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Exam 2 Practice Problems

1. A solid sphere of mass M and radius R starts from rest at the top of an inclined plane (height h, angle
θ), and rolls down without slipping. What is the linear velocity of the center of mass at the bottom of
the incline? For a solid sphere, I = 2

5MR2.

2. A star rotates with a period of 30 days about an axis through its center. After the star undergoes a
supernova explosion, the stellar core, which had a radius of 1.0× 104 km, collapses into a neutron star of
radius 3.0 km. Determine the period of rotation of the neutron star. Note that ω = 2π

period

3. A pendulum is made from a rigid rod of length L and mass M hanging from a frictionless pivot point,
as shown below. The rod is released from a horizontal position. How does the (tangential) acceleration
of the end of the rod at the moment of release compare to g?

L

4. A wheel rotates with a constant angular acceleration α = 3.50 rad/s2. If the angular speed is ωi =

2.00 rad/s at time ti =0, through what angular displacement does the wheel rotate in 2.00 s?

5. A pendulum consists of a sphere of mass m attached to a light cord of length L. The sphere is released
from rest at an angle θi from the vertical. Find the speed of the mass at its lowest point.

6. Consider the setup below with two springs connected to a mass on a frictionless table. Find an
expression for the potential energy as a function of the displacement x. The springs are at their equilib-
rium length L when vertical. (Hint: consider the limiting cases L→ 0 and x→ 0 to check your solution.)
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7. A block having a mass m=0.80 kg is given an initial velocity of v=1.2 m/s to the right, and it collides
with a spring of negligible mass and force constant k = 50 N/m, as shown below. Assuming the surface



to be frictionless, what is the maximum compression of the spring after the collision?
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8. Two blocks are free to slide along a frictionless wooden track ABC as shown in below. The block
of mass m1 = 4.92 kg is released from A. Protruding from its front end is the north pole of a strong
magnet, repelling the north pole of an identical magnet embedded in the back end of the block of mass
m2 =10.5 kg, initially at rest. The two blocks never touch. Calculate the maximum height to which m1

rises after the elastic collision.
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9. As shown below, a bullet of mass m and speed v passes completely through a pendulum bob of mass
M. The bullet emerges with a speed of v/2. The pendulum bob is suspended by a stiff rod of length l and
negligible mass. What is the minimum value of v such that the pendulum bob will barely swing through
a complete vertical circle?
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10. A cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected
to a post by a large spring, initially un-stretched and with force constant k= 1.90 × 104 N/m, as shown



below. The cannon fires a 200 kg projectile at a velocity of 125 m/s directed 45.0◦ above the horizontal.

If the mass of the cannon and its carriage is 4780 kg, find the maximum extension of the spring.

45.0◦

→

11. Determine the acceleration of the center of mass of a uniform solid disk rolling down an incline
making angle θ with the horizontal.

12. A boy is initially seated on the top of a hemispherical ice mound of radius R. He begins to slide down
the ice, with a negligible initial speed. Approximate the ice as being frictionless. At what height does the
boy loose contact with the ice?

R

13. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It starts
from rest with the lowest point of the sphere at a height h above the bottom of the loop of radius R,
much larger than r. What is the minimum value of h (in terms of R) such that the sphere completes the
loop? The moment of inertia for a solid sphere is I = 2

5mr2.
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Solutions

Solution 1: The simplest approach here is probably conservation of energy. At the top of the ramp,
we have only potential energy, while at the bottom we have rotational kinetic energy and translational
kinetic energy due to the overall motion of the center of mass (cm).

The vertical height of the ramp is h, and we will presume that the sphere starts out at the very top such
that its change in center of mass height is h, rather than h−R. Conservation of energy gives:

Mgh =
1
2
Mv2

cm +
1
2
Iω2 (1)

For pure rolling motion, the center of mass velocity must be the same as the velocity of the surface of the
sphere, Rω=vcm, or ω=vcm/R.

