
PH 102 Exam I Solution

1. Two isolated identical conducting spheres have a charge of q and −3q, respectively. They are connected
by a conducting wire, and after equilibrium is reached, the wire is removed (such that both spheres are again
isolated). What is the charge on each sphere?

© q, −3q⊗
−q, −q

© 0, −2q

© 2q, −2q

Percent answering correctly: 54.
Source: A variation on homework 2, problem 3.
Average score on HW2, #3: 78.1

The thing to remember is that any charge on a conductor spreads out evenly over its surface. When we
have the conducting spheres isolated, they have q and −3q respectively, and this charge is spread evenly over
each sphere. When we connect them with a conducting wire, suddenly charges are free to move from one
conductor, across the wire, into the other conductor. Its just the same as if we had one big conductor, and
all the total net charge of the two conductors combined will spread out evenly over both spheres and the wire.

If the charge from each sphere is allowed to spread out evenly over both spheres, then the −3q and +q will
both be spread out evenly everywhere. The +q will cancel part of the −3q, leaving a total net charge of −2q

spread over evenly over both spheres, or −q on each sphere. Once we disconnect the two spheres again, the
charge remains equally distributed between the two.

+10-6 C

+10-6 C

1m

1m

-2x10-6 C

2. Two charges of +10−6 C are separated by 1 m along the vertical
axis. What is the net horizontal force on a charge of −2×10−6 C
placed one meter to the right of the lower charge?

© 0.018 N
© −0.031 N⊗

−0.024 N
© −0.051 N

Percent answering correctly: 33.
Similar to: homework 2, problem 5.
Average score on HW2, #5: 53.1

We are only interested in the x component of the force, which makes things easier. First, we are trying to
find the force on a negative charge due to two positive charges. Both positive charges are to the left of the
negative charge, and both forces will be attractive. We will adopt the usual convention that the positive hori-
zontal direction is to the right and called +x, and the negative horizontal direction is to the left and called −x.

First, we will find the force on the negative charge due to the positive charge in the lower left, which we will
call “1” to keep things straight. We will call the negative charge “2.” This is easy, since the force is purely
in the −x direction:
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So far so good, but now we have to include the force from the upper left-hand positive charge, which we’ll
call “3.” We calculate the force in exactly the same way, with two little difference: the separation distance
is slightly larger, and now the force has both a horizontal and vertical component. First, let’s calculate the
magnitude of the net force, we’ll find the horizontal component after that.

Plane geometry tells us that the separation between charges 3 and 2 has to be
√

2 ·1 m, or
√

2 m – connecting
the charges with straight lines forms a 1-1-

√
2 right triangle, with 45◦ angles.
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So the net force from the upper left charge is just half as much, since it is a factor
√

2 farther away. We only
want the horizontal component though! Since we are dealing with a 45-45-90 triangle here, the horizontal
component is just the net force times cos 45◦:

Fx,3 = Fnet,3 cos 45◦

= −9× 10−3 ·
√

2
2

N = −9× 10−3 · 0.707 N

≈ −6.4× 10−3 N

The total horizontal force is just the sum of the horizontal forces from the two positive charges:

Fx,total = Fx,1 + Fx,3

=
(
−18× 10−3

)
+

(
−6.4× 10−3

)
N

= −24.4× 10−3 N = −0.0244 N

The multiple choice answers have only 2 significant digits, but clearly the answer is −0.024 N.



3. Which of the following is true for the electric force and not true for the gravitational force?⊗
The force can be both attractive and repulsive between two particles.

© The force obeys the superposition principle.

© The force between two particles is inversely proportional to their separation distance squared.

© The force is conservative.

Percent answering correctly: 98%
Similar to: Quiz 2, #4.
Percent answering correctly on Quiz 2, #4: 86%

I think this one should be clear ... but just in case: both gravity and the electric force obey superposition,
both are inverse square laws, and both are conservative. The gravitational force between two bodies cannot
be repulsive, however, it is always attractive.

(a) (b)

(c) (d)

4. Which set of electric field lines could represent the
electric field near two charges of the same sign, but
different magnitudes?

© a⊗
b

© c
© d

Percent answering correctly: 88%
Similar to: figures taken directly from notes.

This one is probably easiest to do by elimination and figure out which ones are clearly not correct.

If the charges are of the opposite sign, then the field lines would have to run from one charge directly to the
other. Field lines start on a positive charge and end on a negative one, and there should be many lines which
run from one charge to the other. Since opposite charges attract, the field between them is extremely strong,
the lines should be densest right between the charges. This is the case in (a) and (b), so they are not the
right ones.

By the same token, for charges of the same sign, the force is repulsive, and the electric field midway between
them cancels. The field lines should “push away” from each other, and no field line from a given charge
should reach the other charge – field lines cannot start and end on the same sign charge. This means that
only (b) and (d) could possibly correspond to two charges of the same sign.

