A METHOD OF MEASURING THE RESISTIVITY AND HALL COEFFICIENT
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ON LAMELLAE OF ARBITRARY SHAPE'

Resistivity and Iall-coefficient measurements at
different temperatures play an important part in
rescarch on semiconductors, such as germanium and
silicon '), for it is from these quantities that the
mohility and concentration of the charge carriers
are found.

Such measurements are commonly carried out
with a test bar as illustrated in fig. 1. The resistivity
ig found diccetly from the potential difference and
the distance hetween the contacts O and P, the
current 1 and the dimensions of the bar. To deter-
mine the Hall coefficient the bar iz subjected to a
magnetie ficld B applied at right angles to the diree-
tion of the current and to the line conneecting the
diametrically opposite contacts @ and (). From the
potential difference thus produced between these
latter contacts the Hall cocfficient is derived. (The
relation between the Hall coeffivient and the change
in electric potential distribution due 10 & magnetic
field will be explained presently.)

L
e

&) ]ﬁ . -
9 e @5¢te

Fig. 1. Classical fore of sample veed for resistivity and Hall
coefficzent measurements, The teat bar is provided with corsent
contacts M and N and valtage contacts O, P, ¢ and R. The
fourth voltage contaet R serves for check measurements,

In measurements performed at low temperatures
— e in Jiguid nitrogen < point contacts possess
resistances of the order of megolhms, in consequence
of which the voltages cannot be determined with
sufficient aceuracy. In such coses “bridge-shaped™
=amples are used as illustrated in fig. 2. The voltage
and current contaets here have a relatively large
surface area, and henee the contact resistances are
low.

The methods referred to are based on the faet
that the geometry of the samnple ensures a simpl;*.
pattern of virtually parallel current stream-lines,
Formulae have been devised to correct for the devia-
tion from parallelism in fig. 2, caused by the finite
width of the arms. A drawback of the bridge-shaped

'} See eg. Co Kittel, Totroduction to solid state physies,
2ud edition, Wiley, New York 1956, Chapter 13, p. 347
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sumple s that it is rather difficult to make, having
to be cut out of the brittle semiconductor material
with an ultrasonic tool. There is therefore a consider-
able risk of breakage, particularly when the arms
are made narrow.
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Fig, 2, The bridge-type sample. which is provided with relative-
Iy Tazge contact faces to reduce eontact resistunces, This farm
is of special importance in measurements at low Lemperntures.

In the following we shall deseribe a method of
performing resistivity and Hall-coeflicient meas-
urements on lamellae of arbitrary shape 2). The
lamella must not, however, contain any (geomet-
rical) holes.

New method of measuring resistivity

We take a flat lamella, completely, froe of holes,
and provide it with four small contacts, M, N, 0
and P, at arbitrary places on the periphery ( fig. 3).
We apply @ current iy, to contact M and take it
off at contact N. We measure the potential difference
Ve -V and define:

o _ Ve,
YN OF = T
Tan
Analogously we define:
R _ Vy—Vp
Nopw = .
. tyve

The new method of measurement is based on the
theorem  that hetween Ry, . and Ry, ., there
exists the simple relation:

d \ ©oad \
R.-rx.w) ? ""P"“ p R.\'O.PMJ =1, (1)
\ 7 d
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where d is the thickness of the lamella and g the
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*) L. ). van der Panw, A method of measuring spreific #,

resistivity and Hall effect of dises of arbitrary shape, Philips
Rex. Reprs, 13, 1-9, 1938 (No. 1),
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resistivity of the material. If d and the “resistances”
Ryvor and Roppy are known, then (1) vields
an equation in which o is the only unknown
quantity.
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Fig. 3. A flat Iamella of arbitrary shape. with four contacts
M, N, O and " on the periphery, ws veed o the new method
of measuring resistivity, The Hall eoefficient can alse be
measured on a saumple of this kind.

The situation is particularly straightforward if
the sample possesses a line of symmetry. In that
case, M and O are placed on the line of symmetry,
while ¥ and P are disposed symmetrically with
respect to this line (fig. 4). Then:

R.\'(I.I'M = R.w.\'.m-s LRI S (2)

which may be seen as follows. From the reciprocity
theorem  for passive fourpoles, we have quite
generally  that  Rygay = Rpyne (interchange
of current and voltage contacts), and it follows
from the symmetry that Ry, v, = Rynow.
Henee we arrive at (2): ¢ can then easily be found
from (1):

s ad ;

9_-“5 Rynape -+« -« - (3)

In this case a single measurement suffices,

P
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4. The fesistivity measurement is simplified if the sample

iy
8™ l_.l line of symmetry. If two of the contacts are situated

line of symmetry and the two others are symmetrically
with respect to this line, one measurement is safficient
- the required resistivity.
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In the general case it is not possible 10 express o
explicitly in known functions, The solution cun,
however, be written in the form

ad Rynor + Byopes

In2 2

£ 00

v

where fis a factor which is a function only of the
ratio Ry op Rygpa. a5 plotted in fig. 5. Thus,
to determine o, we first caleulate Ry oy Bg e
read from fig. 5 the corresponding value of [ and
then find o from (4).