Mgh =
1
2
Mv2

cm +
1
2
I

(
v2

cm
R2

)
=

1
2
v2

cm

(
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I
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)
(2)

1
2
v2

cm =
Mgh

M + I/R2
=

gh

1 + I/MR2
(3)

v2
cm =

2gh

1 + I/MR2
(4)

vcm =

√
2gh

1 + I/MR2
(5)

Using I = 2
5MR2, we find vcm =

√
10
7 gh, slower than what we would expect for pure sliding motion

without friction (v=
√

2gh).

Solution 2: Presumably, the star’s mass is essentially constant. We can use the initial period of the star Ti

to find its original rate of rotation ωi. WIth that in hand, conservation of angular momentum gives use
the angular velocity after the explosion, and thus the new period.

ωi =
2π

Ti
(6)

Noting that v=Rω, conservation of angular momentum is straightforward:

Li = mviRi = Lf = mvfRf (7)

mωiR
2
i = mωfR

2
f (8)

ωf =
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i

R2
f

ωi (9)



Finally, the post-explosion period Tf:

Tf =
2π

ωf
=

2πR2
f

ωiR
2
i

= Ti
R2

f

R2
i

≈ 0.23 s (10)

Solution 3: If we can get the angular acceleration, we can get the linear acceleration at any point, including
the end of the rod. We can get that by finding the net torque on the system. First we should make a quick
sketch of the situation:

θ

mg

L/2

α

The weight of the rod mg acts downward from its center of mass. Since the center of mass is a distance
L/s from the pivot point, this will create a torque. The angle between the force mg and a line from the
force to the pivot point is 90◦ when the rod starts to fall, so the magnitude of the torque is just

τweight = −mg

(
L

2

)
(11)

Here the minus sign indicates that the torque would cause a clockwise rotation, which is by convention
negative. Since this is the only torque present, it must be equal to the moment of inertia times the
angular acceleration. For a thin rod of mass M and length L, rotated about its end, the moment of inertia
is I= 1

3ML2. Thus,

∑
τ = Iα (12)

−
1
2
mgL =

1
3
mL2α (13)

α = −
3g

2L
(14)

The linear acceleration a can be found by noting a = αR, where R is the distance from the point of
rotation to the point of interest, in this case just L:

a = −αL = −
3
2
g (15)

The acceleration is half again as large as that due to gravity, meaning the end of the rod falls faster than if
the rod were simply dropped! In fact, one can see that a = g when R = 2

3L, so points of the rod further



than that from the pivot point fall faster than dropped objects.

Solution 4: We only need the equation for angle as a function of time under constant angular acceleration:

θ(t) = θo + ωit +
1
2
αt2 (16)

In this case, we only want the angular displacement ∆θ(t)=θ(t)−θo:

∆θ(t) = ωit +
1
2
αt2 (17)

We are given ωi =2.00 rad/s and α=3.5 rad/s2, so finding the angular displacement after 2.00 s is just a
matter of plugging in the numbers:

∆θ(2 s) =

(
2.00

rad
s

)
(2 s) +

1
2

(
3.5

rad
s2

)
(2 s)2 = 11.0 rad ≈ 1.75 rev (18)

Solution 5: This is a standard conservation of energy problem. Our initial state is the pendulum bob at
an angle θi, the final state is that where the bob is hanging straight up and down.

θ

LL cos θ

L−L cos θ

The initial energy is purely gravitational potential energy. Geometry gives us the change in height after
inclining the bob by θi. For convenience we choose the state of zero potential energy to be the final state,
with the bob completely vertical. The final energy is purely kinetic. Setting the two equal and solving
for v gives us our answer.



Ki + Ui = Kf + Uf

0 + mg(L − L cos θi) =
1
2
mv2 + 0

��mg(L − L cos θi) =
1
2
��mv2

2gL(1 − cos θi) = v2

v =
√

2gL(1 − cos θi)

Solution 6: Since potential energy is a scalar, we can just add the potential energies for each spring to-
gether. Since the two springs are equivalent, we can just figure out the potential energy of one of them
and double it.

