PH495 / ECE493 Optics

Dr. LeClair, Dr. Kung

PH495/ECE493 OPTICS

- Dr. Patrick Kung; patkung@eng.ua.edu; office: 329 Houser
- Dr. Patrick LeClair; leclair.homework@gmail.com; facebook
offices: 20I2 Bevill, I I 0 Gallalee; 857-89। -4267 (cell)
- LeClair office hours: (email/txt ahead ideally)

M I-2 in Gallalee 110
Tu,Th 12: $15-1: 15$ in Gallalee 110
W ~l-3 in Bevill 2012
other times by appointment

OFFICIAL THINGS, CONT.

- Lecture:

> 311 Houser (obviously)
> TuTh 9:30-1 0:45

- we'll need most of this time
- will go over problems, but only so many
- a big part of learning is solving on your own ...
- some notes provided (scanned or otherwise)
- no attendance policy,

$T O P \mid C S$

I. Electromagnetic theory, photons, light (3.0 hrs)
2. Propagation of light (6.0 hrs)
3. Geometrical optics (7.5 hrs)
4. Polarization (4.5 hrs)
5. Interference (4.5 hrs)
6. Diffraction (4.5 hrs)
7. Modern optics: lasers, fiber optics, holography (3.0 hrs)
8. Midterm Examinations (2) (3.0 hrs)

LAB EXPERIMENTS

take the place of a lecture, 2 groups

1. Introduction to optics and components (1.5 hrs)
2. Refractive index (1.5 hrs)
3. Interferometry (1.5 hrs)
4. Diffraction (1.5 hrs)
5. Spectral composition of light (1.5 hrs)
6. Optical devices (1.5 hrs)

Date	Primary topic	Secondary topic	Reading	Instructor
13 Jan	Review: wave motion	superposition of waves	2.1-2.9; 7.1-2	PL
18	Electromagnetic theory	Photons, light	3.1-3	PL
20	Radiation	Scattering	3.4-6	PL
25	Propagation of light 1	Reflection \& refraction	4.2-5	PL
27	Propagation of light 2		4.6-8	PL
1 Feb	Propagation of light 3		4.9-11	PL
3	Geometric optics 1		5.1-4	PK
8	Geometric optics 2 (A)	Lab 1: optics components (B)	5.4-7	PK / PL
10	Geometric optics 2 (B)	Lab 1: optics components (A)	5.4-7	PK / PL
15	Geometric optics 3 (A)	Lab 2: refractive index (B)	6.1-4	PK / PL
17	Geometric optics 3 (B)	Lab 2: refractive index (A)	6.1-4	PK / PL
22	Polarization 1		8.1-6	PK
24	Polarization 2		8.7-12	PK
1 Mar	EXAM 1			
3	Interference 1		9.1-3	PL
8	Interference 2		9.4-6	PL
10	Interference 3 (A)	Lab 3: interferometry (B)	9.7-8	PL/PK
22	Interference 3 (B)	Lab 3: interferometry (A)	9.7-8	PL/PK
24	Diffraction 1		10.1-2	PL
29	Diffraction 2 (A)	Lab 4: diffraction (B)	10.3-5	PL/PK
31	Diffraction 2 (B)	Lab 4: diffraction (A)	10.3-5	PL/PK
5 April	EXAM 2			
7	Lasers 1 (A)	Lab 5: optical devices (B)	13	PK/PL
12	Lasers 1 (B)	Lab 5: optical devices (A)	13	PK/PL
14	Lasers 2 (A)	Lab 6: spectral composition of light (B)	13	PK/PL
19	Lasers 2 (B)	Lab 6: spectral composition of light (A)	13	PK/PL
21	Fiber optics		13	PK
26	Holography		13	PK
28	TBD			
3 May	8-10:30am FINAL			

GRADING

- 2 exams (during class period)
- homework ~weekly, drop lowest

Homework
 15\%

Labs
 15\%

Exam I
 20\%

Exam II
20\%
Final
30\%

HOMEWORK

- for my homework: email or hard copy OK
- collaboration is OK, but turn in your own
- have to show work for credit
- problem sets posted on course web page

INTERTUBES

- web page ... RSS feed, updated often can add RSS feed to facebook if that's how you roll
- twitter @pleclair \#ua-optics reproduces posts; tweets to blog sidebar
- google calendar (you can subscribe)
click on 'event details' for reading
- check blog and calendar frequently (or, learn to love RSS or twitter)

sTUFFYOU NEED

- Hecht, 'Optics'
- calculator with basic trig/log functions minimally
- writing implements
- probably, Wolfram Alpha

USEFULTHINGS

Purcell, Edward M. Electricity and Magnetism. In Berkeley Physics Course. 2nd ed. Vol. 2. New York, NY: McGraw-Hill, 1984. ISBN: 9780070049086.