Photographs of samples as used for the old and
for the new method are shown in fig. 6.

The complete proof of the theorem underlying
the measuremnent of o is given in the paper quoted
in footnote 2), The proof consists of 1wo parts.
First of all, relation (1) is developed for a special
case, the case of a lamella in the form of an infinite
half-plane, provided with four contacts at the
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Fig. 5. Between the factor f in formala (1) and the ratio
Runon Byo e there exsts the relation:
Cilsenop Ryapm) — 1 In2) In 2
sh — 1ex .
O (Ryevor Bxaman + 1 f3 F A

which s represented bere graplically.

periphery. It is then shown that the relation must
also apply to a lamella of any shape. This is done
by means of conformal mapping of the arbitrarily
shaped plate on the infinite half-plane with the aid
of complex functions.

We shall consider the first part of the proof in more detail,
since it reveals the origin of the exponential Munctions in (1).

We first consider o lamelln which extenids to infinity in all
directions. To n point M we apply a current 2i, which fows
away from M with radial symmetry into infinity. Let d again
be the thickness of the lamella and g the resistivity, Then at »
distance r from M the current density is

J = 2i2zrd.

The ficld-strength £ is radially oriented and according to the
generalized form of Ohm's law bas the value:

E = o] = gilxrd.
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Fig. 6. Some samples of silicon used for resistivity and Hall-coefficient measurements.
Samples a and b correspond respectively to figs. 1 and 2. Measuroments on samples ¢
and 4 are possible only by the new method, The incisions in sample 4 seeve to reduce 1he

eeror caused by the contacts not being infinitely small.

The potential difference between two points € and 7 lying
on a straight line with W (fig, 7a) is:

Vp— Vo f} dr

Sinee no current flows in the direction perpendicular to the
line through M, 0 and P, the result obtained remains valid
if we omit the part of the lamella at one side of this line —
yielding a halfiplane -
carrent (fig. &),

and if at the same time we halve the

Next we consider the cage of ¢) in fig. 7, where a current {
now flows ouz from a point N, that again lies on the same
straight line with OF, viz. on the edge of the infinite halfplane.

Saperposition of the cases b) and ¢} in fig. 7 yields the case d),
the current i being introduced at M and taken off at N, The
value now assumed by ¥p — Vg is found by adding together

the twa previous results, After dividing by & we then find:

Similarly we find:

(6 +58) (& +0)

Addition of the last two equations vields (1)
We <hall now explain Low formula (4) follows from (1),
For simplification we put:

ad R\y}.'_op = X1 /

—yogpe—

ad Bxopar = %s.

Formula (1) can then be written:

Next we write:
1

and  x,

wherehy (6) takes the form:

This i« the same as

The exponent of ¢ in (7) is now written as

we put:

Formula (7) then becomes:

Vi
T cosh ) (

o

1-+o

Fig. . Nluserating the derivation of formula (1),
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This expression represents a rolation between fand x, 'z,
and henee also between £ and Ryvor Bxoew (see 53 The
relation is shown graphically in fig. 5. By re-writing (8) to

* give o and substitating for x, and x, from (3). we find formula

(#).
Method of measuring the Hall cncfﬁcicn\

The Hall cocfficient, too, can be measured on
an arbitrary lamella as in fig. 3. We then apply the
current to one of the contacts, say M, and 1ake it
off at the contact following the succeeding one, iv.
in our case at 0. We measure Ry 4. after which
we set up an uniform magnetie induction 2 at right
angles to the surface of the lamella. This changes
Ruyone by an amount ARy, vp. We shall now
denote the Hall coefficient Ry and show that it is
given byv:

d

Ry = 5

ARyoves 0 v - (9)

provided that:

@) the contacts are sufficiently small,

b) the contacts are on the periphery,

¢) the lamella is of uniform thickness and free of
holes. :

The validity of formula (9) depends on the distris
bution of current stream-lines not changing when
the magnetic field is applied. With samples of the
classical shape of figs, 1 and 2, where the current
stream-lines are always parallel to the edges of the
sample, there is evidently no change, From the
properties of the veetor ficld representing the current
density it follows that the same also applies to
lamellac of arbitrary shape, provided the above
conditions are satisfied 9).

