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© 1. Consider the mass spectrometer shown at left.
The electric field between the plates of the velocity
selector is |~E|=1000 V/m, and the magnetic fields in
both the velocity selector and the deflection chamber
have magnitudes of 0.1T.

Calculate the position x at which a singly charged ion
with mass m=7.3× 10−26 kg (corresponding to CO2)
will hit the detector plate.

Percent choosing to answer: 91%
Average score: 77%
Similar to: A variation on homework 5, problem 5; practice exam problems.
Average score on HW5, #5: 69.8%

I think you are all familiar with the mass spectrometer at this point. In the left-most region, there are
both ~E and ~B fields. The electric force and the magnetic force act in opposite directions. Since the ion’s
velocity is constant, there must be zero acceleration. If there is zero acceleration, the sum of all forces must
be zero:

ΣF = Fe − Fm = qE − qvB = 0 ⇒ qE = qvB ⇒ v =
E

B

Next, in the region of purely magnetic field on the right, we have only a magnetic force. But, if the path
of the ion is circular, then the sum of all forces must equal the centripetal force:

ΣF = Fm = qvB =
mv2

r
⇒ r =

mv

qB

Now we can use the fact that v=E/B and simplify. Again we note that a singly-charged ion has a charge
q=e:

r =
mv

qB
=

m

qB

(
E

B

)
=

mE

qB2
≈ 4.56 cm

This gives us the radius of curvature in the region of only magnetic field. To get the actual position on
the detector plate x, we need to use some geometry. Looking at the (revised) figure, we can see that the
length x is one leg of a right triangle, the other is 5−r, and the hypotenuse is r. From this, we can find x:



x2 + (5− r)2 = r2

x2 + 25− 10r + r2 = r2

x2 = 10r − 25

x = ±
√

10r − 25 ≈ 4.5 cm

Clearly, on the positive solution for x makes any sense in this context.

© 2. A wire with a weight per unit length of 0.10 N/m is suspended directly above a second wire.
The top wire carries a current of 30 A and the bottom wire carries a current of 60A. Find the distance of
separation between the wires so that the top wire will be held in place by magnetic repulsion.

Percent choosing to answer: 78%
Average score: 69%
Similar to: Homework 5, problem 10.
Average score on HW5, #10: 79.1%

Since we have two parallel wires with currents flowing, we know we are going to have a magnetic force
between. Now the problem says that the magnetic force is repulsive (which implies that the currents are in
opposite directions), which it must be in order for the the top wire to be held in place against the force of
gravity. This means we want to balance the gravitational force on the top wire, acting downward, against
the repulsive magnetic force between the two wires, acting upward on the top wire.

The top wire is quoted to have a weight per unit length of 0.10 N/m, which we will call χ. A weight is
already a force, mass times gravity, so the problem gives you the gravitational force per unit length χ=mg/l

for some section of wire of length l and mass m. We can relate the more common mass per unit length
λ=m/l and the weight per unit length easily: λg=χ. Since the force between two parallel current carrying
wires is also expressed in terms of force per unit length, we are nearly done.

Given the currents in the top and bottom wire (I1 and I2, respectively), the weight per unit length (χ),
and the separation between the wires (d), we just have to set the weight per unit length equal to the magnetic
force per unit length, and solve for d:

weight per length = magnetic force per length

χ ≡ mg

l
= FB

χ =
µ0I1I2

2πd

=⇒ d =
µ0I1I2

2πχ

Plugging in the numbers we’re given ...



d =

[
4π × 10−7 N/A2

]
[30A] [60A]

2π · 0.10 N/m

=
2 · 1800 · 10−7

0.1
m

≈ 3.6× 10−3 m

Of course, the units work out much easier if you know that µ0 can be expressed in T·m/N or N/A2, the
two are equivalent: µ0 =4π × 10−7 T ·m/A and µ0 =4π × 10−7 N/A2. This equivalence makes some sense –
the first set of units comes from thinking about the field created by a current-carrying wire, while the second
comes from thinking about the force between two current-carrying wires.
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© 3. Three long parallel conductors carry currents coming out of the
page of I =2.8 A, as shown in the figure at left. Given a=2.0 cm, find
the magnitude and direction of the magnetic field at all three points
A, B, and C.

