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I. X2Y Z PHASES

A. L21 structure

Heusler-like compounds X2Y Z can crystallize in a number of structures. In particular

we are interested in Xa and L21, as well as the A2 and B2 phases resulting from disorder.

Start with the L21 structure, space group 225.1 In general, this structure has the following

conditions on the allowed hkl indices for all sites:

h+ k, h+ l, k + l = 2n

0kl : k, l = 2n

hhl : h+ l = 2n

h00 : h = 2n

These rules reproduce the fact that for a face-centered cubic structure, we know there

are no mixed odd/even indices (h,k,l are all odd or all even). We will populate the Wyckoff

sites as follows:

TABLE I: Wyckoff sites for L21 X2Y Z Heuslers

site position atom additional conditions on hkl

4a 000 Z none

4b 1
2
1
2
1
2 Y none

8c 1
4
1
4
1
4 , 1

4
1
4
3
4 X h = 2n

Note that the 8c site contains 2 atoms, and it only has reflections for h = 2n. In general,

the structure factor is calculated2 for planes (hkl) and vectors (u, v, w)

Fhkl =
N∑
1

fne
2πi(hun+kvn++lwn) (1)

where the fn are the atomic scattering factors for the nth atom located at position

(un, vn, wn). If all four sites are occupied as above,
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Fhkl = fz + fye
2πi(h+k+l

2 ) + fxe
2πi(h+k+l

4 ) + fxe
2πi(h+k+3l

4 )

= fz + fye
πi(h+k+l) + fxe

1
2
πi(h+k+l) + fxe

1
2
πi(h+k+3l) (2)

Now we note some useful relationships

eiπ(odd integer) = −1 (3)

eiπ(even integer) = 1 (4)

eiπ/2 = i (5)

e3iπ/2 = −i (6)

enπi = e−nπi n = integer (7)

It is clear that apart from the factor of iπ, the only issue is whether the rest of the

exponent is an even or odd integer or a half integer. We know that the indices cannot be

mixed given the face-centered structure, so they are all even or all odd. If they are all even,

their sum is even, if they are all odd, their sum is odd. That makes the exponential in the

second term in Eq. 2 trivial. For the third and fourth terms, we need to know if (h+k+ l)/2,

or equivalently (h+ k + 3l)/2, is even or odd.

There are four possibilities in total: for h + k + l even, we could have h + k + l = 4n or

h+k+ l = 4n+ 2, where n is an integer. The former series has (h+k+ l)/2 even, the latter

has it odd. For h+ k + l odd, we could have h+ k + l = 4n+ 1 or h+ k + l = 4n+ 3, and

in both cases (h+ k + l)/2 is odd. We will examine each case explicitly.

For h + k + l even, we can examine separately the 3 exponential factors in Eq. 2. If

h+ k + l is even, the exponential in the second term is always 1.

eπi(h+k+l) = eπi(even integer) = 1 (8)

This result is independent of what the sum of h+k+ l is, it need only be even. If h+k+ l

is even and h+ k + l = 4n, the exponential in the third term in Eq. 2 gives

e
1
2
πi(h+k+l) = e2nπi = 1 (9)
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If h+ k + l is even and h+ k + l = 4n+ 2, the exponential in the third term in Eq. 2 gives

e
1
2
πi(h+k+l) = enπi(2n+1) = −1 (10)

For the exponential in the fourth term, the result is exactly the same as the third term:

whether it is h+ k+ l or h+ k+ 3l that is equal to 4n or 4n+ 2 does not change the result.

Thus, for hkl all even, there are two types of reflections. Using the results above and Eq. 2,

F1 = fz + fy + 2fx indicesh+ k + l = 4n (11)

F2 = fz + fy − 2fx indicesh+ k + l = 4n+ 2 (12)

Next we consider hkl all odd. In this case, h+ k + l must be odd as well. For this space

group, specifically for the 8c sites, we require h = 4n for reflections to be present.1 If all

the indices are odd, h 6= 4n, and the 8c sites give no reflections. This means the third and

fourth terms in Eq. 2 are zero from the symmetry of the space group when hkl are all odd.

Thus, we only need consider the second term, and need only the condition that hkl are all

odd:

eπi(h+k+l) = −1 (13)

Thus, for h+ k + l odd, there is only one type of reflection, F3 = fz − fy, for a total of 3

distinct reflection types for the L21 structure.

