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Problem Set 1 Solutions

1. Hecht 2.17 The wavefunction of a transverse wave on a string is

ψ(x, t) = (30.0 cm) cos [(6.28 rad/m) x− (20.0 rad/s) t] (1)

Compute the frequency, wavelength, period, amplitude, phase velocity, and direction of motion.

Solution: The wavefunction has the form

ψ(x, t) = A sin (kx−ωt+ δ) (2)

which lets us immediately identify

ω = 2πf = 20 rad/s =⇒ f =
2π
ω

=
10
π

s−1 (3)

k =
2π
λ

= 6.28 rad/m =⇒ λ =
2π
k
≈ 1.0 m (4)

A = 30 cm (5)

v =
ω

k
≈ 3.18 m/s (6)

Since the argument has the form kx−ωt, the wave is traveling along the +x direction.

2. Hecht 2.18 Show that

ψ(x, t) = A sink (x− vt) (7)

is a solution of the differential wave equation.

Solution: Taking the partial derivatives, we have:

∂2ψ

∂x2
= −k2ψ (8)

∂2ψ

∂t2
= −k2v2ψ (9)



It is apparent that this satisfies the wave equation:

∂2ψ

∂x2
=

1
v2
∂2ψ

∂t2
(10)

3. Hecht 2.31-2 Which of the following expressions correspond to traveling waves? For each of
those, what is the speed of the wave? The quantities A,a,b, c are positive real constants.

ψ(x, t) = (ax− bt)2 (11)

ψ(x, t) = A sin
(
ax2 − bt2

)
(12)

ψ(x, t) =
1

ax2 + b
(13)

ψ(x, t) = A sin 2π
(
x

a
+
t

b

)
(14)

Solution: In order to be a traveling wave, the wavefunction must take the form f(αx±βt). Thus,
only the first and last functions are traveling waves. The velocity is the ratio of the coefficient of
the time term to the spatial term, v=−β/α, and the sign of the time term tells us the direction.
Thus for the first the velocity is v=b/a in the +x direction, and for the last v=a/b along −x

4. Hecht 2.38 Show that the imaginary part of a complex number z is given by

z− z∗

2i
(15)

Solution: Let z=x+iy without loss of generality. Then z∗=x−iy, and

z− z∗ = (x+ iy) − (x− iy) = 2iy (16)
z− z∗

2i
=

2iy
2i

= y. (17)

QED.

5. Hecht 2.40 Show that the functions

ψ(x,y, z, t) = f(αx+ βy+ γz− vt) (18)

φ(x,y, z, t) = g(αx+ βy+ γz+ vt) (19)



which are plane waves of arbitrary form, satisfy the three-dimensional differential wave equation.

Solution: Let u=αx+ βy+ γz± vt for both functions. Begin by taking partial derivatives with
respect to x, y, z, and t. Using the chain rule,

∂ψ

∂x
=
dψ

du

∂u

∂x
= αf′ (20)

∂2ψ

∂x
=
d2ψ

du2

∂u

∂x
= α2f′′ (21)

Similarly,

∂2ψ

∂y2
= β2f′′ (22)

∂2ψ

∂z2
= γ2f′′ (23)

∂2ψ

∂t2
= v2f′′ (24)

The wave equation reads

∇2ψ =
1
v2
∂2ψ

∂t2
(25)

Substitution yields

0 =
(
α2 + β2 + γ2

)
f′′ −

v2

v2
f′′ (26)

=⇒ 1 = α2 + β2 + γ2 (27)

Thus, the given wavefunctions are a solution to the wave equation if α2+β2+γ2 =1.

6. Hecht 3.4 The time average of some function f(t) taken over an interval T is given by

〈f(t)〉 =
1
T

T+t∫
t

f(t′)dt′ (28)

where t′ is just a dummy variable of integration. If τ=2π/ω is the period of a harmonic function,
show that



〈sin2 (kx−ωt)〉 =
1
2

(29)

〈cos2 (kx−ωt)〉 =
1
2

(30)

〈sin (kx−ωt) cos (kx−ωt)〉 = 0 (31)

when T=τ and when T�τ.

Solution: Starting with 〈sin2 (kx−ωt)〉, is is convenient to use a substitution

u = kx−ωt′ (32)

du = −wdt′ (33)

Then we have

〈f(t)〉 = 〈sin2 (kx−ωt)〉 =
1
T

T+t∫
t

sin2
(
kx−ωt′

)
dt′ =

−1
ωT

t′=T+t∫
t′=t

sin2 udu

=
−1

2ωT
[u− sinu cosu]

∣∣∣∣t′=T+t

t′=t

=
−1

2ωT
[(kx−ωt) − sin (kx−ωt) cos (kx−ωt)]

∣∣∣∣T+t

t

=
−1

2ωT
[−ωT − sin (kx−ωt−ωT) cos (kx−ωt−ωT) + sin (kx−ωt) cos (kx−ωt)]

=
1
2

+
1

2ωT

(
sin (kx−ωt−ωT) cos (kx−ωt−ωT) − sin (kx−ωt) cos (kx−ωt)

)
(34)

