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Optics Exam II
1. (a) What are the 3 main types of lasers? Briefly discuss and compare their principal characteristics? (b)
What are the two main physical conditions on the laser system that must be satisfied for lasing to occur?
If you do not know the exact terminology, try to explain it.

Solution: (a) The three main types of lasers are gas, solid state, and semiconductor. One may contrast them
by noting that gas lasers typically have the largest size, the highest power, and lowest efficiency, while
semiconductor lasers typically have the smallest size, lowest power, and largest efficiency.
(b) The two main physical conditions for lasing to occur are population inversion (gain) and the presence
of a cavity for optical density enhancement.

2. (a) Describe the 3 optical transitions that can occur in a laser. You can use diagrams to illustrate. (b)
Express these transitions using the Einstein coefficients. (c) Express the two conditions of lasing using
the Einstein coefficients.

Solution: (a) Here is a quick drawing:

In the first, absorption, a single photon of energy hf=E2−E1 induces an electron to transition upward
from level E1 to E2. In the second, spontaneous emission, an electron in the excited state E2 transitions
to the lower state E1 while emitting a photon of energy hf. In the third, stimulated emission, an incident
photon of energy hf induces an electron in the excited state E2 to transition downward to the lower state
E1, which results in the emission of a second photon of energy hf.

(b) Let N1 and N2 be the number of atoms in states 1 and 2, respectively, and u(ν) the density of radiation
of the incident field at frequency ν. The rate of chance of N1 can then be written
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dN1

dt
= −B12N1u(ν) stimulated emission (1)

dN1

dt
= A21N2 spontaneous emission (2)

dN1

dt
= −

dN2

dt
= B21N2u(ν) absorption (3)

B12 = B12 (4)

(c) Population inversion: stimulated emission rate greater than absorption rate

B21N2u(ν) > B12N1u(ν) (5)

B21N2 > B12N1 (6)

N2 > N1 since B21 =B12 (7)

Cavity enhancement: simulated emission rate greater than spontaneous emission rate

B21N2u(ν) > A21N2 (8)

=⇒ u(ν) >
A21

B21
(9)

3. A convenient way to measure the focal length f of a positive thin lens is to make use of the following
fact. If a pair of object and image points are separated by a distance L>4f, there will be two locations of
the lens for which the same pair of object/image are associated. Let this distance be d. Show that:

f =
L2 − d2

4L
(10)

Solution: Consider the figure below illustrating the two locations:

The two situations are symmetric because of the reversibility of the optical ray. From the upper figure,
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1
f

=
1

1
2 (L − d)

+
1

L − 1
2 (L − d)

(11)

Simplifying,

1
f

=
2

L − d
+

2
L + d

(12)

2
f

=
L + d + L − d

L2 − d2
(13)

=⇒ f =
L2 − d2

4L
(14)

There is a somewhat longer and more fussy approach, of course. Consider the two generic situations
below.

If the two situations are to have the same focal length,

1
f

=
1

so1
+

1
si1

=
1

so2
+

1
si2

(15)

Let the total distance from image to object be L, and recall that d is the separation of the two lens
positions.

L = so1 + si1 = so2 + si2 (16)

d = L − so1 − so2 (17)

Substituting into our lens equation,

1
f

=
1

so1
+

1
L − so1

=
1

so2
+

1
L − so2

=
1

L − d − so1
+

1
d + so1

(18)

Now eliminate so1:
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L

so1 (L − so1)
=

L

(L − d − so1) (d + so1)
(19)

so1 (L − so1) = (L − d − so1) (d + so1) (20)

so1L − s2
o1 = Ld + Lso1 − d2 − dso1 − so1d − s2

o1 (21)

2dso1 = Ld − d2 (22)

so1 =
L − d

2
(23)

Substituting into the first part of Eq. 18, we arrive at the result:

1
f

=
2

L − d
+

2
L + d

(24)

1
f

=
L2 − d2

4L
(25)

4. The headlights on automobiles are approximately 1.5 m apart. If the diameter of the pupil of the eye
is 3 mm and an average wavelength of visible light is λ=500 nm, what is the maximum distance at which
the headlights will be resolved (i.e., appear as two separate lights) assuming that diffraction effects at the
circular aperture of the eye are the limiting factors? Note that for a circular aperture the resolving power
is α=1.22λ/D where D is the diameter of the hole.

