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Problem Set 2: Solutions

1. The index of refraction for violet light in silica flint glass is nviolet = 1.66, and for red light it
is nred =1.62. In air, n=1 for both colors of light.

What is the angular dispersion of visible light (the angle between red and violet) passing through
an equilateral triangle prism of silica flint glass, if the angle of incidence is 50◦? The angle of
incidence is that between the ray and a line perpendicular to the surface of the prism. Recall that
all angles in an equilateral triangle are 60◦.

Solution: What we need to do is find the deviation angle for both red and violet light in terms of
the incident angle and refractive index of the prism. The angular dispersion is just the difference
between the deviation angles for the two colors. First, let us define some of the geometry a bit
better, referring to the figure below.
Let the angle of incidence be θ1, and the refracted angle θ2 at point A. The incident and refracted
angles are defined with respect to a line perpendicular to the prism’s surface. Similarly, when the
light rays exit the prism, we will call the incident angle within the prism θ3, and the refracted
angle exiting the prism θ4 at point C. If we call index of refraction of the prism n, and presume
the surrounding material is just air with index of refraction 1.00, we can apply Snell’s law at both
interfaces:

n sin θ2 = sin θ1

n sin θ3 = sin θ4
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Fair enough, but now we need to use some geometry to relate these four angles to each other, the
deviation angle δ, and the prism’s apex angle ϕ. Have a look at the triangle formed by points A,
B, and C. All three angles in this triangle must add up to 180◦. At point A, the angle between
the prism face and the line AC is ∠BAC = 90−θ2 - the line we drew to define θ1 and θ2 is by
construction perpendicular to the prism’s face, and thus makes a 90◦ angle with respect to the
face. The angle ∠BAC is all of that 90◦ angle, minus the refracted angle θ2. Similarly, we can find
∠BCA at point C. We know the apex angle of the prism is ϕ, and for an equilateral triangle, we
must have ϕ=60◦

(90◦ − θ2) + (90◦ − θ3) + ϕ = 180◦

=⇒ ϕ = θ2 + θ3 = 60◦

How do we find the deviation angle? Physically, the deviation angle is just how much in total the
exit ray is “bent” relative to the incident ray. At the first interface, point A, the incident ray and
reflected ray differ by an angle θ1−θ2. At the second interface, point C, the ray inside the prism and
the exit ray differ by an angle θ4−θ3. These two differences together make up the total deviation -
the deviation is nothing more than adding together the differences in angles at each interface due
to refraction. Thus:

δ = (θ1 − θ2) + (θ4 − θ3) = θ1 + θ4 − (θ2 + θ3)

Of course, one can prove this rigorously with quite a bit more geometry, but there is no need: we
know physically what the deviation angle is, and can translate that to a nice mathematical formula.
Now we can use the expression for ϕ in our last equation:

δ = θ1 + θ4 − ϕ



We were given θ1 = 50◦, so now we really just need to find θ4 and we are done. From Snell’s law
above, we can relate θ4 to θ3 easily. We can also relate θ3 to θ2 and the apex angle of the prism,
ϕ. Finally, we can relate θ2 back to θ1 with Snell’s law. First, let us write down all the separate
relations:

sin θ4 = n sin θ3

θ3 = ϕ − θ2

n sin θ2 = sin θ1

or θ2 = sin−1

(
sin θ1

n

)

If we put all these together (in the right order) we have θ4 in terms of known quantities:

sin θ4 = n sin θ3

= n sin (ϕ − θ2)

= n sin
[
ϕ − sin−1

(
sin θ1

n

)]

With that, we can write the full expression for the deviation angle:

δ = θ1 + θ4 − ϕ = θ1 + n sin
[
ϕ − sin−1

(
sin θ1

n

)]
− ϕ

Now we just need to calculate the deviation separately for red and violet light, using their different
indices of refraction. You should find:

δred = 48.56◦

δblue = 53.17◦

The angular dispersion is just the difference between these two:

angular dispersion = δblue − δred = 4.62◦

2. Hecht 3.48 Show that for substances of low density, such as gases, which have a single resonant



frequency ωo, the index of refraction is given by

n ≈ 1 +
Nq2

e

2εome (ω2
o − ω2)

(1)

Solution: For an oscillator with q = e of single resonance frequency without damping, we have
(3.70) in Hecht:

n(ω) =

√
1 +

Ne2

ε2me

1
ω2

o − ω2
(2)