For the specific limit of T=τ= 2π
ω , we note that ωT=ωτ=2π. Thus,

〈sin2 (kx−ωt)〉 =
1
2

+
1

2ωT

(
sin (kx−ωt− 2π) cos (kx−ωt− 2π) − sin (kx−ωt) cos (kx−ωt)

)
(35)

Since sin (θ± 2π)=sin θ and cos (θ± 2π)=cos θ, the second term vanishes, we have

〈sin2 (kx−ωt)〉 =
1
2

(36)

In the limit T� τ, we notice that the second term in Eq. 34 goes as T in the denominator, while
the sin and cos functions in the numerator are each at most 1. Thus, the entire second term goes



as (const)/T . In the limit of large T (say T→∞), this term vanishes.

lim
T→∞〈f(t)〉 = lim

T→∞ 1
2

+
sin (kx−ωt− 2π) cos (kx−ωt− 2π) − sin (kx−ωt) cos (kx−ωt)

2ωT
=

1
2

For the second part, all we need to do is notice that∫
sin2 udu =

1
2
u−

1
2

sinu cosu+ C (37)∫
cos2 udu =

1
2
u+

1
2

sinu cosu+ C (38)

Both integrals are the same, except for the change of sign of the second term. In both limits
considered, the second term vanishes, so its sign is irrelevant.i Thus,

〈sin2 (kx−ωt)〉 = 〈cos2 (kx−ωt)〉 =
1
2

T � τ, T = τ (39)

Finally, we are left with

〈f(t)〉 = 〈sin (kx−ωt) cos (kx−ωt)〉 (40)

Using the same substitution above, we find

〈f(t)〉 = 〈sin (kx−ωt) cos (kx−ωt)〉 =
1
T

T+t∫
t

sin (kx−ωt) cos (kx−ωt)dt′

=
−1
ωT

t′=T+t∫
t′=t

sinu cosudu =
−1
ωT

(
1
2

sin2 u

)t′=T+t

t′=t

=
−1

4ωT

(
1 − cos 2u

)t′=T+t

t′=t

=
−1

4ωT

(
− cos (2kx− 2ωt− 2ωT) + cos (2kx−ωt)

)
(41)

At the limit T =τ, since ωT =ωτ=2π the two terms in brackets cancel since cos θ= cos (θ± 2π).
In the limit T�τ, we note

lim
T→∞ − cos (2kx− 2ωt− 2ωT) + cos (2kx−ωt)

4ωT
= 0 (42)

since the numerator can be at most 2 for any value of T . Thus,

〈sin (kx−ωt) cos (kx−ωt)〉 = 0 T � τ, T = τ (43)
iIf you like, repeat everything above with the appropriate signs flipped.



7. Hecht 3.5 An electromagnetic wave is specified (in SI units) by the following function:

~E =
(
−6 ı̂ + 3

√
5 ̂

) (
104 V/m

)
ei[ 1

3(
√

5x+2y)π×107−9.42×1015 t] (44)

Find (a) the direction along which the electric field oscillates, (b) the scalar value of the amplitude
of the electric field, (c) the direction of propagation of the wave, (d) the propagation number and
wavelength, (e) the frequency and angular frequency, and (f) the speed.

Solution: The field oscillates along the amplitude vector −6̂ı+3
√

5̂. Normalizing to unit length,
we have

−6̂ı + 3
√

5̂√
62 + 9 · 5

= −
2
3
ı̂ +

√
5

3
̂ (45)

The scalar amplitude is

|~E| =
√

~E · ~E = 9 · 104 V/m (46)

The form of the exponential is ei(~k·~r−ωt). Given ~r = xx̂+yŷ, by inspection we can find ~k and ω,
and thus k, λ, f, and v.

~k =
(π

3
· 107

) (√
5̂ı + 2̂

)
(47)

k =
√

~k ·~k = π · 107 m−1 (48)

λ =
2π
k

= 200 nm (49)

ω = 9.42× 1015 rad/s (50)

f =
ω

2π
= 1.5 · 1015 Hz (51)

v = λf = 3 · 108 m/s = c (52)

8. The equation for a driven damped oscillator is

d2x

dt2
+ 2γωo

dx

dt
+ω2

ox =
q

m
E(t) (53)

(a) Explain the significance of each term.
(b) Let E=Eoe

iωt and x= xoe
i(ωt−α) where Eo and xo are real quantities. Substitute into the



above expression and show that

xo =
qEo/m√

(ω2
o −ω2)2 + (2γωωo)2

(54)

(c) Derive an expression for the phase lag α, and sketch it as a function of ω, indicating ωo on
the sketch.

Solution: The significance of each term is probably more apparent if we re-arrange and multiply
by mass:

m
d2x

dt2
= −mω2

ox− 2γmωo
dx

dt
+ qE(t) (55)

The term on the right is the net force on the oscillator. The first term on the left is the restoring
force, the second the viscous damping term, and the last the driving force of the oscillator.

