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Abstract
I reproduce Cohen’s method for determining lattice constants for cubic crystals, and show explicitly the analysis for hexago-

nal/rhombohedral crystals. In both cubic and hexagonal/rhombohedral cases we derive the normal equations and their analytic
solutions. Cohen’s derivation is slightly generalized to show how the analysis works with an arbitrary error function F (θ). An
example Excel spreadsheet performing the analysis for hexagonal/rhombohedral crystals is shown.
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INTRODUCTION

You have performed an x-ray diffraction experiment, and found diffraction peaks at angles θi. You’ve managed to
index each peak to indices (hkl)i, and for the moment we’ll assume you’ve proven that your system is cubic. For each
peak θi, you could then calculate a lattice parameter ai according to

λ2

4a2i

(
h2 + k2 + l2

)
i

= sin2 θi (1)

where λ is the wavelength of the incident radiation. Now you have a set of ai, but how do you determine the best
estimate of a from that set? You could just average the ai, which would be a decent estimate, but that neglects the
fact that the systematic uncertainty in your diffractometer is not constant, but dependent on θ. What one would
like to do is find the lattice constant a that best fits the set of lattice constants from individual diffraction peaks ai
weighted by the systematic uncertainty in the diffraction experiment. That is, weight the ai more strongly where the
diffractometer is more accurate.

The problem at hand is then to find the lattice constant(s) that best fit the experimental data accounting for systematic
error. The data in this case is presumed to be a table of sin2 θ values for diffraction peaks along with their (hkl)
indices. Cohen’s method[1] starts by presuming angular-dependent systematic error in sin2 θ values of DF (θ), where
D is a (specimen-dependent) constant and F (θ) is the function describing the systematic error. Given the error
function, the method performs a least-squares analysis to find the lattice constants.

ERROR FUNCTIONS

First, we need an error function. The simplest case is the error function of Bradley and Jay[2], who found theoretically
that errors due to absorption and eccentricity of the sample dominate, and give an uncertainty in interplanar spacing
of

∆d

d
∝ cos2 θ (2)

We can relate this to the uncertainty in the measured sin2 θ values in the following way. First, square Bragg’s law,
and take the logarithm:

n2λ2 = 4d2 sin2 θ or
n2λ2

4
= 4d2 sin2 θ (3)

2 log
nλ

2
= log sin2 θ + 2 log d+ 2 log 2 (4)

Now differentiate (treating u = sin2 θ as a variable, and nλ as a constant), and

0 =
∆ sin2 θ

sin2 θ
+

2∆d

d
(5)

−2
∆d

d
=

∆ sin2 θ

sin2 θ
(6)

or
∆d

d
∝ ∆ sin2 θ

sin2 θ
(7)

Then we can write the uncertainty in sin2 θ due to systematic uncertainties using Eq. 2 as

∆ sin2 θ =
∆d

d
sin2 θ = cos2 θ sin2 θ ∝ sin2 2θ ≡ F (θ) (8)

A better error function was determined experimentally by Nelson and Riley:[3]

∆d

d
∝ cos2 θ

sin θ
+

cos2 θ

θ
(9)
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Proceeding as above, we can relate this to the uncertainty in sin2 θ values:

∆ sin2 θ =
1

2
sin2 2θ

(
1

sin θ
+

1

θ

)
≡ F (θ) (10)

Given an error function F (θ), we can proceed. Which one to choose? For the experimental data in Fig. 1, covering
an angular range of θ ∈ {15, 50}, the difference in lattice constants determined by the two error functions above was
about 0.03%. Unless you are doing very high precision work on single crystals, it probably doesn’t matter. Nelson &
Riley’s paper does spell out the details and differences.[3]

CUBIC CRYSTALS

The measured values of sin2 θ can be related to the lattice constants and hkl indices accounting for the systematic
error. For a cubic crystal, in the absence of errors, we have

A(h2 + k2 + l2)i = sin2 θi (11)

for each peak i where A = λ2/4a2o. Here the left-hand side is the predicted value from the lattice constant ao and
the (hkl) indices, while the right-hand side is the experimentally determined value of sin2 θi. Including the systematic
errors means adding our systematic error to our prediction to better approximate the experimental data. That means
adding a (specimen-dependent) constant D times our error function to the predicted values:

A(h2 + k2 + l2)i +DF (θi) = sin2 θi (12)

For convenience, we define αi = (h2+k2+l2)i and δi = F (θi). For the Bradley and Jay error function, δi = 10 sin2 2θi,
and for the Nelson-Riley function, δi = 10 sin2 2θi(1/ sin θi + 1/θi).[4] With these definitions we can write,