F1 = fz + fy + 2fx hkl even, h+ k + l = 4n (14)

F2 = fz + fy − 2fx hkl even, h+ k + l = 4n+ 2 (15)

F3 = fz − fy hkl odd (16)

Note that the scattering intensity is proportional to |Fi|2, and that several other factors

are involved in calculating realistic x-ray diffraction intensities.

Let us consider a few common planes and determine what structure factors are involved,

taking into account the general restrictions listed on hkl as well.
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TABLE II: relevant structure factor for low index peaks

hkl h+ k + l h2 + k2 + l2 structure factor multiplicity

100 1 1 forbidden 6

110 2 2 forbidden 12

111 3 3 F3 8

200 2 4 F2 6

220 4 8 F1 12

311 5 11 F3 24

222 6 12 F2 8

400 4 15 F1 6
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B. Xa structure

Now we move on to the Xa structure, space group 216. This space group has the same

general conditions on the allowed hkl indices as space group 225:

h+ k, h+ l, k + l = 2n

0kl : k, l = 2n

hhl : h+ l = 2n

h00 : h = 2n

As before, we know there are no mixed odd/even indices (h,k,l are all odd or all even).

We will populate the Wyckoff sites as follows for a generic compound ABCD (the site

assignments for X2Y Z compounds vary in the literature).

TABLE III: Wyckoff sites for Xa X2Y Z Heuslers

site position atom

4a 000 A

4b 1
2
1
2
1
2 B

4c 1
4
1
4
1
4 C

4d 3
4
3
4
3
4 D

None of these sites have additional conditions on hkl. From these assignments,

Fhkl = fa + fbe
2πi(h+k+l

2 ) + fce
2πi(h+k+l

4 ) + fde
2πi( 3h+3k+3l

4 )

= fa + fbe
πi(h+k+l) + fce

1
2
πi(h+k+l) + fde

3
2
πi(h+k+l) (17)

The first three terms are evaluated as before for the L21 structure. Only the last term

requires attention. Again, we consider all even indices with sums 4n and 4n+ 2, and all odd

indices with sums 4n+ 1 and 4n+ 3.

7



hkl even, h+ k + l = 4n e
3
2
πi(h+k+l) = e

3
2
πi(4n) = e6πin = 1 (18)

hkl even, h+ k + l = 4n+ 2 e
3
2
πi(h+k+l) = e

3
2
πi(4n+2) = e3πi(2n+1) = −1 (19)

hkl odd, h+ k + l = 4n+ 1 e
3
2
πi(h+k+l) = e

3
2
πi(4n+1) = e6πine3πi/2 = −i (20)

hkl odd, h+ k + l = 4n+ 3 e
3
2
πi(h+k+l) = e

3
2
πi(4n+3) = e6πine9πi/2 = i (21)

Thus, there are four different structure factors for this structure:

F1 = fa + fb + fc + fd hkl even, h+ k + l = 4n (22)

F2 = fa + fb − fc − fd hkl even, h+ k + l = 4n+ 2 (23)

F3 = fa − fb + ifc − ifd hkl odd, h+ k + l = 4n+ 1 (24)

F3 = fa − fb − ifc + ifd hkl odd, h+ k + l = 4n+ 3 (25)

Note that F3 = F ∗4 , so the scattering intensities that result (I ∝ |F |2) will be the same for F3

and F4. Thus, there are really only 3 types of reflections that lead to unique peaks. Given

that, and the form of F1 and F2, we can see that switching the atoms on the C and D sites

has no effect on any of the intensities (a possible reason for the confusion in the literature).

Note that the same is true for F1 and F2 and if A and B are switched.

In Table IV we show few common planes and determine what structure factors are in-

volved, taking into account the general restrictions listed on hkl as well.

1. Choice of Wykoff positions for Xa

Now we need to choose how to populate the Wyckoff sites to form an X2Y Z Heusler. We

have already deduced that switching the C and D atoms has no effect. One choice in the

literature is a=Z, b=d=X, c=Y. This leads to

F1 = fz + fy + 2fx (26)

F2 = fz − fy (27)

F3 = F ∗4 = fz − (1 + i)fx + ify (28)
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TABLE IV: relevant structure factor for low index peaks

hkl h+ k + l h2 + k2 + l2 structure factor multiplicity

100 1 1 forbidden 6

110 2 2 forbidden 12

111 3 3 F4 8

200 2 4 F2 6

220 4 8 F1 12

311 5 11 F3 24

222 6 12 F2 8

400 4 15 F1 6

Another choice in the literature is a=Z, b=c=X, and d=Y, which should be equivalent.