First, we find the derivatives of x, noting i2 =−1:

dx

dt
= iωxoe

i(ωt−α) (56)

d2x

dt2
= −ω2xoe

i(ωt−α) (57)

Substituting into the original equaiton,

q

m
Eoe

iωt = −ω2xoe
i(ωt−α) + 2γωoiωxoe

i(ωt−α) +ω2
oxoe

i(ωt−α) (58)
q

m
Eoe

iωt = ei(ωt−α)
(
−ω2xo + 2iγωoωxo +ω2

oxo

)
(59)

q

m
Eoe

iωt = eiωte−iα
(
−ω2xo + 2iγωoωxo +ω2

oxo

)
(60)

qEo

m
eiα = −ω2xo + 2iγωoωxo +ω2

oxo (61)

To proceed, we use the Euler identity

eiθ = cos θ+ i sin θ (62)

Giving

qEo

m
(cosα+ i sinα) = −ω2xo + 2iγωoωxo +ω2

oxo (63)



We now have two separate equations if we equate the purely real and purely imaginary parts:

qEo

m
cosα = ω2

oxo −ω2xo (64)

qEo

m
sinα = 2γωωoxo (65)

We can square both equations and add them together:

q2E2
o

m2

(
cos2 α+ sin2 α

)
=

(
ω2

o −ω2
)2
x2

o + (2γωωo)2 x2
o (66)

x2
o =

q2E2
o

m2

1
(ω2

o −ω2)2 x2
o + (2γωωo)2

(67)

xo =
qEo

m

1√
(ω2

o −ω2)2 x2
o + (2γωωo)2

(68)

This is the desired amplitude of vibration. Going back to the preceding two equations, we can
divide the second equation by the first to find the phase angle:

tanα =
2γωωo

ω2
o −ω2

(69)

This is the same phase angle derived in the notes (modulo an overall sign due to the convention
chosen), a sketch of phase angle versus frequency is provided there.

9. Calculate the divergence (~∇·) and curl (~∇×) for the following vector functions ~F(x,y, z). Then
verify that the divergence of the curl is zero for each, i.e., ~∇ ·

(
~∇× ~F

)
=0.

xx̂ + (y+ z) ŷ + (x+ y+ z) ẑ

f(x)x̂ + g(y)ŷ + h(z)̂z

f(y, z)x̂ + g(z, x)ŷ + h(x,y)̂z

(x+ y+ z) (xx̂ + yŷ + zẑ)

Solution: All of the given functions have the form

~F = f(x,y, z)x̂ + g(x,y, z)ŷ + h(x,y, z)̂z (70)

so to save time we may first solve the general problem and then evaluate the specific cases. The



divergence is simply

∇ · ~F = ∂xf+ ∂yg+ ∂zh (71)

where ∂x≡ ∂
∂x . The curl is

~∇× ~F =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣∣ = (∂yh− ∂zg) x̂ + (∂zf− ∂xh) ŷ + (∂xg− ∂yf) ẑ (72)

And, finally, the divergence of the curl is zero since the order of partial derivatives does not matter
(i.e., ∂x∂yf=∂y∂xf):

∇ ·
(
∇× ~F

)
= ∂x (∂yh− ∂zg) + ∂y (∂zf− ∂xh) + ∂z (∂xg− ∂yf) (73)

= ∂x∂yh− ∂y∂xh+ ∂z∂xg− ∂x∂zg+ ∂y∂zf− ∂z∂yf = 0 (74)

Thus, we don’t need to specifically calculate ∇·
(
∇× ~F

)
for each function. We do need to calculate

the divergences and curls, however, which we can do quickly with the formulas above. For the first
function, f(x,y, z)=x, g(x,y, z)=y+ z, and h(x,y, z)=x+ y+ z:

~F = xx̂ + (y+ z) ŷ + (x+ y+ z) ẑ : (75)

∇ · ~F = 1 + 1 + 1 = 3 (76)

∇× ~F = x̂ (1 − 1) + ŷ (0 − 1) + ẑ (0 − 0) = −ŷ (77)

For the second function, f(x,y, z)→f(x), g(x,y, z)→g(y), and h(x,y, z)→h(z):

~F = f(x)x̂ + g(y)ŷ + h(z)̂z : (78)

∇ · ~F = ∂xf+ ∂yg+ ∂zh (79)

∇× ~F = 0 (80)

For the third function, f(x,y, z)→f(y, z), g(x,y, z)→g(z, x), and h(x,y, z)→h(x,y):

~F = f(y, z)x̂ + g(z, x)ŷ + h(x,y)̂z : (81)

∇ · ~F = ∂xf+ ∂yg+ ∂zh = 0 (82)

∇× ~F = (∂yh− ∂zg) x̂ + (∂zf− ∂xh) ŷ + (∂xg− ∂yf) ẑ (83)



For the last function, f(x,y, z)→x2 +xy+xz, g(x,y, z)→xy+y2 +yz, and h(x,y, z)→xz+yz+z2:

~F = (x+ y+ z) (xx̂ + yŷ + zẑ) : (84)

∇ · ~F = 2x+ y+ z+ x+ 2y+ z+ x+ y+ 2z = 4 (x+ y+ z) (85)

∇× ~F = x̂ (z− y) + ŷ (x− z) + ẑ (y− x) (86)