This comes from the relationships

n =
ε

εo
(3)

ε = εo +
P(t)

E(t)
(dielectric constant) (4)

P(t) = eNx(t) (polarization) (5)

and x(t) and E(t) are the position and driving electric field of our oscillating charge derived previ-
ously (3.63, 3.66 in Hecht). At low density, we may suppose that the second term under the radical
in Eq. 2 is small compared to 1. That is,

Ne2

2εome (ω2
o − ω2)

� 1 (6)

This is valid at low enough density N, provided the frequency ω is not right at the resonance
frequency ωo. Specifically, let us imagine that we are dealing with 200 nm UV light, ω∼1×1016 Hz.
If we consider driving frequencies in the visible, no lower than 350 nm (ωo ∼ 5 × 1015 Hz), then
(ω2

o−ω2)−1 ∼10−32. Given that e2/εome ∼3000, our limit on density is

1� Ne2

2εome (ω2
o − ω2)

(7)

N� 2εome

e2

(
ω2

o − ω2
)

∼ 1035 m−3 (8)

Our atmosphere at sea level has ∼1025 molecules per m3, so this is a well-justified approximation for
gases at visible frequencies, so long as we are reasonably far from the resonance frequency. Given
the inequality in Eq. 6, we may approximate the radical in Eq. 2 with

√
1 + x≈1+x/2 since x�1.



Thus,

n(ω) =

√
1 +

Ne2

ε2me

1
ω2

o − ω2
≈ 1 +

Ne2

2ε2me

1
ω2

o − ω2
(9)

3. What is the apparent depth of a swimming pool in which there is water of depth 3 m, (a) When
viewed from normal incidence? (b) When viewed at an angle of 60◦ with respect to the surface?
The refractive index of water is 1.33.

Solution: As always, we first need to draw a little picture of the situation at hand.

dreal
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θi

θr

θi

90-θi

h

It is slightly more convenient to redefine the angle of incidence θi to be with respect to the normal
of the water’s surface itself, rather than with respect to the surface, since that is our usual conven-
tion. That means we are interested in incident angles for the observer of 90◦ and 30◦. The depth
of the pool will be dreal = 3 m. If an observer views the bottom of the pool with an angle θi with
respect to the surface normal, refracted rays from the bottom of the pool will be bent away from
the surface normal on the way to their eyes. That is, rays emanating from the bottom of the pool
will make an angle θr <θi with respect to the surface normal, and rays exiting the pool will make
an angle θi with the surface normal. This is owing to the fact that the light will be bent toward
the normal in the faster medium, the air, on exiting the water.

What depth does the observer actually see? They see what light would do in the absence of refrac-
tion, the path that light rays would appear to take if the rays were not “bent” by the water. In this
case, that means that the observer standing next to the pool would think they saw the light rays
coming from an angle θi with respect to the surface normal (dotted line in the pool). The lateral
position of the bottom of the pool would remain unchanged. If the real light rays intersect the
bottom of the pool a distance h from the edge, then the apparent bottom of the pool is also a dis-
tance h from the edge of the pool. Try demonstrating this with a drinking straw in a glass of water!



So what to do? First off, we can apply Snell’s law. If the index of refraction of air is 1, and the
water has an index of refraction n, then

n sin θr = sin θi

We can also use the triangle defined by dreal and h:

tanθr =
h

dreal

as well as the triangle defined by dreal and hi:

tan (90 − θi) =
dapp
h

=
1

tanθi

Solving the last two equations for h,

h = dreal tanθr = dapp tanθi

=⇒ dapp = dreal

[
tanθr

tanθi

]

From Snell’s law, we have a relationship between θr and θi already:

θr = sin−1

[
sin θi

n

]

Putting everything together,

dapp =
dreal
tanθi

tanθr =
dreal
tanθi

[
tan

(
sin−1

[
sin θi

n

])]

If you just plug in the numbers at this point, you have a problem. One of the angles is θi = 0,
normal incidence, which means we have to divide by zero in the expression above. Dividing by zero
is worse than drowning kittens, far worse. Thankfully, we know enough trigonometry to save the
poor kittens.