Next, the field lines leaving or entering a charge has to be proportional to the magnitude of the charge. In
(d) there are the same number of lines entering and leaving each charge, so the charges are of the same
magnitude. One can also see this from the fact that the lines are symmetric about a vertical line drawn
midway between the charges. In (b) there are clearly many more lines near the left-most charge.



Or, right off the bat, you could notice that only (a) and (b) are asymmetric, and only (b) and (d) look like
two like charges. No sense in over-thinking this one.

5. A single point charge +q is placed exactly at the center of a hollow conducting sphere of radius R. Before
placing the point charge, the conducting sphere had zero net charge. What is the magnitude of the electric
field outside the conducting sphere at a distance r from the center of the conducting sphere? I.e., the electric
field for r>R.

© |~E|=−keq
r2

© |~E|= keq
(R+r)2

© |~E|= keq
R2⊗

|~E|= keq
r2

Percent answering correctly: 85%
Similar to: Homework 2, #10.
Average score on HW2, #10: 89.6%

The easiest way out of this one is Gauss’ law. First, Gauss’ law told us that any spherically symmetric charge
distribution behaves as a point charge. Second, Gauss’ law tells us that the electric flux out of some surface
depends only on the enclosed charge. If we draw a spherical surface of radius r and area A around the shell
and point charge, centered on the center of the conducting sphere, Gauss’ law gives:

ΦE =
qencl

ε0
= 4πkeqencl

EA = 4πkeqencl

E =
4πkeqencl

A

The surface area of a sphere is A=4πr2. In this case, the enclosed charge is just q, since the hollow conducting
sphere itself has no charge of its own. Gauss’ law only cares about the total net charge inside the surface of
interest. This gives us:

E =
4πkeq

4πr2
= �4�πkeq

�4�πr2
=

keq

r2

There we have it, it is just the field of a point charge q at a distance r.

If we want to get formal, we should point out that the point charge q induces a negative charge −q on the
inner surface of the hollow conducting sphere. Since the sphere is overall neutral, the outer surface must
therefore have a net positive charge +q on it. This makes no difference in the result – the total enclosed
charge, for radii larger than that of the hollow conducting sphere (r>R), is still just q. If we start with an
uncharged conducting sphere, and keep it physically isolated, any induced charges have to cancel each other
over all.

If this is still a bit confusing, go back and think about induction charging again. A charged rod was used to
induce a positive charge on one side of a conductor, and a negative charge on the other. Overall, the ‘induced
charge’ was just a rearrangement of existing charges, so if the conductor started out neutral, no amount of
‘inducing’ will change that. We only ended up with a net charge on the conductor when we used a ground



connection to ‘drain away’ some of the induced charges. Or, if you like, when we used a charged rod to repel
some of the conductor’s charges through the ground connection, leaving it with a net imbalance.

q1

q2 q1

2.0 m

x

r23

q3

2.0 m - r23

+ +-
E23 E13

6. Three point charges lie along the x axis, as shown
at left. A positive charge q1 = 15 µC is at x = 2 m,
and a positive charge of q2 = 6µC is at the origin.
Where must a negative charge q3 be placed on the x-
axis between the two positive charges such that
the resulting electric force on it is zero?⊗

x=+0.77 m
© x=−3.44 m
© x=+1.34 m
© x=−1.44 m

Percent answering correctly: 94%
Similar to: Homework 2, #7; practice exam.
Average score on HW2, #7: 81.2%

We have one negative charge (q3) sitting between two positive charges (q2 and q1). The force from each
positive charge will act in the opposite direction, and we want to find the position r23 such that both forces
are equal in magnitude. All charges are on the x axis, so the problem is one-dimensional and does not require
vectors.

Let F32 be the force on q3 due to q2, and F31 be the force on q3 due to q1, and we will take the positive x

direction to be to the right. Since both forces are repulsive, F32 acts in the −x direction and must therefore
be negative, while F31 acts in the +x direction and is positive. We are not told about any other forces acting,
so our force balance is this:

−F32 + F31 = 0 =⇒ F32 = F31

It didn’t really matter which one we called negative and which one we called positive, just that they have
different signs. The separation between q2 and q3 is r23, and the separation between q1 and q3 is then 2−r23.
Now we just need to down the electric forces. We will keep everything perfectly general, and plug in actual
numbers at the end ... this is always safer.