Solution: The minimum angle the eye can resolve owing to its circular aperture is α, which means that the
angle the two headlights make with the center of the eye must also be α at minimum. If the headlights are
a distance R away, and the separation of the headlights is h, the angle the headlights form is approximately
(assuming α is small)

sinα ≈ α ≈ h

R
(26)

One can either assume the triangle is roughly a right triangle of side h opposite angle α and hypotenuse R,
or approximate h as the arc length of a circle of radius R over an angle α. Equating this to the minimum
angle resolvable by the eye, the minimum distance at which one can resolve two separate headlights is

α = 1.22
λ

D
≈ h

R
(27)

R ≈ Dh

1.22λ
≈ 7.4 km (28)

5. You are looking through a piece of square woven cloth at a point source (λ=600 nm) 20 m away. If you
see a square arrangement of bright spots located about the point source, each separated by an apparent
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nearest-neighbor distance of 12 cm, how close together are the strands of cloth?

Solution: We need only consider the spacing of the fibers along one axis, since if the cloth has a square
weave the spacing will be the same along either axis. Or, if you like, since the two fiber axes are orthogo-
nal, diffraction from one set of fibers can’t affect what happens due to fibers running in other direction.
The interference condition for a fiber spacing d is

nλ = d sin θ (29)

where θ is the angle at which the spots are observed, and n is the diffraction order. The spacing between
adjacent spots is thus

sin θn+1 − sin θn =
λ

d
(30)

Given a spacing of 12 cm at a distance 20 m, the angles involved are very small, and we may approximate
sin θ≈θ for at least the first several order spots:

sin θn+1 − sin θn ≈ θn+1 − θn =
λ

d
(31)

Thus, the spots are evenly spaced at angles of ∆θ≈ λ/d. In order to find the spacing of the fibers, we
can consider only the first order spot. If the horizontal distance to the first order spots is R and their
separation along the lateral (orthogonal) direction from the direct beam is h, then

sin θ1 ≈ tanθ1 ≈
h

R
(32)

sin θ0 = 0 (33)

∆θ ≈ h

R
≈ λ

d
(34)

Thus, the spacing d is

d ≈ λR

h
=

(
6× 10−7 m

)
(20 m)

0.12 m
= 10−4 m = 100 µm (35)

6. Light of wavelength λ is obliquely incident on a pair of narrow slits separated by a distance d (see
figure below). The angle of incidence of the light on the slits is ϕ. Show that the diffracted light emerging
at an angle θ interferes constructively if

|d sin θ − d sinϕ| = 0, λ, 2λ, . . . (36)

Solution: We may assume that the incident light is arriving from far enough away that the incident
rays/waves are parallel. The key is to recognize that there are two path differences in this problem: the
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upper ray travels an extra distance in getting to the slits, the lower travels an extra distance after going
through the slits. This is shown in the figure below: the upper ray travels the extra distance indicated
by the blue line, while the lower slits travel the extra distances indicated by the red line. The total path
difference for the two slits is the difference between these two distances. (In the figure we have eliminated
the portion of the screen between the two slits for clarity.)

The blue segment has length d sinϕ, and the red d sin θ. The total path difference for the two incident
rays is thus

d sin ϕ − d sin θ (37)

This total path difference must be an integral multiple of the incident wavelength λ for constructive
interference, and thus

|d sin θ − d sinϕ| = 0, λ, 2λ, . . . (38)

Here the absolute value just signifies that it doesn’t matter whether the angles are positive or negative,
the problem is symmetric about the horizontal axis.