We can save the kittens by remembering an identity for tan
[
sin−1 x

]
. If we have an equation like

y=sin−1 x, it implies siny=x. This means y is an angle whose sine is x. If y is an angle in a right
iAlong with an identify for tan θ, viz., tan (90−θ) = 1/ tan θ



triangle, then it has an opposite side x and a hypotenuse 1, making the adjacent side
√

1 − x2. The
tangent of angle y must then be x/

√
1 − x2. Thus,

tan
[
sin−1 x

]
=

x√
1 − x2

Using this identity in our equation for dapp,

dapp =
dreal
tanθi

 sin θi

n

√
1 −

[
sinθi

n

]2
 =

dreal
tanθi

[
sin θi√

n2 − sin2 θi

]
=

dreal cos θi√
n2 − sin2 θi

Viewed from normal incidence with respect to the surface means θi =0 – looking straight down at
the surface of the water. In this case, sin θi =0, and the result is simple:

dapp =
dreal
n
≈ 2.25 m

Viewed from 60◦ with respect to the surface means 30◦ with respect to the normal, and thus

dapp = dreal cos 30

[
1√

1.332 − sin2 30

]
≈ 2.1 m

There are easier ways to solve the normal incidence problem, without endangering any kittens
whatsoever. Solving that problem, however, is a special case, and of limited utility. You would
still have to solve the case of 60◦ incidence separately. I wanted to show you here that solving the
general problem just once is all you need to do, so long as you are careful enough.

4. As light from the Sun enters the atmosphere, it refracts due to the small difference between
the speeds of light in air and in vacuum. The optical length of the day is defined as the time
interval between the instant when the top of the Sun is just visibly observed above the horizon,
to the instant at which the top of the Sun just disappears below the horizon. The geometric
length of the day is defined as the time interval between the instant when a geometric straight line
drawn from the observer to the top of the Sun just clears the horizon, to the instant at which this
line just dips below the horizon. The day’s optical length is slightly larger than its geometric length.

By how much does the duration of an optical day exceed that of a geometric day? Model the Earth’s
atmosphere as uniform, with index of refraction n=1.000293, a sharply defined upper surface, and
depth 8767 m. Assume that the observer is at the Earth’s equator so that the apparent path of the
rising and setting Sun is perpendicular to the horizon. You may take the radius of the earth to be
6.378× 106 m. Express your answer to the nearest hundredth of a second.



Solution: First, we need to draw a little picture. This is the situation we have been given:
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We presume that some human is standing at point A on the earth’s surface, looking straight out
toward the horizon. This line of sight intersects the boundary between the atmosphere and space
(which we are told to assume is a sharp one) at point B. Light rays from the sun, which is slightly
below the horizon, are refracted toward the earth’s surface at point B, and continue on along the
line of sight from B to A. We know the index of refraction of vacuum is just unity (nvacuum = 1),
while that of the atmosphere is n=1.000293. The day appears to be slightly longer because we see
the sun even after it has gone through an extra angle of rotation δθ due to atmospheric refraction.

To set up the geometry, we first draw a radial line from point B to the center of the earth. This
line, BC, will intersect the boundary of the atmosphere at point B, and will be normal to the
atmospheric boundary. This defines the angle of incidence θ2 and the angle of refraction θ1 for
light coming from the sun. The difference between these two angles, δθ, is how much the light
is bent downward upon being refracted from the atmosphere. How do we relate this to the extra
length of the day one would observe? We know that the earth revolves on its axis at a constant
angular speed - one revolution in 24 hours. Thus, we can easily find the angular speed of the earth:

earth’s angular speed = ω =
one revolution

1day =
360◦

86400 s

Here we used the fact that there are 24 · 60 · 60 = 86400 seconds in one day. Given the angular
velocity of the earth, we know exactly how long it will take for the earth to rotate through the
“extra" angle δθ due to refraction:

δθ = ωδt

We only need one last bit: the atmospheric refraction occurs twice per day – once at sun-up and
once at sun-down. The total “extra" length of the day is then 2δt. Thus, if we can find δθ, we can
figure out how much longer the day seems to be due to atmospheric refraction. In order to find it,
we need to use the law of refraction and a bit of geometry. First, from the law of refraction and



the fact that δθ=θ2 − θ1, we can state the following:

θ2 − θ1 = δθ

n sin θ1 = sin θ2 = sin (θ1 + δθ)

In order to proceed further, we draw a line from point A to the center of the earth, point D. This
forms a triangle,4ABD. Because line AD is a radius of the earth, by construction, it must intersect
line AB at a right angle, since the latter is by construction a tangent to the earth’s surface. Thus,
4ABD is a right triangle, and

sin θ1 =
AD

BD
=

Re

Re + d

Plugging this into the previous equation,

n sin θ1 = sin θ2 = sin (θ1 + δθ) = n
Re

Re + d

In principle, we are done at this point. The previous expression allows one to calculate θ1, while
the present one allows one to find δθ if θ1 is known. From that, one only needs the angular speed
of the earth.