Under the magnetic induction B, the charge
carrices, with charge g. are subjected to a force
perpendicular to the stream-lines and perpeadiculae
to the lines of magnetic induction. The magnitude
of this force is F — qeB, where v is the velocity
of the charge carriers. Between v, the concentration
n of the charge carriers and the current density J
there exists the relation v = J ng. Dividing the
force exerted on the charge carriers by their charge
g. we see that the effect of the magnetic field i
equivalent to an apparent electric field Ey,. the
Hall electrie field, for which we can write ¥):

1
":"='—JB-
ng

3) The proof of this statement is also indicated in the paper
quoted under ).

4) This formula is not entirely exact because, apart from their

ordered muotion with velocity r, the electrons also move

randomly owing to thermal agitation. Mare precise caloula-

tion shows, Bowever, that the formuls given here is & good

_approximation.
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Ey is proportional to J and to B: the proportionality

constant ( ~ 1/ag) is called the Hall coefficient R,
Sinee g i= known, one can caleulate from Ry the

comcentration n of the charge carriers,

The fact that the current streign-lines are not
affected by the magnetie field implies that after
application  of  the  magnetic ficld the electric
field iz no longer in the same dircction as the eure-
rent stream-lines, but has acquired a transverse
component Py which exactly compensates the
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Fig. 8. The resnltant of the electrical Geld-strength £ and the
Hall field-strength Fyy les in the direction of the eureent density
1. Resolving E in directions perpeadicular and parallel to J
therefore vields a perpendicular compuoaent iy which in mag-
witude i= equal to £y

apparent Hall eleetric field Ey (fig. 8). The change
AV, — V) in the potential differcace between
P and N is therefore given by integrating Iy from P
over a path orthogonal to the current stream-lines
to N across the lamells (fig. @), and thenee along
the periphery — i along a strcam-line - from
N' to N. The last portion of the path makes no
contribution to the integral; henee

N hd
AVp-Vy) = [ Eyds— Ry B | Jds=R,B

I P

Tare

d
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where o is again the thickness of the lamella. This
expression leads dircetly to (9)

e

Fig. 9. Ta calenlate by how much the potential difference
between points P oand N changes when & magnetic field is
applied at right-angles to the plane of the sample. the trans-
verse electric field Ey produced by the magnetic field is integrated
along the path s which runs from P, orthogonal to the current
strenmclines, to N snd thence along the periphery from N°
to N. . .
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Estimation of errors

In the foregoing we have assumed the contacts
to he “sufficiently™ small and to be situated on the
periphery. To gain an idea of the error made in the
calenlations when these conditions are not exactly
satisfied, we have worked out the error for three
cases, For simplicity we consider a circular disc of
diameter I) with the contacts mutually 907 apart.
We azsume further that only one of the contacts is
not ideal. The three cases are represented in the
adjoining tabie, together with the formulae for the
relative errors in the resistivity and the Hall
coeflicient, The cases are:
a) One of the contacts has a length I along the

prriphery,
by One of the contacts has a length ! perpendicnlar

to the periphery.
c) One of the contacts, although a point, is sitnated

at & distance ! from the periphery.

In practice, none of the cantacts will he ideal, To

the first approximation the total error is then equal
to the sum of the crrors per contact.

The value of the method deseribed here lics in
the fact that, ;. many cases, the material under
investigation is alrcady available in the form of
small kunellae (e.g. thin dises sawn from a erystal
rod): these sumples now need no further prepara-
tion and can therefore he used for other purposes
after the measurement.

If very small contacts are undesirable, having
rr.g.'lrd to contact resistances in measurements at
low temperature, use can be made of “clover-eaf"”

Table. The relative errors Aojp and ARy Ry in the caleulated
values of the resistivity and the Hall coefficient for a circular
dise of diameter D on which one contact P is non-idezl, in the
senscs indicated in the sketches,

6 2Ry,
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samples (see fig, 6d), the incisions in whicl sub-
stantially reduce the ereor due to the finite dimen-
sions of the contacts. The cloverdeaf sample thus
replaces the bridge-type sample (fig. 66) which is
vsed for the same purpoese in the classical method.
The clover-leal sample is easier to make than the
bridge-type sample and 35 also less suzeeptible to
breakage.

L. J. van der PAUW.