F32 = F31
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=
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23

=
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Note how this doesn’t depend at all on the actual magnitude or sign of the charge in the middle! From here,
there are two ways to proceed. We could cross-multiply, use the quadratic formula, and that would be that.
On the other hand, since we know that q3 is supposed to be between the other two charges, then r23 must



be positive, and less than 2. That means that we can just take the square root of both sides of the equation
above without problem, since neither side would be negative afterward.i Using this approach first:

q2

r2
23
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q1

(2− r23)
2

=⇒
√

q2

r23
=

√
q1

2− r23

Now we can cross-multiply, and solve the resulting linear equation:

√
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√
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2
√

q2 −
√

q2r23 =
√

q1r23

2
√

q2 = (
√

q2 +
√

q1) r23

r23 =
2
√

q2√
q2 +

√
q1

Plugging in the numbers we were given (and noting that all the units cancel):

r23 =
2
√

q2√
q2 +

√
q1

=
2
√

6 µC√
6 µC +

√
15 µC

=
2
√

6√
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√
15

=
2
√

2√
2 +

√
5
≈ 0.77 m

For that very last step, we factored out
√

3 from the top and the bottom. An unnecessary step if you are
using a calculator anyway, but we prefer to stay in practice.

The more general solution is to go back before we took the square root of both sides of the equation and
solve it completely:

q2

r2
23

=
q1

(2− r23)
2

q2 (2− r23)
2 = q1r

2
23

q2

(
4− 4r23 + r2

23

)
= q1r

2
23

(q2 − q1) r2
23 − 4q2r23 + 4q2 = 0

Now we just have to solve the quadratic ...

r23 =
4q2 ±

√
(−4q2)

2 − 4 (q2 − q1) · 4q2

2 (q1 − q2)
m

=
4 · 6 µC±

√
(−4 · 6 µC)2 − 4 (6µC− 15 µC) · 4 · 6 µC

2 (6µC− 15 µC)
m

We can cancel all of the µC ...

iThis would not work if we wanted the point to the left of q2.



r23 =
24±

√
242 − 4(−9)(4)(6)

2(−9)
m

=
24±

√
242 + 36(24)
−18

m

=
−24∓

√
1440

18
m

= (0.775,−3.44) m

So there is one solution where q3 is right between the two positive charges, at r23 =0.77 m, and one solution
where q3 is to the left of q2 by 3.44 m. We were asked to find the point between the two charges where the
force is zero, so we discard the negative solution.

7. A proton at rest is accelerated parallel to a uniform electric field of magnitude 8.36 V/m over a distance
of 1.10 m. If the electric force is the only one acting on the proton, what is its velocity in km/s after it has
been accelerated over 1.10 m? The proton mass is given at the end of the exam.

© 30.0 km/s

© 1800 km/s⊗
42.0 km/s

© 21.0 km/s

Percent answering correctly: 75%
Similar to: Homework 3, #2.
Average score on HW3, #2: 96.5%

Of course, 42 is the answer to life, the universe, and everything.ii

The proton starts from rest, and hence has no kinetic energy. It is accelerated by an electric field, and thus
gains kinetic energy. The kinetic energy gained must come from the electric field. A charge q moving parallel
to a constant electric field E over a distance ∆x changes its potential energy by:

∆PE = qE∆x

The charge on a proton is just +e, and E and ∆x are given. The change in kinetic energy is just the final
kinetic energy of the proton, since it started from rest. The gain in kinetic energy must equal the change in
potential energy:

iiFrom Hitchhiker’s Guide to the Galaxy ... there are often nerd jokes on physics exams.



∆PE = PEinitial − PEfinal = −∆KE = − (KEinitial −KEfinal)

eE∆x− 0 = −
(

0− 1
2
mpv

2
final

)
eE∆x =

1
2
mpv

2
final

=⇒ v2
final =

2eE∆x

mp

vfinal =

√
2eE∆x

mp

Plugging in what we are given ...

vfinal =

√
2 (1.6× 10−19 C) (8.36 V/m) (1.10 m)

1.67× 10−27 kg

≈ 42000
√

C ·V/kg

= 42000
√

J/kg

= 42000

√
kg ·m2

s2 · kg

= 42 km/s

Making absolutely sure that the units work out, one should note that Coulombs times Volts is Joules, or
kg·m2/s2. If you always use proper SI units, it will work out though, and you won’t have to remember lots
of unit conversions.

8. It takes 3×106 J of energy to fully recharge a 9V battery. How many electrons must be moved across
the 9 V potential difference to fully recharge the battery?

© 1×1025 electrons⊗
2×1024 electrons

© 4×1012 electrons

© 8×1013 electrons

Percent answering correctly: 73%
Similar to: Homework 3, #3.
Average score on HW3, #3: 90.7%

The energy required to charge the battery is just the amount that the potential energy of all the charges
changes by. Each electron is moved through 9 V, which means each electron changes its potential energy by
−e ·9 V, where e is the charge on one electron. The total potential energy is the potential energy per electron
times the number of electrons, n. Basically, this is conservation of energy: the total energy into the battery
has to equal the amount of energy to move one electron across 9V times the number of electrons.