θ2 = θ1 + δθ = sin−1

[
nRe

Re + d

]
δθ = sin−1

[
nRe

Re + d

]
− θ1 = sin−1

[
nRe

Re + d

]
− sin−1

[
Re

Re + d

]
= ωδt

2δt =
2δθ

ω
≈ 163.82 s

5. Light is deviated by a glass prism of index n as shown in the figure below. The ray in the prism
is parallel to the base. Show that the refractive index is related to the deviation angle δ and the
prism angle ϕ by the equation

n sin
ϕ

2
= sin

(
ϕ + δ

2

)

for this angle of incidence (i.e.,, the angle of incidence such that the ray in the prism is parallel
to the base). The deviation angle δ is a minimum for this angle of incidence, and is known as the
angle of minimum deviation. Hint: You can solve this and the first problem together, if you keep
things as general as possible - this is just a special case of the first problem.



δ
φ

Solution: Refer to the solution to the first problem. We know already how to relate the deviation
angle to the incident, exit, and refracted angles:

δ = θ1 + θ4 − (θ2 + θ3) (10)

We also know how to relate the incident, exit, and refracted angles to the prism angle:

ϕ = θ2 + θ3 (11)

Since the ray in the prism is parallel to the base, we know that θ1 =θ4 and θ2 =θ3 by symmetry.
This gives us

ϕ = 2θ2 (12)

δ + ϕ = 2θ1 (13)

Dividing the last equation by two and taking the sin of both sides,

sin
(

δ + ϕ

2

)
= sin θ1 (14)

Snell’s law lets us relate θ1 to θ2, and we know θ2 =ϕ/2.ii Thus,

sin
(

δ + ϕ

2

)
= sin θ1 = n sin θ2 = n sin

ϕ

2
(15)

6. Hecht 3.57 In 1871 Sellmeier derived the equation

n2 = 1 +
∑

j

Ajλ
2

λ2 − λ2
0j

(16)

where the Aj terms are constants and each λ0j is the vacuum wavelength associated with a natural
iiWe could also use the fact that θ2 =θ3 =90−

(
90− ϕ

2

)
=ϕ/2 – from the figure in the solution to problem 1, ∠ACB

is 90−ϕ/2, and ∠ACB plus θ3 make up a right angle.



frequency ν0j, such that λ0jν0j = c. This formulation is a considerable practical improvement
over the Cauchy equation. Show that where λ� λ0j, Cauchy’s equation is an approximation of
Sellmeier’s. Hint: write the above expression with only the first term in the sum; expand it by the
binomial theorem; take the square root of n2 and expand again.

Solution: The Cauchy equation (problem 3.54) is

n = C1 +
C2

λ2
+

C3

λ4
+ . . . (17)

The Sellmeier equation can be rewritten

n2 = 1 +
∑

j

Aj

1 − λ2
0j/λ2

(18)

if we presume λ0j/λ�1, we may use the approximation 1/(1 − x)≈1 + x:

n2 ≈ 1 +
∑

j

Aj

(
1 + λ2

0j/λ2
)

(19)

Taking the square root and rearranging,

n ≈
√

1 +
∑

j

Aj

(
1 + λ2

0j/λ2
)

=

√√√√√
1 +

∑
j

Aj

+
∑

j

Ajλ
2
0j/λ2 (20)

≈
√

1 +
∑

j

Aj

√√√√√√1 +

∑
j

Ajλ
2
0j/λ2

1 +
∑
j

Aj
(21)

The first term is simply a constant. In the second term, given that λ0j/λ� 1, the sum in the
numerator will always be much less than

∑
j Aj (which is just a constant), ensuring that the

fraction is always much less than 1. Thus, the approximation
√

1 + x≈1+x/2 is warranted.

