from this data using an appropriate set of assumptions. We assume:

• The rate with which we capture species C from the air is proportional to the blower speed,

k=0.85 m3/min, and the concentration, nC , of species C in the air. The term k ·nC is positive

(it is a gain) and measures this collection.

• While filtering is still in progress the sample of species C is already decaying. As in all

radioactive decays the decay rate is proportional to the number of atoms on the filter. The

shorter the live time, τC , the more “unstable” the sample is. Hence the decay rate has to be

inversely proportional to τC . This term is negative as it represents a loss.

• Species B is collected on the filter in parallel. It is decaying as well while filtering is still in

progress. The decay of species B leaves species C behind. The decay rate of B, as given

in equation 17.4 has hence to be booked as a gain (with “+” sign) for B. This couples the

equations.

This set of assumptions allows us now to determine the elemental concentrations nA, nB, and nC

from the measured decay rates. Clearly, differential equations are needed to describe this situation.

Above equations 17.4, 17.5, 17.6 are solved by the following functions (remember that tf measures

the flow of time during filtering):

NB(tf ) = k · nB · τB · (1− e−tf/τB ) (17.7)

NC(tf ) = k · τC · (nB + nC) · (1− e−tf/τC ) +
k · nB · τB · τC

τB − τC
· (e−tf/τC − e−tf/τB ) (17.8)

ND(tf ) = k · τD · (nB + nC + nD) · (1− e−tf/τD) +

k · (nCτC −
nB
τB
− nC

τB
) · τB · τ2

C · τD
(τB − τC) · (τC − τD)

(e−tf/τD − e−tf/τC ) +

k · nB · τ2
B · τD

(τB − τC) · (τB − τD)
· (e−tf/τD − e−tf/τB ) (17.9)
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The appendix shows how these solutions are obtained.

Problem 2:

Show that function 17.8 is a solution of equation 17.5. You can do this by either substitution of

the solution into the equation or by solving the equation using the method outlined in the appendix.

The time dependent activities AX are obtained by dividing the number of atoms NX by the respec-

tive life time τX . The activities of species B, C, and D at the end of filtering is thus obtained by

dividing by the respective mean life times. These equations can be further simplified using some

numerical values. We will use a filtering time of tf = 30 − 60 m. The mean life times are given

in equation 17.3. Thus tf � τB. The exponential containing the ratio of these two values can be

neglected. We further assume that the activities of species A, B, and C in the atmosphere are

in secular equilibrium, meaning are equal at all times. This approximation is well justified and

explained in the appendix. It means the decay rate is determined by the long lived mother (in our

case 222Rn) of the decay series and is equal for all members of the series:

nA
τA

=
nB
τB

=
nC
τC

(17.10)

The activities at the end of filtering are given (to good approximation):

AB(tf ) = k · nB (17.11)

AC(tf ) = k · (nB + nC) · (1− e−tf/τC ) + k · nB ·
τB

τB − τC
· e−tf/τC (17.12)

AD(tf ) = k · (nB + nC + nD) · (1− e−tf/τD)−
k · nC · τ2

C

(τB − τC) · (τC − τD)
(e−tf/τD − e−tf/τC ) +

k · nB · τ2
B

(τB − τC) · (τB − τD)
· e−tf/τD (17.13)

We define the activities AC(tf ) and AD(tf ) as those present on the filter at the end of filtering.

For the data analysis it is useful to make use of the chain equilibrium:

nB
τB

=
nC
τC

⇒ nC =
τC
τB
· nB

Substitute this into above equation for AC(tf ):

AC(tf ) = k · nB ·
[
(1 +

τC
τB

) · (1− e−tf/τC ) +
τB

τB − τC
· e−tf/τC

]
︸ ︷︷ ︸

≡f(tf )

(17.14)
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Figure 17.3: Graphical representation of the correction factor f as a function of the filtering time tf .