∆Ein + ∆PE = 0

3.6× 106 J + n(−e · 9 V) = 0

ne · 9 V = 3.6× 106 J

n =
3.6× 106 J

e · 9 V

=
3.6× 106 J

(1.6× 10−19 C) (9V)

=
3.6× 106

(1.6× 10−19) (9)
≈ 2× 1024

Again, we make use of the fact that Coulombs times Volts is Joules. Again, if you just use proper SI units
throughout, the units will work out on their own.

q1

q1 q3

x

1.0 m

q2

2.0 m

+ +-

9. Three charges are positioned along the x axis, as
shown at left. All three charges have the same mag-
nitude of charge, |q1|= |q2|= |q3|= 10−9 C (note that
q2 is negative though). What is the total potential
energy of this system of charges? We define potential
energy zero to be all charges infinitely far apart.

© 2.3×10−9 J
© −6.7×10−10 J
© 1.8×10−9 J⊗

−1.0×10−8 J

Percent answering correctly: 40%
Similar to: Homework 3, #4; examples in notes.
Average score on HW3, #4: 72.1%

The potential energy of a system of charges can be found by superposition, by adding together the potential
energy of all unique pairs of charges. In this case, we have three distinct pairs of charges – (1,2), (1,3), and
(2,3). The potential energy of the pair (1,2) is the electric potential that charge 2 feels due to charge 1, times
charge 2:

PE(1,2) = keq2
q1

r2
12

= ke
q1q2

r2
12

Here r12 is the separation between charges 1 and 2, or just 1.0 m in this case. We do the same for the other
two pairs of charges, and add all three energies together (being very careful with signs):



PEtotal = PE(1,2) + PE(1,3) + PE(2,3)

= ke
q1q2

r12
+ ke

q1q3

r13
+ ke

q2q3

r23

= ke

(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
=

(
9× 109 N ·m2

C2

) [(
−10−9 C

) (
10−9 C

)
1 m

+

(
10−9 C

) (
10−9 C

)
3 m

+

(
−10−9 C

) (
10−9 C

)
2 m

]

=
(

9× 109 N ·m2

C2

) (
10−18 C2

m

) [
−1 +

1
3
− 1

2

]
=

(
9× 10−9 N ·m

) [
−7
6

]
≈ −1.1× 10−8 J

Here we used the fact that a 1 J≡1 N ·m

10. A parallel plate capacitor is shrunk by a factor of two in every dimension – the separation between the
plates, as well as the plates’ length and width are all two times smaller. If the original capacitance is C0,
what is the capacitance after all dimensions are shrunk?

© 2C0⊗
1
2C0

© 4C0

© 1
4C0

Percent answering correctly: 70.8%
Similar to: n/a.

The capacitance of a parallel plate capacitor whose plates have an area A and a separation d is C = ε0A
d . If

we imagine the plates to be rectangular of length l and width w, the area A is A= lw. Let the capacitance of
the capacitor be C0 = ε0lw

d before dimensions are shrunk. Once we reduce the length, width, and separation
by two times, we have:

C =
ε0

(
1
2 l

) (
1
2w

)(
1
2d

) =
ε0

1
2 lw

d
=

1
2
C0

It is easy to prove that if we chose, e.g., circular plates, the answer would be the same – for any reasonable
shape, the area goes down as the square of the dimensional decrease, while the separation just goes down as
the factor itself.



11. The figure at right shows the equipotential
lines for two different configurations of two charges
(the charges are the solid grey circles). Which of the
following is true?

© The charges in (a) are of the same sign and mag-
nitude, the charges in (b) are of the same sign
and different magnitude.⊗
The charges in (a) are of opposite sign and of
the same magnitude, the charges in (b) are of
the opposite sign and different magnitude.

© The charges in (a) are of the same sign and mag-
nitude, the charges in (b) are of the opposite sign
and the same magnitude.

© The charges in (a) are of the opposite sign and
different magnitude, the charges in (b) are of the
same sign and different magnitude.

(a)

(b)

Percent answering correctly: 66.7%
Similar to: Examples in notes.

This is probably another question most easily answered by elimination. In (a), the charges are clearly of
the same magnitude, since the graph is perfectly symmetric, while in (b) the charges must be of different
magnitude to explain the asymmetric graph. Therefore, the third answer cannot be correct.

In (a), the potential is constant along a vertical line separating the two charges (since there is a perfectly
vertical line running halfway between the charges). This would only be true if they are of opposite signs. If
the charges were of the same sign, there would be equipotential lines running horizontally from charge to
charge. Similarly, the charges must also be of opposite sign in (b). This also rules out the first answer.

Based on similarity of (a) and (b), it must be that if (a) has charges of opposite magnitude, then so does
(b). This also means that the fourth answer is out, which leaves only the second answer as a possibility. If
you are still not clear on why the correct answer must be the second one, you may want to look carefully at
the examples of equipotential lines in different situations presented in the textbook and course notes.