Feynman, Richard P., Robert B. Leighton, and Matthew Sands. The Feynman Lectures on Physics. 2nd ed. Vol. 2. Reading, MA: Addison-Wesley, 2005. ISBN: 9780805390452.
(online notes posted for some lectures) (slides always posted following lecture)

SHOWING UP

- we hope you will find some utility in the class
- homework/exams may rely on stuff I say in class
- missing an exam is seriously bad.
acceptable reason ... makeup or weight final

OTHER

- Parking tickets start at $\$ 25$
- Calculus fluency assumed (through Cal II)
- Physics fluency assumed (through PHIO6)
- Glance through Ch. 2 to make sure it is review
your homework for next week is on this
- Read Ch. 3 for next lecture; much of it should be review

QUICK ADVERTISEMENT:

PHY-EE DOUBLE MAJOR

此 Electrical and Computer Engineering majors need ~ 4 additional hours to complete a second major in Physics.

数 This combination of fundamental and applied physics can be highly advantageous when the graduate enters the job market.

QUICK POLL:

- Have you taken MA 227?
- MA 238?
- PH 253?
- PH 331?
- ECE 340?

TODAY \& NEXTTIME:
 "REVIEW" OF ELECTRODYNAMICS

(BUT FIRST SOME MATH)

DIV, GRAD, CURL AND ALLTHAT

grad $F=\nabla F$

$$
\nabla F=\frac{\partial F}{\partial x} \hat{x}+e t c .
$$

vector pointing in direction of greatest rate of increase
e.g., scalar field describing temperature in room
gradient points in direction where temp rises most quickly ever play that game of 'warm' and 'cold'?

$\operatorname{div} \vec{F}=\nabla \cdot \vec{F}$
 $\operatorname{div} \vec{F}=\frac{\partial F_{x}}{\partial x}+e t c$.

'source function'
how much stuff comes from somewhere
magnitude of vector field's
source or sink at a point (a scalar)
if the field is the velocity of air expanding as heated, divergence is positive, air is expanding -- source for cooling/contracting air, it is negative -- sink

Gauss' law - enclosed sources + sinks in a volume says "charges = source of E" crucial for any sort of plumbing work.

$\operatorname{curl} \vec{F}=\nabla \times \vec{F}$

vector field's rate of rotation direction of axis of rotation (position) magnitude of rotation (position) 'circulation density'
zero curl = 'irrotational'
paddlewheel measures curl of water flow

$$
\text { curl } \mathbf{F}=\operatorname{det}\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right]
$$

INTERESTING IDENTITIES WE MAY USE

$$
\begin{aligned}
& \nabla \cdot(\nabla f)=\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\text { etc. } \\
& \nabla \cdot(\nabla \times \vec{A})=0 \\
& \nabla \cdot(\nabla \times f)=0 \\
& \nabla \times(\nabla f)=0 \\
& \nabla \times(\nabla \times \vec{A})=\nabla(\nabla \cdot \vec{A})-\nabla^{2} \vec{A}
\end{aligned}
$$

Maxwell's equations in integral form

Magnetic Gauss $\quad \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0$
Faraday $\quad \oint_{C} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}=-\frac{\partial}{\partial t} \int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}$
Ampere $\quad \oint_{C} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\mathbf{l}}=\int_{S} \overrightarrow{\mathbf{j}} \cdot d \overrightarrow{\mathbf{A}}+\frac{\partial}{\partial t} \int_{S} \overrightarrow{\mathbf{D}} \cdot d \overrightarrow{\mathbf{A}}$
In the absence of polarization density or magnetization
Gauss $\quad \oint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{q}{\epsilon_{0} \epsilon_{r}}=\frac{1}{\epsilon_{0} \epsilon_{r}} \int_{V} \rho d V$
Magnetic Gauss

$$
\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}}=0
$$

Faraday

$$
\begin{array}{ll}
\text { Faraday } & \oint_{C} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{l}}=-\frac{\partial}{\partial t} \int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{A}} \\
\text { Ampere } & \epsilon_{0} c^{2} \oint_{C} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{l}}=\int_{S} \overrightarrow{\mathbf{j}} \cdot d \overrightarrow{\mathbf{A}}+\epsilon_{r} \frac{\partial}{\partial t} \int_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
\end{array}
$$

Maxwell's Equations in SI Units

Maxwell's equations in differential form

Gauss
Magnetic Gauss

Faraday

Ampere

$$
\begin{aligned}
& \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{D}}=\epsilon_{0} \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{E}}+\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{P}}=\rho_{\text {free }} \\
& \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{B}}=0
\end{aligned}
$$

charge creates E
no magnetic monopoles
time-varying flux gives potential

$$
\vec{\nabla} \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}
$$

$$
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{H}}=c^{2} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{B}}-c^{2} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{M}}=\overrightarrow{\mathbf{j}}+\frac{\partial \overrightarrow{\mathbf{D}}}{\partial t} \text { moving charge causes } \mathrm{B} / \mathrm{H}
$$