The initial activity hence depends on some decay factor f(tf ) that can be calculated using tabulated

life times. You will use an Excel spread sheet to keep track of these activities during the experiment

and to calculate f(tf ) for your particular filtering time. Figure 17.3 shows how the f-factor depends

on the length of time the filtering goes on. As you can see from figure 17.3 the correction factor

can be quite large. Neglecting this correction would thus lead to a substantial error in the 222Rn

specific activity determined from a measured 214Pb activity.

The equilibrium condition thus allows us to calculate the Radon decay rate nA/τA from a derived

concentration of activity B obtained from the measured activity C (214Pb) on the filter at the end

of filtering.

nA
τA

=
nB
τB

=
AC(tf )

k · f(tf ) · τB
(17.15)

This is how we will determine the Radon activity of the air: calculate the correction factor f(tf )

using equation 17.14. You have to keep track of the flow of time to get this right. You will measure

the 214Pb activity present on the filter at tf , the end of filtering. Plug these two numbers into

equation 17.15 to obtain the final result.
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17.5.2.2 Counting Phase

What follows is a description of how to model the 214Pb activity AC as a function of counting time

td. This activity is not constant in time, as seen with the ccalibration sources, but goes down as

time goes on and relatively quickly. This obviously needs to be described properly in order to get

a correct result.

In order to count the radon decay products, collected during the time tf , the filter needs to be

removed from the blower and placed in front of the NaI detector. As soon as the filtering process

is stopped the activities are described by a different system of differential equations. The term k,

describing the gain of activities, vanishes because the air flow is given turned off. We introduce a

new decay time td, starting at zero at start of counting. We have:

dNB

dtd
= −NB

τB
(17.16)

dNC

dtd
=

NB

τB
− NC

τC
(17.17)

dND

dtd
=

NC

τC
− ND

τD
(17.18)

These equations are solved by the following functions (see appendix):

NB(td) = NB(tf ) · e−td/τB

NC(td) = NC(tf ) · e−td/τC −NB(tf ) · τC
τB − τC

·
(
e−td/τC − e−td/τB

)
.

ND(td) = ND(tf ) · e−td/τD −NC(tf )
τD

τC − τD
·
(
e−td/τD − e−td/τC

)
+

NB(tf )
τD

τB − τC
·
(
τC

e−td/τD − e−td/τC
τC − τD

− τB
e−td/τD − e−td/τB

τB − τD

)
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As before the time dependent activities can be obtained by dividing the number of atoms by its

corresponding life time. It is again assumed that td � τB or e−td/τB ≈ 0.

AB(td) = AB(tf ) · e−td/τB︸ ︷︷ ︸
≈0

AB(td) ≈ 0

AC(td) ≈ AC(tf ) · e−td/τC (17.19)

AD(td) ≈ AD(tf ) · e−td/τD −AC(tf )
τC

τC − τD
·
(
e−td/τD − e−td/τC

)
(17.20)

This is true to good approximation. You note that the decay of species B does not play an impor-

tant role here which simplifies the equations considerably. This is because B has a mean life time

of only 4.4 min. It hence decays quickly. If you wait a few half lives after end of filtering before

you start counting, then B will effectively have died out. In this limit equations 17.19 and 17.20

describe the data well. From a practical point of view: AB(td) is unmeasurable in our setup because

it (a) doesn’t live long enough and (b) it undergoes an α-decay which, in this case, doesn’t result

in emission of γ-radiation; and that’s what we measure with or NaI detector.

In a practical sense you will determine AC(tf ) from a time fit to the 214Pb data and then use it,

together with the calculated f(tf ) value to determine the specific Radon activity of the air.

You see from this discussion that the “exponential” decay is not really a law of nature. It is derived

from the assumption that the decay probability only depends on the number of decaying nuclei

and not their age. If you have a balance of production and decay the time development of the

observed activity (or equivalently the of the emitted photon flux) may well be described by a more

complicated function, which, however, always contains exponentials. This follows naturally from

the same assumption, as shown in this experiment.

It is essential that you keep track of time in this experiments. Note the time you start and stop the

blower, and the time you start counting the filter. Try to keep the delay between end of filtering

and beginning of counting to a minimum, but keep in mind that the equation require a delay of at

least 10 min to be valid.