6µF

14µF3µF 7µF

20µF

ΔV
- +

12. What is the equivalent capacitance for the five capacitors at left
(approximately)?⊗

6.0 µF
© 29 µF
© 24 µF
© 1.7 µF

Percent answering correctly: 85.4%
Similar to: Homework 3, #7; practice exam; notes.
Average score on HW3, #7: 89.7%

First of all, we should notice that the 7µF capacitor has nothing connected to its right wire, so it can’t
possibly be doing anything in this circuit. We can safely ignore it. Next, the 3µF and 14µF capacitors are
simply in series, so we can readily find their equivalent capacitor:

Ceff,3&14 =
(3 µF)(14µF)

(3 µF) + (14µF)
≈ (2.65 µF)

This 2.65 µF effective capacitor is purely in parallel with the 6 µF capacitor. We can therefore just add the
two capacitances together and come up with an equivalent capacitance for the 3, 14, and 6µF capacitors:

Ceff,3,14,&6 = Ceff,3&14 + 6 µF = 8.65 µF

Finally, that equivalent capacitance is just in series with the 20µF capacitor, so the overall equivalent capac-
itance is readily found:

Ceff, total =
Ceff,3,14,&620 µF

Ceff,3,14,&6 + 20 µF
≈ 6 µF

If this is still giving you trouble, try re-working the example in Sect. 4.6 of the course notes.

13. If you double the current through a resistor ...⊗
The potential difference doubles.

© The potential difference is half as much.

© The potential difference is the same.

© None of the above.

Percent answering correctly: 81.3%
Similar to: Quiz 4, #3.
Average score on Quiz 4, #3: 67%

This is a conceptual question, but one that is most easily answered with a bit of algebra. Recall the relation
between potential difference, current, and resistance (Ohm’s law):



R =
∆V

I

If we double the current I to 2I, and the resistance remains the same, it is easy to see that the ∆V must also
double:

R =
(?)∆V

2I
=⇒ (?) must equal 2

14. If the number of carriers in a conductor n decreases by 100 times, but the carriers’ drift velocity vd

increases by 5 times, by how much does its resistance change?⊗
It increases by 20 times.

© It decreases by 500 times.

© It decreases by 20 times.

© It increases by 500 times.

Percent answering correctly: 43.8%
Similar to: n/a.

Just like the last question, this is easily answered with some algebra. First, we recall the relation between
current and drift velocity:

I = nqAvd

What we are really after is the resistance, however, which we can find with Ohm’s law:

R =
∆V

I
=

∆V

nqAvd
∝ 1

nvd

So the resistance is inversely proportional to the carrier density and drift velocity. Let’s say the initial
resistance is R0, and the resistance after changing n and vd is just R. If we decrease the number of carriers
by 100 times, the resistance goes up by 100 times. If we increase the drift velocity by 5 times, the resistance
goes down by 5 times.

Ro ∝ 1
nvd

R ∝ 1(
n

100

)
(5vd)

=
1

nvd

20

=
20
nvd

=⇒ R = 20Ro

Even though we don’t know what the actual resistance R0 is, we can say that R is twenty times more. The
one tricky step here is to write down the proper relationship between resistance and the given quantities, not
just the relationship between current and the given quantities.
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15. Rank the relative currents in figures a, b, and c from lowest
to highest. Assume positive current corresponds to positive charges
flowing to the right, and that all charges move at the same velocity.

© a < b < c⊗
b < a < c

© c < b = a

© b < c < a

Percent answering correctly: 85.4%
Similar to: Quiz 4, #4, last year’s quizzes, notes.
Average score on Quiz 4, #4: 71%

There are really only three rules to keep in mind: (1) a negative charge moving in one direction is the same
thing as a positive charge moving in the opposite direction, (2) a positive and negative charge moving in the
same direction cancel out, and (3) two charges of the same sign moving in the opposite direction cancel out.
With that in mind ...

In (a), we have two positive charges moving to the right, for a contribution of +2. The two negative charges
are moving in opposite directions, and therefore cancel each other, so the relative current is just +2. Equiv-
alently, one could say that the negative charge moving to the right cancels one of the positive charges out,
which leaves only one positive charge moving to the right, and a negative charge moving to the left. These
both give a +1 contribution, for again a total of +2.

In (b), both positive charges are next to a negative charge moving in the same direction, so everything cancels
out. The net current is zero. Put another way, the two positive charges are moving to the left, and give a −1
contribution each. The two negative charges are moving to the left, which would be the same as two positive
charges moving to the right. Each of those gives a +1 contribution, leading to zero overall.

In (c), the two negative charges moving to the left can be thought of as two positive charges moving to the
right. That means we have effectively a total of four positive charges moving to the right, for a net of +4.
Overall, we have c=4, b=0, and a=2, so the order must be b<a<c.