n ≈
√

1 +
∑

j

Aj

1 +

∑
j

Ajλ
2
0j/λ2

2

(
1 +

∑
j

Aj

)
 =

√
1 +

∑
j

Aj +

∑
j

Ajλ
2
0j/λ2

2
√

1 +
∑
j

Aj

= C1 +
C2

λ2
(22)

This is equivalent to Cauchy’s equation up to second order in 1/λ (we should not expect higher-order
agreement, given the approximations above), with



C1 ≈
√

1 +
∑

j

Aj (23)

C2 ≈

∑
j

Ajλ
2
0j

2
√

1 +
∑
j

Aj

(24)

Had we carried our approximations to higher order, we could have found the C3 and C4 coefficients.
If we consider only a single term (j=1), things are much simpler:

C1 ≈
√

1 + A (25)

C2 ≈
Aλ2

0

2
√

1 + A
(26)

One could consider only a single term in the sums much earlier and make things a little less messy,
but that seems lame.

7. Hecht 4.5 Imagine that we have a non-absorbing glass plate of index n and thickness ∆y, which
stands between a source S and observer P.

(a) If the unobstructed wave (without the plate present) is Eu = Eo exp iω (t − y/c), show that
with the plate in pace the observer sees a wave

Ep = Eo exp iω [t − (n − 1) ∆y/c − y/c] (27)

(b) Show that if either n≈1 or ∆y is very small, then

Ep = Eu +
ω (n − 1) ∆y

c
Eue−iπ/2 (28)

The second term on the right may be envisioned as the field arising from the oscillators in the plate.

Solution: (a) Without any media present, to cross a distance ∆y at speed c the wave will take a
time

two =
∆y

c
(29)



With the medium present, the wave has a reduced speed of v=c/n, and the time required is

tw =
n∆y

c
(30)

Thus, the presence of the media delays the wave by an amount

δt = tw − two =
∆y

c
(n − 1) (31)

This time delay shows up as an extra phase compared to the original unimpeded wave. That is,
since the wave in the presence of the glass is delayed by a time δt compared to the unimpeded wave,
we must shift the time coordinate back by that amount. This amounts to making the substitution
t→ t−δt in the original wave to account for the time lag, or equivalently, multiplying by a phase
factor e−iωδt

Ep = Eu(t − δt) = Eoeiω(t−δt−y/c) = Eoeiω(t−(n−1)∆y/c−y/c) (32)

= Eoeiω(t−y/c)e−iω(n−1)∆y/c = Eue−iωδt (33)

The latter form makes it clear that the magnitude of E is unchanged by the presence of the glass,
only the phase is altered.

(b) If (n − 1)∆y�1, we may use the approximation ex≈1+x for the phase factor:

e−iωδt = e−iω(n−1)∆y/c ≈ 1 − iω (n − 1) ∆y/c (34)

Noting that −i=e−iπ/2,

e−iωδt ≈ 1 + ω (n − 1)
∆y

c
e−iπ/2 (35)

Substituting back into the equation for Ep,

Ep = Eue−iωδt = Eu

(
1 + ω (n − 1)

∆y

c
e−iπ/2

)
= Eu +

ω (n − 1) ∆y

c
Eue−iπ/2 (36)

The observer sees a wave which is the sum of two terms: the first is the wave that would be observed
without the glass present, the second is a π/2 phase-shifted interference term, representing the out-
of-phase field due to the oscillators in the glass plate.



8. Hecht 4.29 Starting with Snell’s law, prove that the vector refraction equation has the form

ntk̂t − nik̂ = (nt cos θt − ni cos θi) ûn (37)

Solution: (Refer to figures 4.38 and 4.39 in Hecht.) The unit vectors k̂i and k̂t point along the
directions of the incident and transmitted (refracted) waves, respectively, while ûn points along the
interface normal, from the incident to transmitted media. Snell’s law reads

ni sin θi = nt sin θt (38)

where ni and nt are the indices of refraction in the incident and transmitted media, and θi and θt

are the angles that the incident and transmitted waves make with respect to the interface normal.
We can rewrite each side of Snell’s law as a vector equation

ni sin θi =

∣∣∣∣ni

(
k̂i × ûn

) ∣∣∣∣ (39)

nt sin θt =

∣∣∣∣ni

(
k̂t × ûn

) ∣∣∣∣ (40)