17.6 Procedure

It is assumed that you are familiar with the basic data taking and analysis techniques used in

the “Gamma Spectroscopy” experiment. If have trouble remembering consult the write-up of that

experiment.
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17.6.1 Data Collection

Put a new red filter into the blower. The lab supervisor will help you with this. Switch the fan on

and read the air flow as measured with the flow meter on the back of the fan. If the flow meter

doesn’t work (sometimes the little ball gets stuck) use a flow of 0.85 m3/min, which I determined

earlier. Note the time you started the fan into your lab book. Collect aerosols for a period of 30-60

min. Switch the blower off and retrieve the filter. Note the time of end of filtering. Bring the

loaded filter to the lab and put it in front of the NaI detector. Put it as close as possible. You

should start counting the filter no more than 10 min after turning the blower off. Don’t waste time!

During the time you are collecting aerosols with the blower you should quickly re-check the energy

calibration of the NaI detector. Use the 57Co, 137Cs and 60Co sources for that. Apply the tech-

niques and procedures described in the write-up of the experiment on “Gamma Spectroscopy”.

After the filtering is over you will measure the γ-ray flux emitted by the filter as a function of

time. This will allow you to determine the wanted half lives. Collect 10 successive spectra using a

measuring time of 10 minutes for each run. You will have to save each spectrum to disk and write

down the starting time into your log book. Collect as many data files as possible, a minimum of 6.

17.6.2 Data Analysis

Use the UCS software for the data analysis. After you’re done with the data analysis you will

have to load your data files back into the software in order to determine the number of counts in

the 351 keV peak (for 214Pb) and the 609 keV peak for (214Bi OPTIONAL). You will do this for

each of your data files. Before embarking on this find on the web which peaks are to be expected

in the 214Pb and 214Bi decays. This is just a sanity check. Note the number of counts in the

respective peaks for each file into an EXCEL spread sheet. For every run note the number of

events under the peaks of interest (N) and their respective errors
√
N) into an Excel spread sheet.

Divide the number of events and their errors by the counting time to arrive at an estimate for

the peak counting rates r(td) as a function of time. To do so you need to keep track of time and

you know when you started data taking. To convert the measured counting rate r(td) into an

activity a(td) you will need to make correction for the detector efficiency ε and the finite photon

emission probability (called branching ratio) b. You will use the counting efficiency determined in

the “Gamma Spectroscopy” experiment. Figure 17.4 shows an example efficiency curve with fit.

This curve yields ε = 0.034 counts/γ for the 351 keV peak and ε = 0.012 counts/γ for the 609 keV

line.

Calculate the time dependent activity of 214Pb (and optionally 214Bi) contained in the filter. Let

c(Eγ , td) be the integral of the peak you are going to analyze. This integral was measured at a time

td for a peak energy Eγ . The measured activity of the decaying nuclide, A(td) is given as:

A(td) =
c(Eγ , td)

ε · b · t , (17.21)
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Figure 17.4: Detection efficiency of one of the lab NaI detectors (the one near the window).

with t denoting the duration of the data taking in [s]; yet another time you need to keep track of!

Energy dependent values of ε are given in figure 17.4. Assume that the ε’s are free of error, for

simplicity.

In this experiment you will only use your measurement of the peak energy to identify the appropri-

ate peak and associated nuclear decay. The quantity of interest is the area under the peak. This

is a measure of the strength of the gamma emitter. As pointed out before systematic corrections

need to be made to get the activity from the peak integrals. You need to (a) convert into rates,

(b) account for the fact that the characteristic gamma is only emitted in a fraction of the decays

of interest (described by the branching ratio), and (c) that only some of the gammas emitted by

the filter will result in a “count” under the full absorption peak (an energy dependent detection

efficiency, containing both the geometrical factor and the finite interaction probability is given in

figure 17.4). All this is summarized in equation 17.21.

As you go along in your data analysis assign a time in minutes since end of filtering to each run. A

run has a certain length which means it corresponds to a time interval. In your analysis you need

to assign a certain “point” in time to each run. How will you chose the time?