16. Rank the currents at points 1, 2, 3, 4, 5, and 6 from highest to
lowest. The two resistors are identical.

© 5, 1, 3, 2, 4, 6
© 5, 3, 1, 4, 2, 6
© 5=6, 3=4, 1=2⊗

5=6, 1=2=3=4
© 1=2=3=4=5=6

1 2

3 4

5 6

Percent answering correctly: 52.1%
Similar to: n/a



We only need to remember three things to figure this one out: (1) when a current encounters a junction, it
splits up to take each path in amounts inversely proportional to the resistance of the path, (2) the current
through a single loop of a circuit is the same everywhere, and (3) related to the last point, charge must be
conserved, such that the same number of charges entering a wire have to leave it.

First, think about a current leaving the battery at point 5 and traveling clockwise around the circuit. The
current reaches the junction leading to points 1 and 3, and must split up to take both paths. Since both paths
have the same resistance (the resistors are equivalent, remember), the current will spit up equally between
the two. Therefore, the current is the same at points 1 and 3.

The current in the path from 1-2 or 3-4 is in just a single wire, and the current can’t change. Conservation of
charge requires that every charge entering point 1 leaves through point 2 (and the same for points 3 and 4).
Therefore, the currents at points 1 and 2 are equal, and so are those at points 3 and 4. Putting everything
so far together, the current is the same at 1, 2, 3, and 4.

What about the currents at points 5 and 6? Conservation of charge again requires that the charges leaving
the battery at 5 must eventually come back through point 6 – no charge can be gained or lost when going
around the loop. Therefore, the currents at points 5 and 6 must be the same. Further, since the whole
current leaving the battery at point 5 splits up into two separate (and equal) currents at points 1 and 3, the
current at point 5 must be larger than the current at points 1 and 3. Therefore, overall the ranking from
highest to lowest must be 5=6, 1=2=3=4.

17. A flashlight uses a 1.5 V battery with a negligible internal resistance to light a bulb rated for a maximum
power of 1 W. What is the maximum current through the bulb? Assume that the battery has more than
enough capacity to drive this current, i.e., it is ideal.⊗

0.67 A

© 1.50 A

© 2.25 A

© 0.50 A

Percent answering correctly: 79.2%
Similar to: example exam

Basically, all we need to remember is the relationship between power P, current I, and voltage ∆V :

P = I∆V

1 W = I (1.5 V)

=⇒ I =
1 W
1.5 V

≈ 0.67 A



18. A 9 V battery with a 1 Ω internal resistance is connected to a 10 Ω resistor. What is the actual voltage
across the 10 Ω resistor? Assume that the battery behaves as an ideal voltage source of 9V in series with its
internal resistance.

© 9.9 V⊗
8.2 V

© 0.9 V

© 4.5 V

Percent answering correctly: 79.2%
Similar to: in-class examples

If we treat the battery as a perfect voltage source in series with its internal resistance, then the whole circuit
under consideration is a perfect source of 9 V, a 1Ω resistor, and a 10 Ω resistor all in series. The fact
that they are all in series means they all have the same current. The internal resistance and the 10Ω load
resistance in series are equivalent to a single 11 Ω resistor, which means that effectively a perfect 9 V battery
is connected to a single 11 Ω resistor. In that case, we can find the voltage across the 10 Ω resistor by first
finding the current in the single loop of the circuit:

I =
∆V

Req
=

9 V
11 Ω

≈ 0.818 A

The voltage across the 10 Ω resistor is then just given by Ohm’s law:

∆V10 Ω = I(10Ω) ≈ 8.18 V

2RRI

a c
b

19. A current I flows through two resistors in series of values R
and 2R. The wire connecting the two resistors is connected to ground
at point b. Assume that these resistors are part of a larger complete
circuit, such that the current I is constant in magnitude and direction.
What is the electric potential relative to ground at points a and c, Va

and Vc, respectively? Hint: what is the potential of a ground point?

© Va =−IR, Vc =−2IR

© Va =0, Vc =−3IR

© Va =+IR, Vc =+2IR⊗
Va =+IR, Vc =−2IR

Percent answering correctly: 68.8%
Similar to: in-class examples, course notes

What we have to remember here is that grounding a point in circuit defines its potential to be zero, so Vb =0.
First, consider the resistor R. If there is a current I flowing through it from left to right, we know that the
potential difference between points a and b must be ∆Vba =Vb−Va =−IR. That is, the presence of a current I

means that there is a drop of potential for charges going across the resistor. If we know that the potential at b
is zero due to the ground point, Vb =0, then in order to satisfy ∆Vba =Vb−Va =−IR, we have to have Va =+IR.



Similar reasoning works to find the potential at point c. If there is a current I flowing through a resis-
tor 2R, then the potential must decrease by 2IR when moving across the resistor. Thus, we must have
∆Vcb =Vc−Vb =−2IR. Again, since Vb =0 due to the ground point, we must have Vc =−2IR.