Since k̂i, k̂t, and ûn lie within the same plane, k̂i× ûn and k̂t× ûn point along the same direction
perpendicular to that plane. Thus, we may combine the above to generalize Snell’s law to

ni

(
k̂i × ûn

)
= ni

(
k̂t × ûn

)
(41)

or

nt

(
k̂t × ûn

)
− ni

(
k̂t × ûn

)
=
(
ntk̂t − nik̂i

)
× ûn = 0 (42)

This means that the vector ~Γ=ntk̂t − nik̂i must be parallel to ûn, since it has a cross product of
zero with ûn. We can thus write it in terms of a scalar magnitude times ûn, ~Γ = Γ û, where Γ is
known as the astigmatic constant. It is the difference between the projections of ntk̂t and nik̂i on
ûn, which we can make apparent if we take the dot product of Γ with ûn:(

ntk̂t − nik̂i

)
· ûn = nt

(
k̂t · ûn

)
− ni

(
k̂i · ûn

)
(43)

The dot product k̂i · ûn is the projection of k̂i along the direction perpendicular to the interface,



which is just the cosine of the angle of incidence: k̂i · ûn = cos θi. A similar relationship holds for
the transmitted wave:

~Γ · ûn =
(
ntk̂t − nik̂i

)
· ûn = nt cos θt − ni cos θi (44)

The scalar on the right side of the equation above is just the magnitude of ~Γ, given that ~Γ points
along ûn, so we may write

~Γ = ntk̂t − nik̂i = (nt cos θt − ni cos θi) ûn (45)

For completeness, the astigmatic constant must be Γ =nt cos θt − ni cos θi.

Alternate Solution 1 (Joseph Murray):

Given Snell’s law

ni sin θi = nt sin θt (46)

we can translate into vector form easily

ni

(
k̂i × ûn

)
= nt

(
k̂t × ûn

)
(47)

Cross ûn into both sides:

nI

(
ûn × k̂i × ûn

)
= nt

(
ûn × k̂t × ûn

)
(48)

Now note that

~a×~b×~c = ~b (~a ·~c) −~c
(
~a ·~b

)
(49)

and thus

ni

[
k̂i (ûn · ûn) − ûn

(
ûn · k̂i

)]
= nt

[
k̂t (ûn · ûn) − ûn

(
ûn · k̂t

)]
(50)

=⇒ nik̂i − ni cos (θi)ûn = ntk̂t − nt cos (θt)ûn (51)

=⇒ nik̂i − ntk̂t = (ni cos θi − nt cos θt) ûn (52)



Alternate Solution 2 (Andrew Tuggle):

We start with Snell’s law as a cross-product:

ni

(
k̂i × ûn

)
= nt

(
k̂t × ûn

)
(53)

and distribute ûn:(
ntk̂t − nik̂i

)
= 0 (54)

to find that ntk̂t − nik̂i is parallel to ûn, i.e.,

ntk̂t − nik̂i = Aûn (55)

Squaring both sides, and noting nt sin θt =ni sin θi,

A2 = n2
t + n2

i − 2ntni cos (θt − θi) (56)

= n2
t + n2

i − 2ntni (cos θi cos θt + sin θi sin θt) (57)

= (nt cos θt − ni cos θi)
2 + (nt sin θt − ni sin θi)

2 (58)

= (nt cos θt − ni cos θi)
2 (59)

Then,

A = nt cos θt − ni cos θi (60)

and thus

ntk̂t − nik̂i = (nt cos θt − ni cos θi) ûn (61)

Alternate Solution 2 (Joseph Lukens):

Follow the conventions on pg. 103 of the textbook. Snell’s law states

ni sin θi = nt sin θt (62)

If we resolve the unit propagation vectors k̂i and k̂t into their components normal and tangential



to the surface, we find

k̂i = cos θiûn + sin θiût =⇒ sin θiût = k̂i − cos θiûn (63)

k̂t = cos θtûn + sin θtût =⇒ sin θtût = k̂t − cos θtûn (64)

Snell’s law also implies that

ni sin θiût = nt sin θtût (65)

so that we can plug in the expressions for sin θiût and sin θtût obtained earlier to yield

ni

(
k̂i − cos θiûn

)
= nt

(
k̂t − cos θtûn

)
=⇒ ntk̂t − nik̂i = (nt cos θt − ni cos θi) ûn

(66)