Problem 3:
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What is the average time, 〈t〉, for a decay? To find the answer remember that an average over any

function f(t) is defined as:

〈t〉 =

∫∞
0 t · f(t) dt∫∞

0 f(t) dt
=

∫∞
0 t · e−t/τ dt∫∞

0 e−t/τ dt

In our case the mid point between start and stop is a good choice.

How do we get the Radon activity quantitatively? Use:

nA
τA

=
AC(tf )

k · f(tf ) · τB
. (17.22)

You have measured AC(tf ) by analyzing the time development of the 351 keV peak. You will need

to calculate f(tf ) for the specific filtering time tf you have chosen (τB=4.4 m).

Enter the run times, peak counting rates and their errors into EXCEL. Use an exponential fit in

EXCEL to describe the 214Pb line derived activity. Finally determine the specific 222Rn activity in

[Bq/l] from your data using equation 17.22. It is imperative to use consistent units or you will get

a wrong result.

Problem 4:

The nuclei you are counting were not all collected at the same time; they have a range of ages.

This means you don’t really know “time zero”. How can you determine the half live of 214Pb and
214Bi in the presence of this “uncertainty”?
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17.7 Appendix A

The decay sequence we wish to describe has the form:

222Rn
5.52 d−→ 218Po

4.40 m−→ 214Pb
38.7 m−→ 214Bi

28.6 m−→ 214Po

or

A
τA−→ B

τB−→ C
τC−→ D

τD−→ E

During the filtering phase the number of atoms on the filter is growing. The growth is described

by the system of linear first order coupled differential equations given before:

dNB

dtf
= k · nB −

NB

τB
(17.4)

dNC

dtf
= k · nC +

NB

τB
− NC

τC
(17.5)

dND

dtf
= k · nD +

NC

τC
− ND

τD
(17.6)

How do we solve this problem? We first solve equation 17.4 to obtain the time dependent function

NB(tf ). We substitute this solution into equation 17.5 and solve for NC(tf ) and so on. This is an

iterative process. Unfortunately it becomes more and more cumbersome the longer it goes on!

The problem is that equation 17.4 has an additive, constant term (k · nB), we can thus not obtain

a solution by separation of variables (all N’s on one side all t’s on the other) and integration. We

need to use a different method to solve this equation.

After the blower has been turned off the air flow goes abruptly to zero, k = 0. The decays are

going on. The problem is now governed by a modified set of differential equations:

dNB

dtd
= −NB

τB
(17.12)

dNC

dtd
=

NB

τB
− NC

τC
(17.13)

dND

dtd
=

NC

τC
− ND

τD
(17.14)

17.7.1 Mathematical Tools

Equation 17.4 has the general form:

dy(x)

dx
+ P (x) · y(x) = Q(x), (17.20)

P and Q may be constants or functions of x. They may not be explicit functions of y. This equation

is called the Leibniz equation. Such equation can be solved by multiplication with an integrating
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factor. To see how this works multiply both sides of equation 17.20 with exp(
∫
P dx) to get:

exp(

∫
P dx) · dy

dx
+ y · exp(

∫
P dx) · P = Q · exp(

∫
P dx) (17.21)

Since d
d x

∫
P dx = P we can write the left hand side of equation 17.21 as a product differentiation:

d

d x
[y · exp(

∫
P dx)] =

d y

d x
· exp(

∫
P dx) + y · d

d x
exp(

∫
P dx)

= exp(

∫
P dx) · d y

d x
+ y · exp(

∫
P dx) · P

We substitute this result back into equation 17.21 to get:

d

d x
[y · exp(

∫
P dx)] = Q · exp(

∫
P dx) (17.22)

We can solve equation 17.22 by separation of variables:

d [y · exp(

∫
P dx)] = Q · exp(

∫
P dx) d x∫

d (y · exp(

∫
P dx)) =

∫
Q · exp(

∫
P dx) d x+ C

y · exp(

∫
P dx) =

∫
Q · exp(

∫
P dx) d x+ C

This type of first order differential equation thus has an analytic solution.