This gives

F1 = fz + fy + 2fx (29)

F2 = fz − fy (30)

F3 = F ∗4 = fz − (1− i)fx − ify (31)

Given that intensity in an diffraction experiment is proportional to |F |2, the two choices

lead to identical structure factors for all peaks. That is, a diffraction experiment cannot

distinguish between the two.

2. Comparison between L21 and Xa for low indices

In Table V we compare the results for L21 and Xa for a few low index peaks. Unfortu-

nately, the two structures share all the same reflections, but the intensity of all peaks except

(220) is different, potentially by a large amount depending on the atomic scattering factors

for the chosen elements at the energy of interest. Deducing this experimentally would require

either a single crystal sample or a uniform powder to have reliably measured intensities. (A

reliable quantitative calculation of intensity for comparison is another matter, the structure

factor is only a portion of the overall intensity calculation.)
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TABLE V: Comparing Xa and L21 for low index peaks

F

hkl L21 Xa

111 fz − fy fz + (i− 1)fx − ify

200 fz + fy − 2fx fz − fy

220 fz + fy + 2fx fz + fy + 2fx

222 fz + fy − 2fx fz − fy

311 fz − fy fz + (i− 1)fx − ify

II. XY Z PHASES

A. C1b structure

This is a “half heusler” phase of the form XY Z, with space group 216 (the same as the

Xa structure). In fact, the usual assignments are

TABLE VI: Wyckoff sites for C1b XY Z Heuslers

site position atom

4a 000 Z

4b 1
2
1
2
1
2 Y

4c 1
4
1
4
1
4 X

4d 3
4
3
4
3
4 vacant

This is precisely the same as our Xa calculation, with the d atom missing. (We caution

that the assignments of X, Y, and Z to the 4a-c sites varies in the literature, as does the

convention for which site is 4c and which site is 4d – often they are swapped. However, the

structure factors for C1b are exactly the same whether you leave vacant the 4c or 4d site.)

The structure factor now immediately follows from our previous calculation:
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F1 = fa + fb + fc hkl even, h+ k + l = 4n (32)

F2 = fa + fb − fc hkl even, h+ k + l = 4n+ 2 (33)

F3 = fa − fb + ifc hkl odd, h+ k + l = 4n+ 1 (34)

F4 = fa − fb − ifc hkl odd, h+ k + l = 4n+ 3 (35)

What we can determine overall is that the C1b structure will be extremely hard to dis-

tinguish from either the L21 or the Xa structure (particularly the latter), and thus sample

composition must be ascertained carefully (overall and that it is spatially uniform) to rule

out structures.
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III. INTENSITY

For an excellent discussion of intensity calculations for simple cases, see Ch. 4 in the book

by Cullity and Stock.3

A. Order parameter of a non-stoichiometric B2 alloy

Below we go through a realistic calculation of x-ray diffraction intensities for a B2 alloy XY

(obtained from the C1b structure by setting Y=Z). First, we calculate the peak intensities

for an ideal alloy, then we consider variation in stoichiometry (e.g., Fe deficiency). For

concreteness, we will consider the FeRh system in general, and specifically a Fe47Rh47Pd6

ternary analogue.

Since the magnetic transition of FeRh can only be observed in the B2-like (ordered) phase,

it is necessary to evaluate the long-range chemical order parameter S in these films to quan-

tify the degree to which B2 order is present throughout the specimens. The order parameter

S can be determined from the integrated intensity ratios of the fundamental (200) and su-

perlattice (100) reflections, provided one accounts for the the appropriate structure factors,

and film thickness and Debye-Waller corrections.2–6 For this, we need reliable calculations

of x-ray diffraction intensities.

1. Factors involved in the intensity calculation

The integrated intensity I of a given x-ray diffraction peak can in general be written

as2,3,7,8

I = |F |2ΛGtm (36)

where |F |2 is the square of the structure factor, Λ is the Lorentz polarization factor, Gt is

the film thickness correction factor, and m is the multiplicity factor for the plane of interest.