Remember, when we talk about the potential difference across resistors and batteries in circuits, we are
really talking about the difference in electric potential between two points. We can only talk about the
actual absolute electric potential when we have defined some point of reference. A ground point effectively
defines some point in the circuit to have V = 0, and once we have chosen a ground point then we can
meaningfully talk about the absolute potential at a certain point in a circuit. Without the ground point,
only the relative potentials of points a, b, and c would be known, not the absolute potentials.

1Ω

1mF

S

6 V
1Ω

2Ω

20. The switch S is suddenly closed in the circuit at left. The capacitor
is uncharged before the switch is closed. After a very long time, what
will be the steady-state current in the 2Ω resistor? Hint: what is the
capacitor doing after a long time?

© 4 A
© 3 A⊗

2 A
© 1 A

Percent answering correctly: 81.3%
Similar to: practice exam.

After a long enough time, the capacitor will be completely charged. A current only flows in a capacitor while
it is charging or discharging. Even during charging and discharging, the current steadily decreases with time
until the capacitor is completely full or empty, respectively. Since the problem says a “very long time” and
“steady-state current,” we are to assume that the capacitor is no longer charging – if it were, the current
would not be steady, but decreasing, and after a long enough time, the capacitor should be fully charged
anyway.

If the capacitor is fully charged and no current flows through it, then there is also no current through the 1Ω
resistor in series with it. If there is no current through the resistor either, then there is no voltage drop across
it, and that whole branch of the circuit actually does nothing. Remember, if no current flows through a path
in a circuit, it isn’t doing anything except possibly storing energy. Portions of a circuit with no current can
almost always be neglected when analyzing the rest of the circuit.

If the 1mF-1Ω branch of the circuit can be neglected, then the only things left are a single 6V battery, a 1Ω
resistor, and a 2 Ω resistor, all in series. Finding the current now is a simple matter, since the 1Ω and 2Ω
resistors in series just make an equivalent resistance of 3Ω. Effectively, we have a single battery and resistor,
for which we can easily calculate the current:

I =
∆V

Req
=

6 V
3 Ω

= 2A



21. Refer to the figures at right. What happens to the read-
ing on the ammeter when the switch S is opened? Assume
the wires and switch are perfect, and have zero resistance.

© The reading goes up.⊗
The reading goes down.

© The reading does not change.
© More information is needed.

R1

S

R2

A

switch closed

R1

S

R2

A

switch open

ΔV ΔV

Percent answering correctly: 56.3%
Similar to: practice exam

When the switch is closed, we have R2 in parallel with a switch. Switches (ideally) have zero resistance, so
all the current goes through the switch and none goes through R2 – if we calculate the equivalent resistance
between R2 in parallel with zero, the equivalent resistance is still zero. Thus, the battery is connected
effectively only to R1, and there is a current of:

Iclosed =
∆V

R1

When the switch is opened, resistors R1 and R2 are now in series, so that the total circuit resistance is larger
than when the switch was closed. As a result, the current decreases, since the applied voltage is the same in
both cases. The total current is now:

Iopen =
∆V

R1 + R2
<

∆V

R1
= Iclosed

No matter what R1 and R2 are, since resistances are always positive, the current has to be smaller when the
switch is open.

22. The basic rules we have used for analyzing circuits are: (1) the sum of voltage sources and drops around
a closed circuit loop is zero, and (2) the amount of current entering a junction has to equal the amount of
current leaving the junction. These rules result from two basic physical laws. What are they?

© Conservation of Energy and Charge Quantization

© Conservation of Energy and Conservation of Momentum⊗
Conservation of Charge and Conservation of Energy

© Coulomb’s law and Conservation of Charge

Percent answering correctly: 87.5%
Similar to: in-class examples, course notes, practice exam,

Conservation of energy tells us that the sum of voltage drops and sources around any closed loop has to be
zero. Voltage is electrical potential energy per unit charge, and since the electric force is conservative, the
change in electrical potential energy has to be zero around any closed path, not just in a circuit. Conservation
of charge tells us that the current entering an element has to be the same as the current leaving it, and more
generally that the sum of currents entering a junction must be the sum of the currents leaving it.



Conservation of momentum played no role in the two rules stated. It did help us derive Ohm’s law in a simple
way, but it does not lead us to the rules above. Coulomb’s law does not directly lead us to rule (1) or (2) – it
deals with electric force, whereas rule (1) deals with electric potential. At the very least, we need Coulomb’s
law plus a bit of calculus to get rule (1), and it will not get us rule number (2). Finally, charge quantization
does not imply conservation of charge. Charge quantization just says that charge comes in discrete units of
e, it does not tell us that charges cannot be created or destroyed.