When x = 0, both springs have a length L. As soon as we pull on the mass and move it to some x 6= 0,
we can find the new length of the spring from simple geometry as

√
x2 + L2. The ∆x is the difference

between these two lengths. Now we can easily write down PE(x):

PE(x) = PEspring1 + PEspring2

= 2PEspring1 = 2
(

1
2
k (∆x)2

)
= k (∆x)2

= k
(√

x2 + L2 − L
)2

= kL2 + kx2 − 2kl
√

x2 + L2

= kx2 + 2kL
(
L −

√
L2 + x2

)

Solution 7: Conservation of energy again. The initial kinetic energy of the block is converted into
potential energy stored in the spring.



Ki + Ui = Kf + Uf

1
2
mv2

A + 0 = 0 +
1
2
k (∆x)2

�
��
1
2
mv2

A =
�
��
1
2
k (∆x)2

(∆x)2 =
m

k
v2

A

∆x =

√
m

k
vA =

√
0.8 kg

50 N/m
(1.2m/s) ≈ 0.15m

Solution 8: This one has three basic steps. First, use conservation of energy to find the velocity of the
first block just before the collision. Call the initial height h = 5 m, and let the zero for potential energy
be the vertical position of m2:

Ki + Ui = Kf + Uf

0 + mgh =
1
2
mv2

1i

��mgh =
1
2
��mv2

1i

v1i =
√

2gh

Next, we handle the collision itself. It is an elastic collision, so both kinetic energy and momentum are
conserved. We have already derived the equation for v1f for a 1D elastic collision with one of the objects
at rest, and only state the result below.

v1f =

(
m1 − m2

m1 + m2

)
v1i =

(
m1 − m2

m1 + m2

) √
2gh

The last step is to use conservation of energy again to find the new height, which we’ll call h ′.



1
2��m1v

2
1f = ��m1gh ′

h ′ =
v2
1f

2g
= h

(
m1 − m2

m1 + m2

)2

h ′ ≈ 0.131h ≈ 0.655m

Solution 9: This one is very much like the ballistic pendulum problem. The initial collision is inelastic,
so we can’t use conservation of energy, but we can use conservation of momentum. This is as follows:

~pi = ~pf

mv = m
(v

2

)
+ Mvbob

v =
(v

2

)
+

M

m
vbob

Now we have the velocity of the bob after the collision. If the bob is going to make it all the way to the
top of the arc, then its initial kinetic energy must at least match the gain in gravitational potential energy
due to the change in height. This gives us a value for vbob.

Ki + Ui = Kf + Uf

1
2
mv2

bob + 0 = 0 + mg∆y = mg(2l)

��mg(2l) =
1
2
��mv2

bob

vbob =
√

4gl = 2
√

gl

Now plug that value for vbob into the first equation we got from momentum conservation, and we’re
done.
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2

)
+

M

m
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2

)
+

M

m

(
2
√
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)

v

2
= 2

(
M

m

) √
gl

v =

(
4M

m

) √
gl

Solution 10: First, we want to find the recoil velocity of the cannon, from which we can use conservation
of energy to get the maximal extension of the spring.

We can get the recoil velocity from conservation of momentum, but we have to be careful. The pro-
jectile’s momentum has both x and y components, but the cannon will only move in the −x direction.
We have to write down conservation of momentum my components. In this case we only need the x

components.

~pi = ~pf

pxi = pxf

0 = vprojmproj cos 45◦ + mcannonvcannon

vcannon = −

(
mproj

mcannon

)
vproj cos 45◦

Now that we have the recoil velocity of the cannon, we can use conservation of energy to relate the
cannon’s kinetic energy to the energy stored in the spring.