Aαi +Dδi = sin2 θi (13)

now the left-hand side is the predicted value of sin2 θ including errors, and the right-hand side is the experimental
value of sin2 θ. We wish to find the A and D that minimize the sum of the squared differences ε2i between measurement
(RHS) and prediction (LHS). That is, we should minimize∑

i

(Aαi +Dδi − sin2 θi)
2 =

∑
i

ε2i ≡ ε2t (14)

If ε2t is minimal, then derivatives of ε2t with respect to A or D should be zero.

dε2t
dA

=
∑
i

2αi(Aαi +Dδi − sin2 θi) = 0 (15)

dε2t
dD

=
∑
i

2δi(Aαi +Dδi − sin2 θi) = 0 (16)

Simplifying gives the two normal equations:

A
∑
i

α2
i +D

∑
i

αiδi =
∑
i

αi sin2 θi (17)

A
∑
i

αiδi +D
∑
i

δ2i +
∑
i

δi sin2 θi (18)

The experimental data determines all but A and D. Solving these two equations simultaneously for A and D yields
the lattice parameter ao. With some tedium, one can show

A = λ2/4a2o =

(∑
i αi sin2 θi

) (∑
i δ

2
i

)
− (
∑

i αiδi)
(∑

i δi sin2 θi
)

(
∑

i α
2
i ) (
∑

i δ
2
i )− (

∑
i αiδi)

2 (19)

ao =
λ

2

√ (∑
i α

2
i

) (∑
i δ

2
i

)
− (
∑

i αiδi)
2(∑

i αi sin2 θi
)

(
∑

i δ
2
i )− (

∑
i αiδi)

(∑
i δi sin2 θi

) (20)
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HEXAGONAL CRYSTALS

For a hexagonal system, with no errors we have

A(h2 + hk + k2)i + Cl2i = sin2 θi (21)

Where A = λ2/3a2o and C = λ2/4c2o. As in the cubic case, we can simplify this further:

αiA+ γiC = sin2 θi (22)

where αi = (h2 + hk + k2)i and γi = l2. Including errors as above, we have

αiA+ γiC + δiD = sin2 θi (23)

with again δi = F (θi). The sum of the squared differences between measurement and prediction are then∑
i

(Aαi + Cγi +Dδi − sin2 θi)
2 =

∑
i

ε2i ≡ ε2t (24)

The normal equations are found from derivatives of ε2t with respect to A, C, and D:

dε2t
dA

=
∑
i

2αi

(
αiA+ γiC + δiD − sin2 θi

)
= 0 (25)

dε2t
dC

=
∑
i

2γi
(
αiA+ γiC + δiD − sin2 θi

)
= 0 (26)

dε2t
dD

=
∑
i

2δi
(
αiA+ γiC + δiD − sin2 θi

)
= 0 (27)

Simplifying,

A
∑
i

α2
i + C

∑
i

αiγi +D
∑
i

αiδi =
∑
i

αi sin2 θi (28)

A
∑
i

αiγi + C
∑
i

γ2i +D
∑
i

γiδi =
∑
i

γi sin2 θi (29)

A
∑
i

αiδi + C
∑
i

γiδi +D
∑
i

δ2i =
∑
i

δi sin2 θi (30)

Using the experimental values for the sums involving αi, δi, γi and sin2 θi, we are left with a system of 3 equations
and 3 unknowns. Solving them gives A and C, which can be used to obtain ao and co. One can solve these equations
analytically for A and C with a great deal of effort better spent by a computer. Here are the results for A and C in
case you are curious:

A =
A′

AD
(31)

A′ =
∑
i

αi sin2 θi
∑
i

γ2i
∑
i

δ2i +
∑
i

αiγi
∑
i

γiδi
∑
i

δi sin2 θi +
∑
i

αiδi
∑
i

γi sin2 θi
∑
i

γiδi

−
∑
i

αiδi
∑
i

γ2i
∑
i

δi sin2 θi −
∑
i

αiγi
∑
i

γi sin2 θi
∑
i

δ2i −
∑
i

αi sin2 θi
∑
i

γiδi
∑
i

γiδi (32)

AD =
∑
i

αiγi
∑
i

γ2i
∑
i

δ2i + 2
∑
i

αiγi
∑
i

αiδi
∑
i

γiδi −
∑
i

γ2i
∑
i

αiδ
2
i −

∑
i

δ2i
∑
i

αiγ
2
i −

∑
i

α2
i

∑
i

γiδ
2
i (33)

C =
C ′

AD
(34)

