Formula sheet

$$
\begin{aligned}
\mathrm{g} & =9.81 \mathrm{~m} / \mathrm{s}^{2} \\
\mathrm{R} & =8.314 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
\mathrm{~N}_{\mathrm{A}} & =6.022 \times 10^{23} \text { things } / \mathrm{mol} \\
\mathrm{k}_{\mathrm{B}} & =1.38065 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
\sigma & =5.670 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4} \\
0 & =\mathrm{ax}^{2}+\mathrm{b} \mathrm{x}^{2}+\mathrm{c} \Longrightarrow \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}
\end{aligned}
$$

fluids:

$$
\begin{aligned}
\mathrm{P} & =\mathrm{F} / A \\
\mathrm{P}(\mathrm{~h}) & =\mathrm{P}_{\text {above }}+\rho \mathrm{gh} \\
\rho & =M / \mathrm{V} \\
\frac{\mathrm{~F}_{1}}{\mathrm{~A}_{1}} & =\frac{\mathrm{F}_{2}}{A_{2}} \quad \mathrm{~F}_{1} x_{1}=\mathrm{F}_{2} \mathrm{x}_{2} \quad \text { hydraulics } \\
\mathrm{B} & =\text { buoyant force }=\text { weight of water displaced }
\end{aligned}
$$

thermal stuff:

$$
\begin{aligned}
\mathrm{T}(\mathrm{~K}) & =\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)+273.15^{\circ} \\
\mathrm{Q} & =\mathrm{mc} \Delta \mathrm{t} \quad \mathrm{c}=\text { specific heat } \quad \text { no phase chg } \\
\mathrm{Q} & = \pm \mathrm{mL} \quad \text { phase chg } \\
\mathrm{H}= & \frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\mathrm{kA} \frac{\mathrm{~T}_{\mathrm{h}}-\mathrm{T}_{\mathrm{c}}}{\mathrm{~L}} \quad \text { conduction } \\
& \mathrm{k}=\text { thermal cond. } \mathrm{H}=\text { rate of heat flow } \\
\mathrm{H} & ={\text { Ae } \sigma T^{4} \quad \text { radiation } \quad \sigma=5.670 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}}^{\text {a }} \quad
\end{aligned}
$$

misc earlier:

$$
\begin{aligned}
& \Sigma \overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{F}}_{\mathrm{net}}=\mathrm{m} \overrightarrow{\mathrm{a}} \quad \Sigma \mathrm{~F}_{\mathrm{x}}=\mathrm{ma}_{x} \quad \Sigma \mathrm{~F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}} \\
& \overrightarrow{\mathrm{~F}}_{12}=-\overrightarrow{\mathrm{F}}_{21} \quad \Delta \mathrm{~K}=\mathrm{W} \quad \mathrm{P}=\frac{\Delta W}{\Delta \mathrm{t}}
\end{aligned}
$$

SHM:

$$
\begin{aligned}
F & =m a=-k x \\
a & =-\omega^{2} x \\
T & =\frac{1}{f}=\frac{2 \pi r}{v} \quad \omega=\frac{2 \pi}{T}=2 \pi f \\
x(t) & =A \cos \omega t \\
v(t) & =-\omega A \sin \omega t \\
a(t) & =-\omega^{2} A \cos \omega t \\
v(x) & = \pm \omega \sqrt{A^{2}-x^{2}} \\
\omega & =\sqrt{k / m}=2 \pi f \quad \text { springs } \\
\omega & =\sqrt{g / L} \quad \text { pendulum }
\end{aligned}
$$

waves:

$$
\begin{aligned}
\mathrm{y} & =A \sin (2 \pi / \lambda-\omega t) \quad \omega=2 \pi f \\
v & =\frac{\lambda}{\mathrm{T}}=\lambda \mathrm{f} \quad \text { wave speed } \\
v & =\sqrt{\mathrm{T} / \mu} \quad \mu=M_{\text {string }} / L_{\text {string }} \quad \mathrm{T}=\text { tension } \quad \text { strings } \\
\mathrm{f}_{\mathrm{n}} & =\frac{\mathrm{n} v}{\lambda}=\frac{\mathrm{n} v}{2 \mathrm{~L}} \quad \lambda_{\mathrm{n}}=\frac{2 \mathrm{~L}}{\mathrm{n}} \quad \mathrm{n}=1,2,3 \ldots \quad \text { strings \& open-open pipe } \\
\mathrm{f}_{\mathrm{n}} & =\frac{\mathrm{n} v}{\lambda}=\frac{\mathrm{n} v}{4 \mathrm{~L}} \quad \lambda_{\mathrm{n}}=\frac{4 \mathrm{~L}}{\mathrm{n}} \quad \mathrm{n}=1,3,5 \ldots \quad \text { closed-open pipe }
\end{aligned}
$$