Displacement field, Magnetic fields, and charge density

$$
\begin{array}{rlr}
\overrightarrow{\mathbf{D}} & =\epsilon_{0} \overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{P}} \approx \epsilon_{r} \epsilon_{0} \overrightarrow{\mathbf{E}} \quad \text { displacement field }=\text { polarization }+\mathrm{E} \\
\overrightarrow{\mathbf{H}} & =\frac{1}{\mu_{0}}(\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{M}})=\epsilon_{0} c^{2}(\overrightarrow{\mathbf{B}}-\overrightarrow{\mathbf{M}}) \quad \begin{array}{l}
\text { magnetic field strength }= \\
\text { magnetic field }- \text { magnetization }
\end{array} \\
\rho_{\text {total }} & =\rho_{\text {free }}+\rho_{\text {pol }} \quad & \text { total charge }=\text { free }+ \text { polarization }
\end{array}
$$

In the absence of polarization density or magnetization

Gauss
Magnetic Gauss
Faraday
Ampere

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{E}} & =\frac{\rho}{\epsilon_{r} \epsilon_{0}} \\
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{B}} & =0 \\
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{E}} & =-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
\epsilon_{0} c^{2} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{B}} & =\overrightarrow{\mathbf{j}}+\epsilon_{r} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t}
\end{aligned}
$$

Note that $c^{2}=\frac{1}{\mu_{0} \epsilon_{0}}$. We do not need all three.

Maxwell's Equations in SI Units: static case

In the absence of polarization density or magnetization

$$
\begin{gathered}
\vec{\nabla} \cdot \overrightarrow{\mathbf{E}}=\frac{\rho}{\epsilon_{r} \epsilon_{0}} \\
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{B}}=0 \\
\vec{\nabla} \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} \\
\epsilon_{0} c^{2} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{B}}=\overrightarrow{\mathrm{X}}+\epsilon_{r} \frac{\partial \overrightarrow{\mathrm{E}}}{\partial t} \\
\Downarrow
\end{gathered}
$$

In the absence of polarization density or magnetization

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{E}} & =\frac{\rho}{\epsilon_{\tau} \epsilon_{0}} \\
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{B}} & =0 \\
\vec{\nabla} \times \overrightarrow{\mathbf{E}} & =0 \\
\epsilon_{0} c^{2} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{B}} & =0
\end{aligned}
$$

In the absence of polarization density or magnetization

$$
\begin{array}{rlrl}
\text { Gauss } & \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{E}} & =\frac{\rho}{\epsilon_{r} \epsilon_{0}} \\
\text { Faraday } & \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{B}} & =0 \\
\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{E}} & =-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t} & \\
& \text { Magnetic Gauss } \\
\epsilon_{0} c^{2} \overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{B}} & =\overrightarrow{\mathbf{j}}+\epsilon_{r} \frac{\partial \overrightarrow{\mathbf{E}}}{\partial t} \quad \text { Ampere }
\end{array}
$$

Solutions: vector and scalar potentials

$$
\begin{array}{rlr}
\overrightarrow{\mathbf{E}} & =-\overrightarrow{\boldsymbol{\nabla}} \varphi-\frac{\partial \overrightarrow{\mathbf{A}}}{\partial t} & \text { scalar potential } \\
\overrightarrow{\mathbf{B}} & =\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\mathbf{A}} & \text { vector potential } \\
\varphi(1, t) & =\int \frac{\rho\left(2, t-r_{12} / c\right)}{4 \pi \epsilon_{0} r_{12}} d V_{2} & \\
& \text { retarded } \\
\overrightarrow{\mathbf{A}}(1, t) & =\int \frac{\overrightarrow{\mathbf{j}}\left(2, t-r_{12} / c\right)}{4 \pi \epsilon_{0} c^{2} r_{12}} d V_{2} & \text { response }
\end{array}
$$

usually take Coulomb gauge, $\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\mathbf{A}}=0$:

Poisson

$$
\begin{aligned}
-\nabla^{2} \varphi & =\frac{\rho}{\epsilon_{0}} \\
-\epsilon_{0} c^{2} \nabla^{2} \overrightarrow{\mathbf{A}} & =j
\end{aligned}
$$

div + curl specifies E (almost) uniquely curl E follows from central nature of force $+f(r)$ only

$$
\begin{gathered}
\text { div }+ \text { curl gives } E=\text { grad (scalar) } \\
\text { and Poisson }
\end{gathered}
$$

(a)

$$
t=\frac{T}{2}
$$

(a)

$T=$ Period = how long per cycle

$$
T=1 / f \quad \text { or } \quad f=1 / T
$$

frequency - wavelength - velocity:

$$
\lambda f=v=\text { velocity of wave propagation }
$$

$$
\text { or } \quad V T=\lambda \quad \text {.... travel one wavelength per period }
$$

simplest wave:

$$
f(x, t)=A \sin \left(2 \pi f t-\frac{2 \pi}{\lambda} x\right)
$$

Characteristics of waves

they have Crests \& Troughs
 - intensity varies periodically. "vibration"

Longitudinal

vibrations are PERPENDICULAR
to propagation

string, EM waves

Transverse
vibrations are PARALLEL to propagation

sound

What do I have against μ_{0} ?

