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Sunmary

A anethed of measuving specific resistivity and Hall effect of flat
samples of arbitrary shape is presented. The method is based upon a .
iheorem which holds for a flat sample of arbitrary shape if the contacts

are sulliciently small and Tocated at the cireumference of the sample.
IFurthermore, the sample must he singly conneeted, L.e., it should not
have isolated Loles.

Rémumé

On présente une méthode pour mesurer la résistance spécifique et
Peflet Hall d'un éehantillon plat de forme quelconque. Lu méthode est
fondée sur un théortme qui est appliquable si éehantillon cst plan-
parvalltle, si les contacts sont sulfisamment petits ¢t se trouvent & la
périphérie de I'échantillon. Enfin Iéchantillon doit étre simplement
connexe, c-i-d. suns trous isolés,

Zusanmnenfazsung

Es wird eine Methode zur Messung des spezilischen Widerstandes und
des Hallefiektes ciner planparallelen Probe willkiivlicher Form an-
gegeben. Die Methode geiindet sich auf eine These, dic anwendbar
ist wenn die Kontakte geniigend klein sind und sieh am Rande der
Probe befinden. SchlieBlich soll die Probe einfach zusammenhiingend
gein, duh, sie dacf keine Lacher haben.

1. Imroduction _

In many cases the specific resistivity and the Hall effect of a conducting
material are measured by cutting a sample in the form of a bar. Current
contacts A and B and voltage contacts C, D, b and I' are attached to the
bar as shown in fig. 1. The specific resistivity is then derived from the
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Fig. 1. The classical shape of a sample for measuring the specific resistivity and the Hall effeet,
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potential drop between the points G and D or E and ¥ and from the dimen-
sions of the sample. On the other hand, the Hall voltage can be measured
hetween the points C and  or D and F. The current contacts must be far
away from the points C, D, E and Fin order to ensure that the lines of flow are
sufficiently parallel and are not changed on application of a magnetic field.

For the measurement of the specific resistivity and Hall effect of semi-
conductors a more cump]icated shape of the sample has often to he used.
A well-known example is the bridge-shaped sample shown in fig. 2. The

bk

Fig. 2. The bridge-shaped sample, furnished with large arcas for making low-ohmie contacts,

large areas at the ends have the task to provide low-ochmie contacts, Further-
more, when making these contacts a heat treatment is often necessary
which in this case can be done without heating that part of the sample
which is under measurement,

It will be shown that the specific resistivity and the Hall effect of a flat
sample of arbitrary shape can be measured without knowing the currvent
pattern if the following conditions are fulfilled: )

(a) The contacts are él_?__‘the circumfc_r_(_:_l'}ce of the sample.
- (b) The contacts are sufficiently small, _
(c) The sample is homogeneous in thickness.
(d) The surface of the sample is singly connected, i.e., the sample does not
have isolated holes,

2. A theorem which holds for a flat sample of arbitrary shape

We consider a flat sample of a conducting material of arbitrary shape
with successive contacts A, B, ¢ and D fixed on arbitrary places along the
circumference such that the ahove-mentioned conditions (a) to (d) are ful-
filled (see fig. 3), We define the resistance Ryp.cp as the potential difference
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Fig. 3. A sample of arbitrary shape with four small contacts at arbitrary places long the

circumference which, according to this paper, can be ua i istivi
D ed to measure the specific res
and the Hall effcct, ' pe iy
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Vy—Vbetween the contacts D and C per unit current through the contacts
A and B. The current enters the sample through the contact A and leaves it
through the contaet B, Similarly we define the resistance Ryepy. It will be
shown that the following relation holds:

CXP (—‘ :‘TRAB,CD d}g) ‘| e}(p {— :‘T‘RBC,DJ} flfrg) == 1 ,’ . (1)

where g is the specific resistance of the material and d is the thickness of the
sample.

To prove eq. (1) we shall first show that it holds for a particular shape
of the sample. The second step is to prove that if it holds for a particular
shape it will hold for any shape. For our particular shape we choose a semi-
infinite plane with contacts P, Q, R and S alonyg its boundary, spaced at
distances @, b and ¢ respectively (see fig. 4). A current j enters the sample

.
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Tig. 4. A sample in the form of a semi-infinite plane with four contacts along its boundary
for which eq. {1) iz proved fivst,

at the contact P and leaves it at the contact Q. From elementary theory it
follows that
] + b) (b
Ve Vo= 2% 1n (@tb) (e
nud bla 4+ b+ ¢)
Hence
a+b0) (b +e
Rpgus = ¢ In ‘("'”'_")‘_(_—) : (2}
el bla 4+ b+ ¢)

In the same way, we have

] o0 (a - b) (b+¢)
'RQI{,SP e ﬂd lrl J— ._..__‘.:-a———- . {3)
Morcover,
b(a+ b+ c) +ea=(atb)(b+c). )

Trom the eqs (2), (3) and (4) eq. (1) follows immediately,
Using the same arguments it can also be shown that

RPQ,RS = Rns,PQn {5}
RQR.BI' = RSP.QR ’ ()
RPR.QS = RQS.PR! (7
Rpgsn + Ronse + Renes = 0. (8)
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The last four relations, however, are of a much more general nature than ( 1)
and follow also from 'thc__r_ec_iprgg_i_ty I]l(‘OI‘E‘Illl:lf Plsuvc n1111L1[>91cS

We shall now P]'DCEB(]-F“\&.I-Z_};[ the second step and show that eq. (l_j holds
quite generally, To that end we make use of the well-known technigue (Tf
conformal mapping of two-dimensional ficlds *). We assume that the semi-
;{ﬁ;ﬁ'_t;’sample considered above coincides with the upper part of the com.
plex z-plane, where z = x + iy.