Percent choosing to answer: 46%
Average score: 27%
Similar to: Homework 5, problem 7; practice text verbatim.
Average score on HW5, #7: 72.7%

There is nothing special to do here, except calculate the field at a given point due to each individual wire,
and add the results together to get the field due to all three wires. Of course, you have to add the fields as vec-
tors, which makes this much more fun. In order to do that, let’s define our problem a bit better. Let’s call our
y axis the line connecting point B with the upper and lower wires, and our x axis the line connecting points
A, B, and C. We will label the upper-most wire “1”, the lower-most wire “2”, and the farthest right wire “3.”

We can notice right away that the current is out of the page for all three wires, which means that the
field will circulate counterclockwise, and be constant on circles centered around each wire. Further, for any
point along the x axis, the x components of the fields from wires 1 and 2 are always going to be equal and
opposite. This can be deduced from symmetry alone - they are at the same x position, the same distance
away from the x axis, and carry the same current in the same direction. This means already that the field
at all three points will have no y component. But we get ahead of ourselves ...

Point A: First, we should think about the direction of the fields. Around each wire, draw a circle centered
on the wire, which goes through point A. Since the wires go out of the page, the field is constant on this
circle, and it circulates counterclockwise. The direction of the field is tangent to the circle for each wire.
Since the circles around wires 1 and 2 have the same radius, this means that the fields from wires 1 and 2
have the same magnitude.



From the symmetry of the problem (or basic geometry), one can see that the x components of the fields
from wires 1 and 2 are equal and opposite, leaving only a downward component. The field from wire 3 is
purely down, and has no x component to begin with. Thus, the total field is purely downard, and we only
need to add up the y components of the fields from each wire. The figure below might help you see this:
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We also know - again from symmetry or basic geometry - that the y components of the field from wires 1
and 2 must be the same. Both wires are a distance a

√
2 from point A. First, let’s calculate the magnitude

of the field from wires 1 and 2:

|~B1,A| = |~B2A
| = µ0I

2πa
√

2

The y component of the field is no problem - all the relevant angles are 45 and 90 degrees:

B1,A,y = B2,A,y = |~B1,A| sin (−45◦)

=
µ0I

2πa
√

2
sin (−45◦)

=
µ0I

2πa
√

2

(
−1√

2

)
=

−µ0I

2πa · 2

=
−µ0I

4πa

Here we used the fact that sin (−45◦)=1/
√

2. For wire 3, since the field is purely in the −y direction, we
just need to calculate the magnitude of the field itself. No problem, we just note that wire 3 is actually a
distance 3a from point A:

B3,A,y = |~B3,A| =
−µ0I

2πa · 3
=
−µ0I

6πa



Finally, to get the total field at point A, which is purely in the −y direction, we just add all the y

components together:

|~BA,tot| = B1,A,y + B2,A,y + B3,A,y

=
−µoI

πa

[
1
4

+
1
4

+
1
6

]
= −2

3
µoI

πa
≈ −37 µT

Again, the direction is purely downward in the −y direction. Take care that the distance a is converted
to meters ...

Point B: At point B, things are even simpler. Since point B is perfectly between wires 1 and 2, the fields
from wires 1 and two perfectly cancel each other. All we are left with is the field from wire 3, a distance 2a

from point B, which is again purely in the −y direction:

BB,tot = B3,B,y =
−µ0I

2π · 2a
= −1

4
µoI

πa
≈ −14 µT

Point C: This is similar to point A in fact. Again, the x components of the fields from wires 1 and 2
must cancel, and again the field from wire 3 has only a y component. Wires 1 and 2 are a distance a

√
2

from point C, so the y components of their fields will be exactly the same as they were for point A, except
that now the field points up instead of down:

B1,C,y = B2,C,y =
µ0I

4πa

The field from wire 3 still points down, and has only a y component as well. Wire 3 is a distance a from
point C, so its field is:

B3,C,y =
−µ0I

2πa

If we add up the total field, which still has only y components:

BC,tot = B1,C,y + B2,C,y + B3,C,y =
µ0I

4πa
+

µ0I

4πa
+
−µ0I

2πa
=

[
1
4

+
1
4
− 1

2

]
µ0I

πa
= 0

So all three fields exactly cancel, and the field is precisely zero at point C. Which one could have guessed
from symmetry alone ...