It is unnecessary
μ_{0} is defined as a constant it is just a combination of ε_{0} and c

$$
c^{2}=\frac{1}{\mu_{0} \epsilon_{0}}
$$

It hides the relativistic connection between E and B there is only 1 field. E and B are connected by a Lorenz transformation

The strength of E per unit charge is scaled by ε_{0} The strength of B is a factor c^{2} smaller via Lorenz
we could also start with B and get rid of ε_{0}, just to be fair but we do not need two constants AND c

Gauss'law + symmetry gives Coulomb's law

$$
\text { flux }=\oint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\frac{1}{\epsilon_{0}} \int_{V} \rho(r) d V=\frac{q_{\text {encl }}}{\epsilon_{0}}
$$

If the charge distribution is radially symmetric, field lines spread out radially, equally in all directions:

$$
\overrightarrow{\mathbf{E}}=E(r) \hat{\mathbf{r}}
$$

By symmetry, the field strength must then go as $\frac{1}{r^{2}}$.
\Longrightarrow field is constant at a given radius \Longrightarrow Gaussian surface $=$ sphere

$$
\Phi=\oint_{S} \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}=\varphi=\overrightarrow{\mathbf{E}} \oint_{S} \cdot d \overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{E}} \cdot 4 \pi r^{2} \hat{\mathbf{r}}=\frac{q_{\mathrm{encl}}}{\epsilon_{0}}
$$

Symmetry + Gauss $=$ Coulomb:

$$
\overrightarrow{\mathbf{E}}=\frac{q_{\text {encl }}}{4 \pi \epsilon_{0} r^{2}} \hat{\mathbf{r}}
$$

GEOMETRIC INTERPRETATION

FIGURE 1.15
In the field \mathbf{E} of a point charge q, what is the outward flux over a sphere surrounding q ?

FIGURE 1.16
Showing that the flux through any closed surface qround q is the same as the flux through the sphere.

GEOMETRIC INTERPRETATION

- Gauss' law is just the divergence theorem
- sources + sinks in closed volume $=\mathbf{d i v}=$ flow
- same law in fluid dynamics (i.e., plumbing)
- charge is source of E
- flow of field (lines) out of a volume $=$ net charge
- Gauss for magnets gives zero
- sources are discontinuities in the (scalar) potential, currents

handedness

- B is a pseudovector ...
- like a vector under proper rotation
- picks up '-' under improper rotation (inv + rot)
- thus we have a choice of handedness
(a)

(c)

	SI units	CGS units
Energy	I Joule	$10^{7} \mathrm{erg}$
Force	I Newton	10^{5} dyne
Electric Charge	I Coulomb	" 3 " $\times 10^{9} \mathrm{esu}$
Electric Current	\| Ampere	" 3 " $\times 10^{9} \mathrm{esu} / \mathrm{sec}$
Electric Potential	" 3 " $\times 10^{2}$ Volts	I statvolt (erg/esu)
Electric Field	" 3 " $\times 10^{4} \mathrm{Volts} / \mathrm{m}$	I statvolt/cm (dyne/esu)
Magnetic Field B	I Tesla	10^{4} gauss (10^{4} dynes/esu)
Magnetization M	\| Ampere/m	$4 \pi \times 10^{-3}$ Oersted
Magnetization M	\| Ampere/m	$10^{-3} \mathrm{emu} / \mathrm{cm}^{3}$
Magnetic Field H	\| Ampere/m	$4 \pi \times 10^{-3}$ Oersted
Capacitance	1 farad	"9" $\times 10^{11} \mathrm{~cm}$
Resistance	I ohm	1/("9" $\left.{ }^{\prime \prime} \times 10^{11}\right) \mathrm{sec} / \mathrm{cm}$
Inductance	I henry	1/("9" ${ }^{\prime \prime}$ (0^{11}) $\mathrm{sec}^{2} / \mathrm{cm}$

$" 3 "=2.9979 \quad " 9 "=" 3 " \times " 3 "$

Animations ...

- http://webphysics.davidson.edu/applets/retard/Retard_FEL.html
- 'retarded' means 'field from where the charge was a time $\mathrm{t}=\mathrm{r} / \mathrm{c}$ ago'

ω / ω 。

$\log \sigma$