We introdnce a function w = f(z) = ux,y) - iv(x,y), where u and
are both real functions of x and y, The function f(z) is chosen in such a way
that u represents the potential field in the sample, The functions  and v
satisfy the Cauchy-Riemann relations:

ou  ov

—— ey (9
ox ady

w_ (10)
oy 0%

If we now travel from an arbitrary point T, in the upper hall-plane to
another point T, in the upper half-plane (see fig. 5), the net current which
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Fig, 5. The same sample as in fig, 4, coineiding with the upper part of the complex z-plane.

traverses our path from right to left is given by
T!
. d r
JTE.TI = / 'EIL dS,
e,
where E, is the normal com ponent of the field strength. This expression is
readily verified to be equal to

T, T,
d s o RITRN d iow o i
g, = — | (——de g g :/( e 4+ a _(_ )
Jrym, 9,1-:/( ay”—f_ax y) @,11 ax:«,-{ t}y[y,) 0 Uy, — U,

1
Hence if we travel along the real axis from — oo to o< the value of v
remains constant until e pass the point P, When passing the point P

*) L. V. Bewley, Two-dimensional fields in cleetrical engineering, Tho MacMillan Com-
pany, New York, 1948,
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along a small half-circle.in the upper half-plane the value of v will increase
by gj/d. Similarly when passing the point Q) the value of v will decrease by
pjfd. We consider now a sample of arbitrary shape, lying in a different
complex plane which we shall call the t-plane (see fig. 6), where t = r 4 is.

C

t-plane

wadl

Fig, 6. A sample of arbitrary shape, lying in the complex t-plane,

By a well-known theorem, it is always possible to find an analytie
function () such that the upper half-plane in the z-plane is mapped onto
the sample in the t-planc. There are some restrictions as to the shape of
the sample in the -plane which are, however, not of physical interest. In
particular, let A, B, C and D in the t-plane be the images of the points P, Q,
R and S respectively in the z-planc. Furthermore, let k(t) = 1 im be
identical with f(z) = f(z(t)) = k(t). Hence by definition m remains con-
stant when travelling in counter-clockwise direction along the boundary of
the sample in the z-plane; it only increascs by gj/d when passing the point
A and it deereases by the same amount when passing the point B.

From the theory of conformal mapping it follows that if m in the -plane
is interpreted in the same way as v in the z-plane, then [ will represent the
potential ficld in the t-plane. Consequently if a current j’ enters the sample
at the contact A and leaves it at the contact B and if we choose J'o'ld =
Je/d, where ' and d' are the specific resistivity and the thickness of the
sample in the i-plane, then the voltage difference Vp—V, will be equal to
the voltage difference Vg— V3. Henee (d/p) R, g cp is invariant under con-
formal transformation. The same is true for (d/p) Rpgps- From this it
follows that eq. (1) is of general validity.

3. Practical applications

From the above section it follows that for measuring the speeific resistivis
ty of a flat sample it suffices to make four small contacts along its circum-
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ference and to measure the two resistances Rypcp, and Ry (see fig. 3)
and the thickness of the sample. FEquation (1) determines uniquely the
value of ¢ as a function of R, ., Rpepa and d. In order to facilitate the

solution of ¢ from eq. (1) we write it in the form

e "
Q - In2 2 ’ ‘RUC,DA ’
where f is a hmctwn_o%rile r'ltmRmCD;Rch on]y and satisfies the -
relation _
R — R exp (In 2
TABCD T TTRCGDA f arccosh ‘SM? , (12)
an,ep T Rpcpa 2 )
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Fig. 7. The function f used for determining the specific resistivity of the sample, plotted as
8 function of Rip,co/Rcna .

In fig. 7 a plot is given of f as a function of Ryp.co/Rucpne If Rypep and
Rygpy are almost equal, J can be approximated by the formula

fv 1o —5_{@;3)2 2 (R_A%_.EP;TEJ&@_A)* L
RAE,CD + I{BC,DA 2 RAB.CD _1- 'RBC,DA.