1
2
mcannonv

2
cannon =

1
2
k (∆x)2

∆x =

√
mcannon

k
vcannon

∆x =

√
mcannon

k

(
mproj

mcannon

)
vproj cos 45◦

∆x =

[
mproj√

kmcannon

]
vproj cos 45◦

∆x =

[
200 kg√

(1.90× 104 N/m) (4780 kg)

]
(125 m/s)

(√
2

2

)
≈ 1.85m

Solution 11: There are two different ways to approach this one: using torque, and using energy conserva-
tion. First, we’ll use energy conservation.

Using energy conservation to get the acceleration requires some insight. First, since gravity is the only
force of interest here, the acceleration should be a constant. Second, if this is true, then we can use the
velocity of the disc at any two distinct points on the ramp to get acceleration, via, v2

f = v2
i +2a∆x. If the

acceleration is constant, we can choose vf and vi to be any points on the ramp we want. So let us choose
vf as the speed at the bottom of the ramp, which we will calculate, and vi = 0 at the top of the ramp.

Releasing the disc from rest at the top of the ramp, whose height we’ll call h, we can write conservation
of energy in terms of the initial potential energy, and the final rotational plus linear kinetic energies:

mgh =
1
2
mv2

cm +
1
2
Icmω2

mgh =
1
2
mv2

cm +
1
2
Icm

v2
cm

R2

mgh =
1
2
v2

cm

(
m +

Icm

R2

)
=

1
2
mv2

cm

(
1 +

Icm

mR2

)
2gh = v2

cm

(
1 +

Icm

mR2

)
v2

cm =
2gh

1 + Icm/mR2

Now we can relate the linear velocity at the bottom of the ramp vcm to the acceleration, noting that the
length of the ramp is h/ sin θ



v2
cm = 2a∆x

2gh

1 + Icm/mR2
= 2a

(
h

sin θ

)
a =

g sin θ

1 + Icm/mR2

For a disc, I = 1
2mR2, leading us to

a =
2
3
g sin θ

The other way to do this problem is to realize that the weight of the disc mg is actually a force applied
at an angle to the incline, and represents a torque. The torque is the weight mg times the line of action,
R sin θ. Equivalently, we could say it is the component of the disc’s weight mg sin θ along the ramp times
the radial distance R. In either case:

Στ = Iα = I
a

R

τweight = mgR sin θ = I
a

R

What is I in this case? Solving the problem with conservation of energy we used Icm, but only because
we had previously derived the equation for total kinetic energy of a rolling object in terms of Icm. In the
present case, we have to find I explicitly using the parallel axis theorem. We are rotating the disc about a
point on its surface a distance R away, so this means:

I = Icm + mR2 =
1
2
mR2 + mR2 =

3
2
mR2

For the last step, we have used Idisc = 1
2mR2. Now we can put this into our torque equation above:



τweight = mgR sin θ = I
a

R

��mg�R sin θ =
3
2
��m�R�2

a

�R

a =
2
3
g sin θ

Personally, I find the energy approach more intuitive, but one has to be careful. It would not have worked
if the acceleration was not constant, for instance.

Solution 12: Find: The point at which the boy will loose contact with the hemisphere. If we know the
point on the sphere, we can easily find the height. Since the radius of the hemisphere is constant, we
need only the boy’s angular position. The point at which the boy will leave the sphere will be the point
at which the normal force is zero – i.e., the point at which there is no longer a force constraining him to
stay on the surface.

Given: The radius of the sphere and the fact that it is frictionless.

Sketch: The only thing we need to add to the given picture is a free-body diagram and a coordinate
system. Clearly, (r, θ) polar coordinates with an origin at the center of the hemisphere will be convenient.
Let θ=0, r=R define the boy’s initial position.

R
mg

h

∆h

N

θ

θ

Once the boy is at a given angle θ, his height above the ground will be h=R cos θ, meaning he has moved
downward from his starting position by an amount ∆h = R − h. The boy’s weight mg will be acting
downward making the same angle θ with respect to a radial line at that point, while the normal force N

will act in the positive radial direction.