y(x) = exp

(
−
∫
P (x) dx

)
·
[∫ {

Q(x) · exp

(∫
P (x) dx

)}
d x+ C

]
(17.23)

Here an integration constant can be used to accommodate the boundary conditions (knowledge

of the value of the solution at a particular point). In the discussion of exponential decay, given

above, definite integrals, not requiring an integration constant, have been used. Both methods are

equivalent. This type of first order differential equation and its analytical solution has application

in defining orthogonal trajectories, electronic circuits containing resistance and inductance (capac-

itance), mixing problems and so on.

17.7.2 Growth Phase

We can now construct the solution of equation 17.4 using formula 17.23. As boundary condition

we assume that at time zero (tf = 0 the flow of time during the filtering phase), none of the radon

decay products is present on the filter: NB(0) = NC(0) = ND(0) = 0. We make the following
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choices for the variables and functions:

dNB(tf )

dtf
= k · nB −

NB(tf )

τB

dy(x)

dx
+ P (x) · y(x) = Q(x)

⇒ x ≡ tf

⇒ y ≡ NB

⇒ P ≡ 1

τB
⇒ Q ≡ k · nB

NB(tf ) = exp

(
−
∫

1

τB
dtf

)
·
[∫

k · nB ·
[
exp

(∫
1

τB
dtf

)]
dtf + C

]
= exp

(
− tf
τB

)
·
[
k · nB ·

∫
exp

(
tf
τB

)
dtf + C

]
= exp

(
− tf
τB

)
·
[
k · nB · τB · exp

(
tf
τB

)
+ C

]

NB(tf ) = k · nB · τB + C · exp

(
− tf
τB

)
We now make use of the boundary condition to determine C: we demand that NB(tf = 0) = 0.

0 = k · nB · τB + C

⇒ C = −k · nB · τB

Substitute this choice back into the solution yields:

NB(tf ) = k · nB · τB + (−k · nB · τB) · exp

(
− tf
τB

)

NB(tf ) = k · nB · τB ·
[
1− exp

(
− tf
τB

)]
| · 1

τB

AB(tf ) = k · nB ·
[
1− exp

(
− tf
τB

)]
We have derived the solution listed in equation 17.7 above. The activity AB is obtained by dividing

the number of atoms by the mean life time.

17.7.3 The Decay Phase

The abrupt change of the conditions at the end of filtering results in a kink in the time dependent

number of atoms. For the sake of time counting during the decay phase we reset the clock to zero

and introduce a new time variable td. We can not simply set the flow rate to zero (k = 0) in the

solutions to describe the decay phase as the growth is proportional to k and the result would be
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identical to zero.

The description of activity B is straight forward, it is a simple exponential decay. I will not go

through th details of this again. At time zero (td = 0) the number of atoms present is whatever it

was at the end of filtering: NB(tf ), thus:

NB(td) = NB(tf ) · exp

(
− td
τB

)
| · 1

τB

⇒ AB(td) = AB(tf ) · exp

(
− td
τB

)
(17.24)

(17.25)

As a further example let’s solve equation 17.17 with the help of the general solution 17.23.

dNC(td)

dtd
=

NB(td)

τB
− NC(td)

τC
dy(x)

dx
+ P (x) · y(x) = Q(x)

x ≡ td

y ≡ NC

P ≡ 1

τC

Q ≡ NB(tf )

τB
· exp

(
− td
τB

)
In the previous example we have seen that the integrating factor is:

exp

(∫
P (x) dx

)
≡ exp

(∫
1

τC
dtd

)
= exp

(
td
τC

)
We note that the number of atoms of species B, present after the filtering phase is over, namely

NB(tf ), does not depend on the decay time td. It can thus be treated as a constant as far as the

integral is concerned. The solution is now obtained as:

NC(td) = exp

(
− td
τC

)
·
[∫ {

NB(tf )