© 4. A circular coil enclosing an area of 105 cm2 is made of 200 turns of copper wire. The wire making
up the coil has resistance of 7.0 Ω, and the ends of the wire are connected to form a closed circuit. Initially,
a 2.0 T uniform magnetic field points perpendicularly upward through the plane of the coil. The direction



of the field then reverses so that the final magnetic field has a magnitude of 2.0 T and points downward
through the coil. If the time required for the field to reverse directions is 0.15 s, what average current flows
through the coil during that time?

Percent choosing to answer: 65%
Average score: 43%
Similar to: HW 6 problem 2; Practice problems.
Average score on HW 6 problem 2: 80%

First, we know that the changing magnetic field through the coil will give an induced voltage via Faraday’s
law. From the induced voltage, and the given resistance, we can find the current using Ohm’s law. First,
since the coil geometry is fixed, the voltage induced in a coil of N turns of wire of area A due to a changing
B field is just:

∆V = −N
∆ΦB

∆T
= NA

∆B

∆t

So the first question is: what is ∆B/∆t? The field changes from +2 to −2 T in 0.15 s, so we just calculate
it. You did take care that the field changes sign, right?

∆B

∆t
=

2 T− (−2 T)
0.15 s

=
4

0.15
T/s

Now that we have that, we note that Ohm’s law gives us the current from the induced voltage and
resistance. You of course remembered to change the area to square meters, not centimeters.

I = −∆V

R
=

NA

R

(
∆B

∆t

)
= −

200 ·
(
0.0105 m2

)
7 Ω

(
4 T

0.15 s

)
= −8 A

If you used all SI units, your answer is in amps. In order to verify this, you need to ‘recall’ that
1 T·m2 =1 V·s=1,Wb, and 1Ω=1V/A.

© 5. A conducting rod of length l moves on two
(frictionless) horizontal rails, as shown to the right.
A constant force of magnitude |~Fapp| = 1.0 N moves
the bar at a uniform speed of |~v|=2.0 m/s through a
magnetic field ~B directed into the page. The resistor
has a value R=8.0 Ω.

(a) What is the current through the resistor R?
(b) What is the mechanical power delivered by the
constant force?



Percent choosing to answer: 80%
Average score: 59%
Similar to: HW 6 problems 4, 9; Practice problems, verbatim from notes/last year’s exam.
Average score on HW 6 problems 4, 9: 85%, 74%

When the conducting rod moves to the right, this serves to increase the flux as time passes (A increases
while B stays constant), so any induced current wants to stop this change and decrease the magnetic flux.
Therefore, the induced current will act in such a way to oppose the external field (i.e., the field due to the
induced current will be opposite to the external field). This must be a counterclockwise current.

To find the current, we only need to find the motionally-induced voltage and then apply Ohm’s law. The
rod is just a bar of length l moving at velocity v in a magnetic field B. This gives us an voltage ∆V , and
Ohm’s law gives us I:

∆V = Blv = IR =⇒ I =
Blv

R

Keep in mind that v is velocity, while ∆V is voltage. Of course, the problem is now that we don’t know
B. We do know that the external and magnetic forces must balance for the rod to have a constant velocity
however. Constant velocity implies zero acceleration, which implies no net force. If this is to be true, the
applied force must exactly balance the magnetic force on the rod. For a conductor of length l carrying a
current I in a field B, we know how to calculate the magnetic force

Fm = BIl = Fapp ⇒ B =
Fapp

Il

Plug that into the first equation:

I =
∆V

R
=

Blv

R
=

Fapplv

IlR
=

Fappv

IR
⇒ I2 =

Fv

R

You should get I =0.5 A.

What about the power? Conservation of energy tells us that the mechanical power delivered must be the
same as the power dissipated in the resistor, or PF =PR =I2R. You should get 2 W.

Alternatively, you note that power delivered by a force is PF = Fv cos θ, where θ is the angle between
the force and velocity. In this case, θ = 0, so PF =Fv= 3 W.