The Lorentz polarization factor for a single crystal in an unpolarized primary beam with

incident angle θ and scattering angle 2θ is2 Λ=(1 + cos2 2θ)/2 sin 2θ. (For a powder sample,

it is Λ = (1 + cos2 2θ)/ sin θ sin 2θ, but we consider only the single crystal case here.) The

thickness correction factor for a film of thickness t is given by9 Gt = 1 − exp (−2µt/ sin θ)
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where µ is the linear absorption coefficient. If the sample thickness is sufficiently large

compared to 1/µ this term may be neglected, but this is typically not the case for thin

films. The multiplicity factor is just how many equivalent planes there are for a given (hkl).

E.g., for (h00) we have equivalents (0h0), (00h), (h00), (0h0), (00h) for a total of 6 equivalent

planes, hence m = 6 for (h00) planes.

For an FexRh1−x alloy in the B2 structure, space group 221, we have Fe on the 1a (0,0,0)

site and Rh on the 1b (1
2
1
2
1
2
) site. The fundamental (200) structure factor is then found

relatively easily7,8

Ff =
x

1− x
ftot,Fe + ftot,Rh (37)

where ftot,Fe(Rh) is the total atomic scattering factor, x the concentration of Fe, and 1−x the

concentration of Rh. The superlattice (100) structure factor is7,8

Fs =
x

1− x
ftot,Fe − ftot,Rh (38)

The atomic scattering factors, accounting for dispersion and the Debye-Waller tempera-

ture corrections, can be written as2,3,7,8,10

ftot = (fo + f ′ + if ′′) e−M (39)

where fo is the atomic scattering factor, f ′ and f ′′ are the real and imaginary dispersion

corrections, respectively, and e−M is the Debye-Waller correction.2,3 All three scattering

terms depend on the value of sin θ/λ for given radiation of wavelength λ and incident

angle θ. The international tables for crystallography have tabulated data for all scattering

terms, one must only logarithmically interpolate the tables to find values for the energy of

interest. We note that commercial programs (such as CaRine) do not include the dispersion

corrections, and as a result do not produce reliable intensities in general. The exponent

of the Deybe-Waller correction term takes the form M = B sin2 (θ)/λ2 where B is the

(temperature-dependent) Debye-Waller factor for each element.2,8
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2. Handling non-stoichiometry

Of course, these structure factors above are correct only for an FexRh1−x alloy in which

there is no site disorder. Since we have an alloy which is slightly Fe-deficient compared to

the equiatomic alloy, site disorder must be present as a result. Still considering an FexRh1−x

alloy, if there is a fraction y of Rh atoms on Fe sites due to an Fe deficiency, we may correct

the structure factors following Xiao and Baker7 as

Ff =

[
x (1 + y)

1− x

]
ftot,Fe + (1 + y) ftot,Rh (40)

Fs =

[
x (1 + y)

1− x

]
ftot,Fe − (1− y) ftot,Rh (41)

In the present case, we have a nominal composition of Fe47Rh47Pd6. That means there

is a 3% excess of Rh+Pd compared to the parent Fe50Rh50 alloy. For that reason, we use

Y = 0.03 to represent the ideal Fe47Rh47Pd6 system, because even for perfect ordering at

this composition there must be at least 3% of Rh+Pd atoms which occupy Fe sites.7,8 Using

these structure factors and the film thickness and Lorentz polarization factors above, one

may calculate the superlattice Is and fundamental If integrated intensities. The long-range

order parameter S can then be determined from the experimentally observed integrated

intensities via2,7,8,10

S2 =
(Is/If )obs
(Is/If )calc

(42)

For Fe, we used the scattering factor terms fo, f
′, f ′′ for the appropriate values of

sin (θ)/λ2 interpolated from the tables in Ref. 2 and the Deybe-Waller factors given in

Refs. 10 and 11. Since the scattering factors for Rh and Pd are very similar,2,12,13 and the

Pd content is small, we have used the structure factor for an ideal FexRh1−x alloy with

1−x=0.53 as the combined Rh+Pd concentration, but replaced the individual Rh scatter-

ing factor terms with composition-weighted averages of those of Rh and Pd.2,6 Similarly, we

used a composition-weighted average for the Debye-Waller factors.11,14 The linear absorption

coefficient is a composition-weighted average of those for Fe, Rh, and Pd.12,13
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Atom Peak θ B (Å2) µ (cm−1) fo f ′ f ′′

Fe (001) 14.8 0.343 2424 21.36 -1.1 3.3

(002) 30.8 0.343 2424 15.90 -1.1 3.3

Rh (001) 14.8 0.153 2408 38.00 -0.5 4.0

(002) 30.8 0.153 2408 29.71 -0.5 3.8

Pd (001) 14.8 0.448 2476 38.90 -0.5 4.3

(002) 30.8 0.448 2476 30.47 -0.5 4.1

TABLE VII: Parameters used to calculate the (001) and (002) peak intensities for Fe47Rh47Pd6

(see text for definitions). The Debye-Waller factor B is valid at 300 K, all quantities are taken for

Cu Kα radiation (λ=1.54 Å, E=8.04 keV). The film thickness is t=30 nm.