τB
· exp

(
− td
τB

)
· exp

(
td
τC

)}
dtd + C

]
= exp

(
− td
τC

)
·
[
NB(tf )

τB
·
∫

exp

(
td · (τB − τC)

τC · τB

)
dtd + C

]
= exp

(
− td
τC

)
·
[
NB(tf )

τB
· τC · τB
τB − τC

· exp

(
td · (τB − τC)

τC · τB

)
+ C

]
= NB(tf ) · τC

τB − τC
· exp

(
td · (τB − τC)

τC · τB
− td
τC

)
+ exp

(
− td
τC

)
· C

= NB(tf ) · τC
τB − τC

· exp

(
− td
τB

)
+ exp

(
− td
τC

)
· C
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The constant of integration is determined by demanding that at decay time zero (td = 0) the

number of atoms present equals those left over after filtering was over:

NC(td = 0) = NC(tf )

NC(tf ) = NB(tf ) · τC
τB − τC

+ C

⇒ C = NC(tf )−NB(tf ) · τC
τB − τC

Given the starting conditions the final time function is:

NC(td) = NB(tf ) · τC
τB − τC

· exp

(
− td
τB

)
+ exp

(
− td
τC

)
·
[
NC(tf )−NB(tf ) · τC

τB − τC

]
= NC(tf ) · exp

(
− td
τC

)
−NB(tf ) · τC

τB − τC
·
[
exp

(
− td
τC

)
− exp

(
− td
τB

)]
The time dependent activity of activity C is again obtained by dividing the the number of atoms

by the mean life time τC :

AC(td) = AC(tf ) · exp

(
− td
τC

)
−AB(tf ) · τB

τB − τC
·
[
exp

(
− td
τC

)
− exp

(
− td
τB

)]
(17.26)

Taking into account that typical counting times are long compared to the mean life time of activity

B: td � τB and thus AB(td) ≈ 0:

AC(td) = AC(tf ) · exp

(
− td
τC

)

17.7.4 Secular Equilibrium

In the analysis of the data we make the assumption of secular equilibrium: nB
τB

= nC
τC

= nD
τD

. What

does this mean and why is it a good assumption?

Calculate the ratio of the decay rate of two sequential decays X → Y → Z. We calculated the decay

rates in the previous section, with the time dependent activities given in equations 17.24 and 17.26.

Further assume the first decay to have a much longer life time than the second τX � τY . Further

assume that at time zero there was none of species Y present. All of it comes from the decay of X.

AY (t = 0) = 0. Using above solutions we get:

AX(t) = AX(0) · exp

(
− t

τX

)
AY (t) = AX(0) · τX

τX − τY
·
[
exp

(
− t

τX

)
− exp

(
− t

τY

)]
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Lets get the ratio of activities (decay rates) for X and Y:

AX(t)

AY (t)
=

AX(0) · exp
(
− t
τX

)
AX(0) · τX

τX−τY ·
[
exp

(
− t
τX

)
− exp

(
− t
τY

)]
For observing time long compared to the life time of species Y (t � τY ) one of the exponential is

negligible: exp
(
− t
τY

)
≈ 0. We thus get:

AX(t)

AY (t)
=

AX(0) · exp
(
− t
τX

)
AX(0) · τX

τX−τY · exp
(
− t
τX

)
=

τX − τY
τX

τY is the short life time. This scaling of rates is called transient equilibrium. If we further demand

τX � τY and thus τX − τY ≈ τX then the ratio of activities becomes 1. This situation is called

secular equilibrium. You can understand this as a case were you have a sequence of events, all of

them except the first very fast. Although all member of this chain react promptly they can only

take what trickles down from above. The rate of the entire chain is thus determined by its slowest

link. Given the large difference between the 222Rn life time and those of its decay products the

assumption of equal decay rate of all member of the decay sequence is well justified, giving a good

approximation. In this situation one needs to measure only one decay rate to know them all.
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Reference Data

17.8 Periodic Table of the Elements

On the following page, a freely-distributable periodic table from http://www.nist.gov/physlab/

data/periodic.cfm [19].
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