Relevant equations: We need only energy conservation and centripetal force combined with Newton’s
second law. First, the force balance. Along the hemisphere’s radial direction (̂r), the net force must result
in the centripetal force:



∑
Fr =

−mv2

R

We do not need the force balance along the angular (θ̂) direction. Additionally, we will need conservation
of energy to find the velocity at any point. Since only conservative forces are present,

Ki + Ui = Kf + Uf

Symbolic solution: We first apply conservation of mechanical energy to find the boy’s velocity when
he has slid down the hemisphere through an angle θ. We choose the ground level to be our zero for
gravitational potential energy. Between the boy’s starting point (i) and a later position θ (f),

Ki + Ui = Kf + Uf

0 + mgR =
1
2
mv2 + mgR cos θ

v2

2
= gR (1 − cos θ)

v2 = 2gR (1 − cos θ)

Since the centripetal force expression we need also involves v2, solving for v2 should be sufficient. Next,
we need to apply a radial force balance to find the normal force on the boy. When the normal force
vanishes, the boy will leave the sphere. Using our sketch, we see that the radial component of the boy’s
weight is mg cos θ. The only other radial force is the normal force:

∑
Fr =

−mv2

R
= N − mg cos θ

N = mg cos θ −
mv2

R
= mg cos θ − 2mg (1 − cos θ) = mg (3 cos θ − 2) = 0

=⇒ cos θ =
2
3

Thus, the boy leaves the hemisphere at θ= cos−1
(

2
3

)
≈ 48.2◦ His height above the ground at this point

will be

h = R cos θ =
2R

3

Numeric solution: Since we are not given a specific radius of the rock, this is as good as it gets.

Solution 13: Conservation of energy will allow us to find the velocity at the top of the loop, and we can
find the minimum velocity required to stay on the track by considering the forces at the top of the loop.



Comparing the two will give us an expression for h in terms of R. First, conservation of energy.

Let the ground level be our zero point for potential energy. Before the mass is released, it has only
potential energy based on its height h above the ground. At the top of the loop, it still has potential
energy due to its height 2R above the ground, but now also has linear kinetic energy due to the motion
of its center of mass at speed vcm and rotational kinetic energy due to its rotating at angular velocity ω.

mgh =
1
2
mv2

cm +
1
2
Iω2 + mg (2r) (19)

mg (h − 2r) =
1
2
m

(
v2

cm + Iω2
)

(20)

We can relate vcm and ω by noting that the horizontal distance the sphere covers in rolling through θ

radians is the arclength of the circle through the same angle, rθ, and the angle θ at constant angular
velocity is ωt. Since the horizontal distance covered is also vcmt, we have rωt=vcmt, or ω=vcm/r.

mg (h − 2r) =
1
2
m

(
v2

cm + I
v2

r2

)
(21)

2g (h − 2r) = v2

(
1 +

I

mr2

)
(22)

v2 =
2g (h − 2r)

1 + I/mr2
(23)

This is the actual speed the sphere will have at the top of the loop. We must compare this to the minimum
speed required by centripetal acceleration. At the top of the loop, the only two forces will be the sphere’s
weight mg and the normal force Fn, both pointing downward toward the center of the circle. These two
forces must equal the centripetal force required to stay on the track, which also acts downward toward
the center of the circle:

∑
F = mg + Fn =

mv2

R
(24)

Fn =
mv2

R
− mg (25)

The sphere will stay on the track so long as the normal force is positive, i.e., when

v2 > Rg (26)

The actual speed of the sphere must be larger than this. Using the speed we found, we can solve for h to
find the minimum requisite height.



v2 =
2g (h − 2r)

1 + I/mr2
> Rg (27)

2g (h − 2r) > Rg

(
1 +

I

mr2

)
(28)

h − 2R >
R

2

(
1 +

I

mr2

)
(29)

h > R

(
2 +

1
2

+
I

2mr2

)
(30)

Noting that I= 2
5mr2, I/2mr2 = 1

5 , so

h > R

(
2 +

1
2

+
1
5

)
=

27
10

R = 2.7R (31)