Tg (◦C) Ta (◦C) a (nm) c (nm) Is/If S

400 n/a 0.2974 0.3035 0.831 0.95

500 n/a 0.2993 0.3020 0.820 0.96

600 n/a 0.2996 0.3016 0.720 0.96

700 n/a 0.2996 0.3004 0.811 0.93

400 500 0.2977 0.3040 0.752 0.98

400 600 0.2981 0.3017 0.683 0.93

400 700 0.2992 0.3005 0.755 0.98

TABLE VIII: The measured Is/If intensity ratio and calculated lattice constants and order pa-

rameter S for different growth temperatures Tg and annealing temperatures Ta. The uncertainty

in S is taken as ±0.05.

3. Results for Fe47Rh47Pd6

The resulting parameters for our calculation of the fully-ordered Fe47Rh47Pd6 superlattice

(001) and fundamental (002) integrated diffraction intensities are shown in Table VII.

Table VIII gives the measured Is/If intensity ratio and calculated order parameter S as a

function of the alloy growth temperature Tg, confirming that S is almost independent of the

growth temperature with an average value of S≈0.95±0.05. This indicates that the growth

temperature had no significant influence on the degree of chemical ordering in this growth
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temperature range. In all three cases, the order parameter and integral peak intensity ratios

are identical within the uncertainty in the measurements.

B. Intensities for an ideal L21 compound

We will now calculate the intensities for a few key peaks for an ideal L21 compound. The

structure factors found previously are

F1 = fz + fy + 2fx hkl even, h+ k + l = 4n (43)

F2 = fz + fy − 2fx hkl even, h+ k + l = 4n+ 2 (44)

F3 = fz − fy hkl odd (45)

One thing to keep in mind for the X2Y Z structure (with site assignment as before) is

that complete Y-Z mixing would result in F3 = 0. This eliminates all odd (hkl) peaks,

in particular the usually prominent (111) peak. In this case, the structure becomes B2.

If we have X-Y-Z mixing, we can see that F2 = 0 as well, and all even (hkl) peaks with

h + k + l = 4n + 2 are eliminated, in particular the (200) peak, and the structure becomes

A2. In this way the intensity of the (111) peak speaks to the Y-Z sublattice ordering, and

in combination with the (200) to the X sublattice ordering.

If we take the atomic scattering factors to be ftotal =(f + f ′ + f ′′)e−M = (f + iδ)e−M as

in the previous section, for the (111) superlattice peak the structure factor and its squared

magnitude become

F111 = |(fy + iδy) e
−My − (fz + iδz) e−Mz | (46)

|F111|2 =
(
fye
−My − fze−Mz

)2
+
(
δye
−My − δze−Mz

)2
(47)

As expected, we need contrast between the Y and Z elements to observe the (111) su-

perlattice peak, even in the case of no Y-Z mixing. For the (200) and (220) peaks, we

find

|F200|2 =
(
fye
−My + fze

−Mz − 2fxe
−Mx

)2
+
(
δye
−My + δze

−Mz − 2δxe
−Mx

)2
(48)

|F220|2 =
(
fye
−My + fze

−Mz + 2fxe
−Mx

)2
+
(
δye
−My + δze

−Mz + 2δxe
−Mx

)2
(49)
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For the 200 peak, we need contrast between X and (Y+Z) scattering factors, even with

no sublattice mixing. The 220 fundamental peak remains unchanged with sublattice mixing.