C ′ =
∑
i

α2
i

∑
i

γi sin2 θi
∑
i

δ2i +
∑
i

αi sin2 θi
∑
i

γiδi
∑
i

αiδi +
∑
i

αi sin2 θi
∑
i

αiγi
∑
i

δi sin2 θi

−
∑
i

αi sin2 θi
∑
i

γi sin2 θi
∑
i

αiδi −
∑
i

αi sin2 θi
∑
i

αiγi
∑
i

δ2i −
∑
i

α2
i

∑
i

γiδi
∑
i

δi sin2 θi (35)

AD =
∑
i

αiγi
∑
i

γ2i
∑
i

δ2i + 2
∑
i

αiγi
∑
i

αiδi
∑
i

γiδi −
∑
i

γ2i
∑
i

αiδ
2
i −

∑
i

δ2i
∑
i

αiγ
2
i −

∑
i

α2
i

∑
i

γiδ
2
i (36)
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As you can see above, it is far too tedious to write down a general solution in terms of the various sums. After
arriving at the normal equations, it is much more sensible to use numerical matrix methods to solve for A and D.
Figure 1 shows how to do the calculations in Excel using matrix methods, given a list of peak angles, hkl indices,
and the incident radiation wavelength.

Alternatively, one can start by considering the sin2 θi values to be a three-dimensional function and use standard
curve fitting methods. Our function is

f(θi) = sin2 θi = αiA+ γiC + δiD (37)

From the experimental data, construct columns of data (αi, γi, δi, sin
2 θi) = (x, y, z, f) and fit the data to a linear

function f = Ax + Cy + Dz. This has the advantage that most fitting routines (e.g., in OriginLab) will include
uncertainty in the estimated parameters and covariances. [5]

FIG. 1: Example excel sheet

Fe2MnGe sample (900C/23D anneal), Co K-α
α γ δ

h k l h^2+hk+k^2 l^2 10*sin^2(2θ) 2θ θ sin^2(2θ) α*sin^2(θ) γ*sin^2(θ) δ*sin^2(θ) α^2 γ^2 δ^2 αγ αδ γδ
1 0 1 1 1 3.05920463 33.58 16.79 0.08344282 0.08344282 0.08344282 0.25526866 1 1 9.358732973 1 3.05920463 3.05920463
2 0 0 4 0 5.28607768 46.64 23.32 0.15670995 0.6268398 0 0.82838097 16 0 27.94261726 0 21.1443107 0
0 0 2 0 4 5.86136479 49.96 24.98 0.17833887 0 0.71335549 1.04530919 0 16 34.35559719 0 0 23.4454592
2 0 2 4 4 8.90433359 70.67 35.335 0.33449574 1.33798296 1.33798296 2.97846165 16 16 79.28715676 16 35.6173344 35.6173344
3 0 0 9 0 9.13147476 72.86 36.43 0.35264624 3.17381615 0 3.22018023 81 0 83.38383128 0 82.1832728 0
2 0 3 4 9 9.86629558 96.64 48.32 0.55781531 2.23126125 5.02033782 5.50357076 16 81 97.34378847 36 39.4651823 88.7966602

SUM --> 7.45334298 7.1551191 13.8311715 130 114 331.6717239 53 181.469305 150.918658

λ 1.789

AX = B
130 53 181.469 7.4533

A = coeff of 53 114 150.9187 B = RHS 7.1551
normal eqns 181.469 150.919 331.672 13.8312

A matrix (all are sums) B matrix (sums)
αα αγ αδ α sin^2(θ)
αγ γγ γδ γ sin^2(θ)
αδ γδ δδ δ sin^2(θ)

to get A, C, D: =MMULT(MINVERSE(F14:H16),L14:L16) (select 3 col cells and ctrl+enter)
A 0.039225  --> a 5.2151731 Å
C 0.044598  --> c 4.2356626 Å
D ########

results Origin fit to data below
A 0.03923 a 5.2148348 Å
C 0.0446 c 4.2355803 Å
D -5.92E-05
dA 8.39E-05 da 5.57E-03 Å
dC 6.90E-05 dc 3.28E-03 Å
dD 7.49E-05

[1] M. U. Cohen, Review of Scientific Instruments 6, 68 (1935).
[2] A. J. Bradley and A. H. Jay, Proceedings of the Physical Society 44, 563 (1932).
[3] J. B. Nelson and D. P. Riley, Proceedings of the Physical Society 57, 160 (1945).
[4] The factor 10 is to make all terms of comparable size.

[5] Don’t forget to propagate uncertainties when going from A to a. Since a = λ/
√

3A, the uncertainty in a is related to the
uncertainty in A by δa = 1

2
δA
A
a.
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