4 12
The Hall mobility can be determined by measuring the change of the
resistance Ry, ,. when a magnetic field is applied perpendicular to the
sample. The Hall mobility is then given by

4 ARypac

Mg = B (13)

where B is the magnetic induction and ARy 4o the change of the resistance
Rpp sc due to the magnetic field,

Equation (13) is based upon the following argument: If we apply a
magnetic field perpendicular to the sample the equations
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div j =0, (14)
curl j = 0, 15
J

where j represents the current density, remain valid. Furthermore if the
contacts are sufficiently small and at the circumference of the sample the
outer lines of flow, which must follow the circumference of the sample, fully
determine our boundary conditions, Hence the lines of flow do not _chango
when a magnetic field is applied. However, the effect of the magnetic field
on the electric potential is such that between two ar bitrary points an

additional potential difference AV is built up which is equal to

o Bj
AV = e (16)

where j is the current which passes between the two points. Equation (13)
follows immediately from (16).

In order to cstimate 1herordcr of”
the [‘,OI’ILZIL.L‘: are of finite size and not n! the Lucnmference of the sample - we
dcrwed an approx;maLlop'__l_c;?mula fm a fnw _special cases. In all cases we
assumed that the sample had the form of a circular dise with contacts
spaced at angles of 90°, Furthermore we assumed that the area over which
the contact is made is an equipotential area. We shall denote by Apjp
and Apg/uy the relative errors introduced in the measurement of the
specific resistivity and the Hall mobility, respectively.

In fig. 8a is presented the case in which one of the contacts is of finite
length d; it is assumed to lie along the circumference of the sample. The

lewmfuduof the error introduced 1f

L 934003

g

I¥ig. 8. Some special cases for which the exror in the measurement of g and g due to the
finite length or the finite distance to the circumference of one contact has been caleulated,

other contacts are infinitely small and located at the circumference.
"The diameter of the sample will be denoted by D. In this case for a small
~alue of d/D and of uB the following relations may be shown to hold:



Ap —d?

N (14)
0 T 16DEm2
pm 2 (15)
fn =D

In fig. 8b is shown the case in which the contact is made in the divection
perpénr.licular to the eircumference, In this case the error introduced will be
as in the foregoing case, but with d twice as large:

(16)

.{j — ‘jl‘l
lic: (17)
2
i 72D
Finally we consider the case in which one contact lies at a distance « from
the circumference (see fig, 8¢). In this case we obtain

Ao B d? (18)
o 2DIl2’
Au 2d .
Rt (19
H

It can be shown that if more contacts have al the same time some of the

above-mentioned defects the errors introduced are to a first approximation

additive.
The inﬂuence:r)f the contacts can be eliminated still further by using a
“clover-shaped” sample, as shown in fig. 9. This sample has many advan-

0 C
A B
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Fig, 9. The “clover-shaped” sample where the influence of the contacts hag been veduced
considerably.

tages compared with the bridge-shaped sample. Tt gives a relatively Jarge
Hall effect at the same amount of heat dissipation, which is of importance
when_measuring materials of low eleotric. mobility, Tt has a greater
mechanical strength and smaller samples can be measured which is of
importance, for example, when measuring silicon erystals made by the
floating-zone technique.

Eindhoven, September 1057
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Note added in proof

In sec. 2 we derived a relation between the resistances Ryg.ens Ricpa
and pfd if all contacts arve at the circumference of the sample and infinitely
small. Tf the contacts are all of finite size there will be in general six in-
dependent finite resistanees, for example the resistances Rypans Racacs
Rypans Bpenes Byppp and Rep o We assume that the contacts are areas
of constant potential. It can be shown that, if the contacts are located at
the cireumference of the sample, also in this case there must be a relation
hetween these six resistances and ofd which determines p/d uniquely as a
function of these six resistances, If there is only one contact of finite size,
A say, it ean be shown that

sl | fad ‘md y
9-“1-’("""" R.Ml.{‘.[}] - exp (‘ 1 gLt(:,n,\) —exp|—— ('RA'{!,CD -+ -RBC,DA)J =
L0 / 0 o
2ad
- exp ( P R.«B,MJ =10,

The author is indebted to Dx €, J. Bouwkamp of this laboratory for
pointing out to him that, if more than one contact is of finite size, the rela-
tion between the independent resistances and the specific :fcsistivity of the
sample involves elliptic or hyper-elliptic functions rather than elementary
functions.

Professor Bouwkamyp has also drawn the author’s attention to a recent
paper by Lampard *), who deals with the caleulation of internal cross capa-
citances of cylinders under certain conditions of symmetry. Lampard’s
result can be generalized as follows. Let fig. 6 of this paper represent the
cross-section of a cylindrical capacitor, cut into four parts insulated from
one another at the points A, B, Cand D, Let € ancp denote theinternal cross
capacitance of parts AB and CD, in electrostatic c.g.s. units per unit length
of eylindler. Similarly, let €y, denote the intemal cross eapacitance of
BC and CD. Then we have

exp (-4 7* Cypep) + exp(—4 72 Cpepa) = 1,

which is identical with eq. (1) of this paper except for the different physical
interpretation.

In Lampard’s case of symmetry, the two capacitances Capep and
Cpepa are mutually equal, and hence are both equal to (ln 2)/4=?
independently of the size or shape of the cross-section, which is Lampard’s
theorem,

*y D, G Lampard, Proc. Tnstn elect. Engrs, Part G, Vol. 104, No. 6, Sept. 1957, p. 271,