For numerical calculations, one must now find the values of the atomic scattering factors

for each element at the energy of interest,1 as well as the Debye-Waller factors. Commercial

programs, such as CaRine, do not include the dispersive terms in the scattering factors, and

may not be reliable (particularly for heavier elements, or near an x-ray absorption edge for

a particular element). And, just to be clear: one must still include the factors Λ, G, and m

to come up with a reliable calculation of intensity, |F |2 alone is not enough

C. Intensities for an ideal Xa compound and comparison with C1b

Here we merely quote the results for an ABCD compound in the Xa structure. Again

note that some authors swap the c and d atom sites.

|F1|2 = (fa + fb + fc + fd)
2 + (δa + δb + δc + δd)

2 (220), (400) (50)

|F2|2 = (fa + fb − fc − fd)2 + (δa + δb − δc − δd)2 (200), (222) (51)

|F3|2 = |F4|2 = (fa + fb + δd − δc)2 + (fd − fc + δb − δa)2 (111), (311) (52)

For C1b, we need only set all D terms to zero in our expressions for the Xa structure:

|F1|2 = (fa + fb + fc)
2 + (δa + δb + δc)

2 (220), (400) (53)

|F2|2 = (fa + fb − fc)2 + (δa + δb − δc)2 (200), (222) (54)

|F3|2 = |F4|2 = (fa + fb − δc)2 + (fc + δa − δb)2 (111), (311) (55)

(56)

We could also consider a X1+xY Z structure in a disordered state between Xa (x = 1)

and C1b (x = 0), just by adding a factor x to each of the D terms for the Xa structure:
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|F1|2 = (fa + fb + fc + xfd)
2 + (δa + δb + δc + xδd)

2 (220), (400) (57)

|F2|2 = (fa + fb − fc − xfd)2 + (δa + δb − δc − xδd)2 (200), (222) (58)

|F3|2 = |F4|2 = (fa + fb + xδd − δc)2 + (xfd − fc + δb − δa)2 (111), (311) (59)

(60)

D. Comparing L21, Xa and C1b

Based on diffraction alone, telling these three structure apart can only be done by relative

intensities. This requires the use of single crystals or powder samples to avoid spurious results

due to oriented grains. An accurate composition determination is necessary as well, since

the ideal C1b requires a different composition than the other two. Given a homogeneous

composition of X2Y Z, the choices are L21 and Xa, and whether the intensity differences are

sizable will come down to the particular elements chosen. Given a homogeneous composition

XY Z, only C1b remains as a candidate among the three structures.

More problematic are cases where the equilibrium composition is between XY Z and

X2Y Z. Is it a trivial result due to phase segregation, is one sublattice having defects,

or is a novel phase forming? Detailed microstructural and composition analyses must be

carefully performed to rule out phase segregation. For the Fe-Ti-Sb system,15 both theory

and experiment indicated a equilibrium composition of Fe1.5TiSb, which could be viewed as

a defective L21 or Xa structure, or a C1b structure that has partially filled the 4d sites, and

there is little difference between the three cases from an experimental point of view.

In any event, for low index peaks we compare the intensities of all three structures. For

Xa, there are two plausible assignments for the XYZ elements:

A = Z,B = X,C = Y,D = X (61)

A = Z,B = X,C = X,D = Y (62)

However, as discussed above the x-ray intensities are identical for these two choices. For

the L21 structure, we follow the assignments as noted in the derivation of the structure

factor. For the C1b structure, we will adopt the following assignments (though switching C

and D would again have no effect).
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A = Z,B = X,C = Y,D = vacant (63)

We will also consider a C1b with “excess” X, such that a fraction x of the 4d sites are

occupied with an X atom. For x = 0 we have C1b, for x = 1 we have Xa. We note this case

in the table below as “C1b + x”

Now we imagine that we have indexed our X-ray pattern to a cubic structure, but don’t

know the composition very well. Will the x-ray intensities give us an idea of which structure

was adopted (provided we calculate all the other factors very well)? For brevity we will

ignore the dispersive scattering terms. (For a real calculation, go back to the Fi and add

them back in before finding |F |2.)

TABLE IX: Comparing low index structure factors

hkl L21 Xa C1b + x C1b

111 (fy − fz)2 (fz + fx)2 + (fy − fx)2 (fz + fx)2 + (fy − xfx)2 (fz + fx)2 + f2y

200 (fy + fz − 2fx)2 (fz − fy)2 (fz + (1− x)fx − fy)2 (fz + fx − fy)2

220 (fy + fz + 2fx)2 (fy + fz + 2fx)2 (fy + fz + (1 + x)fx)2 (fy + fz + fx)2

All three structures have distinct intensity patterns, at least in principle, but depending

on the choice of X, Y, Z the differences may be subtle.
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