UNIVERSITY OF ALABAMA Department of Physics and Astronomy

PH 101 LeClair

Summer 2011

Exam 1

Instructions

- 1. Solve five of the six problems below.
- 2. All problems have equal weight. Do your work on separate sheets.
- 3. You are allowed 1 sheet of standard 8.5×11 in paper and a calculator.

□ 1. A motorcycle is following a car that is traveling at constant speed on a straight highway. Initially, the car and the motorcycle are both traveling at the same speed of 18 m/s, and the distance between them is 92.0 m. After 2.50 s, the motorcycle starts to accelerate at a rate of 4.00 m/s^2 . How long does it take from the moment the motorcycle starts to accelerate until it catches up to the car?

□ 2. A pilot flies horizontally at 1300 km/h, at height h = 35 m above initially level ground. However, at time t=0, the pilot begins to fly over ground sloping upward at angle $\theta = 4.3^{\circ}$. If the pilot does not change the airplane's heading, at what time t does the plane strike the ground?

□ 3. A block of mass m = 5.00 kg is pulled along a horizontal frictionless floor by a cord that exerts a force of magnitude F = 12.0 N at an angle of 65° with respect to horizontal. (a) What is the magnitude of the block's acceleration? (b) The force magnitude F is slowly increased. What is its value just before the block is lifted off the floor?

□ 4. Consider the figure below. Let h = 1 m, $\theta = 15^{\circ}$, and m = 0.5 kg. There is a coefficient of kinetic friction $\mu_k = 0.2$ between the mass and the inclined plane, and the mass m starts out at the very top of the incline with a velocity of $v_i = 0.1 \text{ m/s}$. What is the speed of the mass at the bottom of the ramp?

 \Box 5. A baseball leaves the bat at 30.0° above the horizontal and is caught by an outfielder 375 ft from home plate at the same height from which it left. What is the initial speed of the ball?

 \Box 6. An advertisement claims that a particular automobile can "stop on a dime." What net force would actually be necessary to stop a 850 kg automobile traveling initially at 45.0 km/h in a distance equal to the diameter of a dime, which is 1.8 cm. *Hint: watch the units!*

Formula sheet

$$g = 9.81 \text{ m/s}^2$$

$$1 \text{ km/h} = \frac{5}{18} \text{ m/s} \approx 0.2778 \text{ m/s}$$

$$1 \text{ km} = 1000 \text{ m}$$

$$1 \text{ cm} = 0.01 \text{ m}$$

$$\downarrow \text{ quadratic formula:}$$

$$0 = \alpha x^2 + bx^2 + c \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4\alpha c}}{2\alpha}$$

Generic vector \vec{f} :

$$\begin{array}{c} f_{y} = |\vec{f}| \sin \theta \\ f_{x} = |\vec{f}| \cos \theta \\ f_{x} = |\vec{f}| \cos \theta \\ \tan \theta = \frac{f_{y}}{f_{x}} \\ |\vec{f}| = \sqrt{f_{x}^{2} + f_{y}^{2}} \end{array}$$

1-D motion, constant acceleration:

$$\begin{split} \overline{\nu} &= \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t} \\ \overline{\alpha} &= \frac{\nu_2 - \nu_1}{t_2 - t_1} = \frac{\Delta \nu}{\Delta t} \\ \nu(t) &= \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \\ a(t) &= \lim_{\Delta t \to 0} \frac{\Delta \nu}{\Delta t} \\ x_f &= x_i + \nu_{xi} t + \frac{1}{2} a_x t^2 \\ \nu_{xf}^2 &= \nu_{xi}^2 + 2 a_x \Delta x \\ \nu_f &= \nu_i + at \end{split}$$

2-D motion, constant acceleration:

$$\begin{split} \vec{r} &= x(t)\,\hat{\imath} + y(t)\,\hat{\jmath} \\ x(t) &= x_i + \nu_{ix}t + \frac{1}{2}a_xt^2 \\ y(t) &= y_i + \nu_{iy}t + \frac{1}{2}a_yt^2 \\ \nu_x(t) &= \nu_{xi} + a_xt \\ \nu_y(t) &= \nu_{yi} + a_yt \end{split}$$

$\mathbf{Quantity}$	Unit	equivalent to
force	Ν	$kg \cdot m/s^2$
acceleration	$\rm m/s^2$	-
velocity	m/s	-
position	m	-

Projectile motion:

$$\begin{split} \nu_x(t) &= \nu_i \cos \theta_o \\ x(t) &= x_i + (\nu_i \cos \theta_o) t \\ \nu_y(t) &= \nu_i \sin \theta_o - g t \\ y(t) &= y_i + (\nu_i \sin \theta_o) t - \frac{1}{2} g t^2 \\ \downarrow \quad \text{over level ground:} \\ \text{Range} &= R = \frac{\nu_i^2 \sin 2\theta_i}{g} \\ \downarrow \quad \text{launch at } y = 0; \\ \text{max height} &= H = \frac{\nu_i^2 \sin^2 \theta_i}{2g} \\ \downarrow \quad \text{launched from origin} \\ y(x) &= (\tan \theta_o) x - \frac{g x^2}{2 \nu_o^2 \cos^2 \theta_o} \end{split}$$

Force in general:

$$\Sigma \vec{F} = \vec{F}_{net} = m\vec{a}$$
$$\Sigma F_x = ma_x$$
$$\Sigma F_y = ma_y$$
$$\vec{F}_{12} = -\vec{F}_{21}$$

Particular forces:

$$\begin{split} F_{\rm gravity} &= mg = {\rm weight} \\ f_{\rm s} &\leqslant \mu_{\rm s} n \\ f_{\rm s,max} &= \mu_{\rm s} n \\ f_{\rm k} &= \mu_{\rm k} n \\ F_{\rm spring} &= -k\Delta x \end{split}$$

Power	Prefix	Abbreviation
10^{-12}	pico	р
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	с
10^{3}	kilo	k
10^{6}	mega	Μ
10^{9}	giga	G
10^{12}	tera	Т