23. Refer to the figure at right. Which circuit properly
measures the current and voltage for the resistor? You may
assume that the voltmeters and ammeters are perfect, and
the battery is ideal.⊗

circuit (a)
© circuit (b)
© circuit (c)
© circuit (d)

V

A

V

A

V

A

A

V

(a) (b)

(c) (d)

Percent answering correctly: 79.2%
Similar to: in-class examples, course notes

Remember: voltmeters have enormous internal resistances, and must be in parallel with what they are mea-
suring. Ammeters have tiny internal resistances, and must be in series with what they are measuring. Based
on this alone, (a) is the only correct diagram.

Circuit (b) is wrong because the ammeter is connected in parallel with the resistor. The ammeter’s resistance
is sufficiently low (zero, ideally) that it will ‘steal’ all of the current from the resistor instead of measuring it.
The same effect could be had by just connecting a short-cut wire across the resistor – the ammeter effectively
takes it out of the circuit by providing a far lower resistance path, such that little current will actually go
through the resistor. The fact that a low equivalent resistance is connected to the battery means a large
current will flow, quickly draining the battery. The voltmeter is connected correctly, but in this case it will
basically only measure the voltage drop across the ammeter itself.

Circuit (c) is wrong because the ammeter is in series and the voltmeter is in parallel. The enormous resistance
of the voltmeter (infinite, ideally) means that almost all of the battery’s voltage will be dropped across the
voltmeter itself, and almost none will be left for the ammeter and resistor. Since the ammeter effectively
short-circuits the resistor anyway, this circuit will measure neither I nor ∆V correctly.

Circuit (d) is wrong because again the voltmeter is in series. The ammeter is correct, but the high resistance
of the voltmeter will prevent all but the most miniscule currents from flowing anyway, so there will be nothing
to measure!



24. A potential difference of 11 V is found to produce a current of 0.45 A in a 3.8 m length of wire with a
uniform radius of 3.8mm. What is the resistivity of the wire?

© 200 Ω ·m
© 2.9 Ω ·m
© 2.0× 106 Ω ·m⊗

2.9× 10−4 Ω ·m

Percent answering correctly: 83.3%
Similar to: HW 4, #5; course notes
Average score on HW 4, #5: 95.2

We first need to know the relation between resistivity and resistance, which includes the cross-sectional area
of the wire A and its length l:

R =
%l

A
or % =

RA

l

And then we add in the relation between current, voltage, and resistance, viz. R=∆V/I.

% =
RA

l
=

(
∆V
I

)
A

l
=

∆V ·A
I · l

The wire is said to have a uniform radius, which can only be true if its cross section is circular. The area of
the circular cross section is then just A=πr2. Making sure we keep track of the units, we just plug everything
in and run the numbers:

% =
∆V ·A
I · l

=
11 V · π

(
3.8× 10−3 m

)2

0.45 A · 3.8 m
= 2.9× 10−4 V ·m

A
= 2.9× 10−4 Ω ·m

I

100 Ω

335 Ω

58 Ω

75 Ω

25. What is the equivalent resistance of the arrangement of resistors
at left? You do not need to include the current source in your analysis⊗

42 Ω
© 122 Ω
© 175 Ω
© 31 Ω

Percent answering correctly: 81.3%
Similar to: in-class examples, course notes, practice exam

Where to start? The only pure series or parallel combination initially are the 100 and 335 Ω resistors, which
are simply in parallel. We can replace these two resistors with one equivalent resistor:



Req,100&335 =
100 · 335
100 + 335

Ω ≈ 77.0 Ω

Now this equivalent resistor is purely in series with the 75 Ω resistor. That means it and the 75Ω resistor
can both be replaced by an equivalent resistance:

Req,100&335&75 = Req,100&335 + 75 Ω = 152 Ω

Finally, this equivalent resistance – which replaces the 100, 335, and 75 Ω resistors – is purely in parallel with
the only remaining resistor, the 58 Ω resistor. The overall equivalent resistance is then readily found:

Req, total =
Req,100&335&75 · 58 Ω
Req,100&335&75 + 58 Ω

≈ 42 Ω

BONUS QUESTION
(worth as much as one normal question)
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Red light-emitting diode
200 Ω resistor

26. The figure at right shows the current-voltage rela-
tionship for a light-emitting diode (LED) and a resis-
tor. When the voltage is 1.7 V, which has the higher
resistance? Hint: what does the slope of this plot
mean?

© The resistor.⊗
The LED.

© Cannot be determined.
© They have the same resistance.

Percent answering correctly: 79.2%
Similar to: course notes example

Resistance is just voltage divided by current. If we pick a constant voltage of 1.7 V, then which ever component
has a lower current has a higher resistance. At 1.7 V, the curve for the LED is well below that of the resistor,
so the LED has a much smaller current at the same voltage, and thus a higher resistance.