Super sneaky way to do everything at once: recall in the first place that the power supplied by
the force must equal the power dissipated in the resistor: PF = I2R= Fv. You know F and v, so you can
calculate the power, and you also know R, so just solve for I. All wrapped up in one nice neat little package.



© 6. An aluminum ring of radius 5.0 cm and
resistance 1.0×10−4 Ω is placed around the top of a
long air-core solenoid with n = 996 turns per meter
and a smaller radius of 3.0 cm, as in the figure. If the
current in the solenoid is increasing at a constant rate
of 266 A/s, what is the induced current in the ring?

Assume that the magnetic field produced by the
solenoid over the area at the end of the solenoid is one-
half as strong as the field at the center of the solenoid.
Assume also that the solenoid produces a negligible
field outside its cross-sectional area.

Percent choosing to answer: 26%
Average score: 11%
Similar to: homework; somewhat unique.

Clearly, this is a magnetic induction problem. We know that a current through the soleniod produces
a magnetic field, therefore a time-varying current creates a time-varying magnetic field. This time-varying
magnetic field is felt by the aluminum ring, and by Faraday’s law, a voltage is induced. First, we can write
down Faraday’s law for the voltage induced around the aluminum ring due to the time-varying field of the
solenoid, noting that the ring only picks up one half of the solenoid’s field:

∆Vring = Nring
∆Φring

∆t

=
∆

(
1
2Bsol ·Aring

)
∆t

=
1
2
Aring

∆Bsol

∆t

Here we made use of the fact that the area of the aluminum ring is a constant, and being a solid ring,
it has only one turn (Nring = 1). How do we find ∆Bsol

∆t
? We know the rate that the current through the

solenoid changes, ∆Isol

∆t
, so all we need is the relation between current and B field for a solenoid:

Bsol = µ0nI

=⇒ ∆Bsol

∆t
=

∆ (µ0nsolI)
∆t

∆Bsol

∆t
= µ0nsol

∆Isol

∆t

Here nsol is the number of turns per unit length of the solenoid. Now we can plug this into our expression
for ∆Vring, and we are nearly done:

∆Vring =
1
2
Aring

∆Bsol

∆t

=
1
2
Aringµ0nsol

∆Isol

∆t



The only thing left is to relate the current in the ring to the induced voltage, via Ohm’s law, and plug in
the numbers.

Iring =
∆Vring

Rring

=
µ0Aringnsol

2Rring

∆Isol

∆t

=

(
4π × 10−7 T ·m/A

)
·
(
π (0.03 m)2

)
·
(
996 m−1

)
2 · 1.0×10−4 Ω

(266 A/s)

= 4.7
T ·m ·m2 ·m−1 ·A

Ω · s ·A

= 4.7
T ·m2

V · s
·A

Iring = 4.7 A

Again, note 1 T·m2 =1 V·s.

© 7. A helium-neon laser delivers 1.05× 1018 photons/sec in a beam diameter of 1.75 mm. Each photon
has a wavelength of 601 nm.

(a) Calculate the amplitudes of the electric and magnetic fields inside the beam.
(b) If the beam shines perpendicularly onto a perfectly reflecting surface, what force does it exert?
(c) If the perfectly reflecting surface is a block of aluminum with mass m=1g, how long will it take for

the incident photons to accelerate it to a velocity of 1m/s? Assume the beam does not diverge, air resistance
and gravity can be neglected.

Percent choosing to answer: 30%
Average score: 11%
Similar to: practice exam questions (somewhat); in-class examples

(a) This is a multi-step problem, and requires a bit of thought - there is no one formula to start with.
First, we know we can relate the amplitudes of the E and B fields to the intensity of light I. Second, we
know that the the ratio of the E and B field has to give the speed of light:

I =
E2

max

2µ0c
and

c =
|~E|
|~B|

Now, how does this help us? We first have to think about what intensity I is - energy per unit time per
unit area. Since light energy of a single wavelength - like we have here - comes as individual photons, the
energy delivered per second has to be the number of photons per second times the energy per photon:



I =
[
photons

time

] [
energy
photon

] [
1

Area

]
Now we know the energy per photon has to be:

Ephoton = hf =
hc

λ

Here we used the relation between wavelength λ, frequency f , and the speed of light c: λf = c. We are
given the number of photons per second, let’s call this N. Putting together our formulas:

I =
[
photons

time

] [
energy
photon

] [
1

Area

]
= N ·

(
hc

λ

)
· 1
Area

=
E2

max

2µ0c

Here A is just the area of the beam, which is easily found from the diameter given. Now we know
everything above except Emax, so we can solve for that:

E2
max =

2µ0hc2

λ
·N · 1

π (d/2)2

=

(
4π × 10−7 N/A2

)
·
(
6.63× 10−34 J · s

)
·
(
3× 108 m/s

)2

601× 10−9 m
·
(
1.05× 1018 1/sec

)
· 1
π (8.75× 10−4 m)2

= 1.09× 108 N · J
A2 ·m · s2

= 1.09× 108 N · J · s
C2 ·m

= 1.09× 108 N2

C2 ·
J

N ·m

= 1.09× 108 N2

C2

=⇒ Emax = 1.0× 104 N/C = 1.0× 104 V/m

Here we used the conversions 1 J=1 N ·m, 1 C=1 A/s, and 1N/C=1 V/m. We can now find Bmax easily,
once again noting that V · s=T ·m2:

Bmax =
Emax

c

=
1.0× 104 V/m
(3× 108 m/s)2

= 3.5× 10−6 V · s
m2

Bmax = 35µT

(b) So. How do we get from intensity to pressure? Photons have momentum, remember from relativity



that E = |~p|c. Using this and the formula for intensity above, we figured out that for a perfectly reflecting
surface, the radiation pressure can be found via

Prefl =
2I

c
=

E2
max

µ0c2

From the known pressure P , we can easily get the force, since pressure is force per unit area:

F = P ·A

=
E2

maxA

µ0c2

=

(
1.0× 104 N/C

)2

4π × 10−7 N/A2 · (3× 108 m/s)2
·
(
π

(
8.75× 10−4 m

)2
)

= 2.3× 10−9 N2 ·A2 · s2 ·m2

N · C2 ·m2

F = 2.3× 10−9 N

Once again, we need the conversion C=A/s.

(c) Given a (constant) net force, we have a (constant) net acceleration. Given a constant acceleration,
we can find the velocity at any later time. First, the acceleration:

a =
F

m
=

2.3× 10−9 N
10−3 kg

= 2.32× 10−6 m/s2

Remember that 1 N=1 kg·m/s2. Assuming the block to be initially at rest (v0 =0), ignoring air resistance,
gravity, friction, etc., we now find the time it takes the block to reach a final velocity of vf =1m/s.

vf = v0 + a · ∆t

1 m/s = 0 + a · ∆t

=⇒ ∆t =
vf

a
=

1 m/s
2.32× 10−6 m/s2

∆t = 4.3× 105 s ≈ 5 days

© 8. You are given 2 resistors, 1 capacitor, and 1 inductor.

(a) Using only these components, construct both a low and high pass filter.
(b) Sketch the frequency response for each.

Percent choosing to answer: 48%
Average score: 34%
Similar to: lengthy in-class examples, examples in course notes



Have a look at the figures below. Remember that an inductor presents a high resistance to high frequency
signals, and lets low frequency signals through easily. Therefore, for the high-pass filter, we use the inductor
to “short out” low frequency signals to the ground, and let high frequency signals through to the output.

Capacitors, on the other hand, present a high resistance to low frequency signals, and let high frequency
signals through easily. Therefore, for the low-pass filter, we use the capacitor to “short out” high frequency
signals to ground, and let low frequency signals through to the output. The frequency response is as illus-
trated schematically.

See the course notes packet for further details, including how to select the actual component values to
determine the range of frequencies filtered.

Vout

f

C

R
Vin Vout

low-pass high-pass

Vout

f

L

R
Vin Vout

© 9. A cylindrical cistern, constructed below ground level, is 2.9 m in diameter and 2.0 m deep and is
filled to the brim with a liquid whose index of refraction is 1.5. A small object rests on the bottom of the
cistern at its center. How far from the edge of the cistern can a girl whose eyes are 1.2 m from the ground
stand and still see the object?

Percent choosing to answer: 80%
Average score: 68%
Similar to: HW 8, number 3
Average score on HW 8, number 3: 90.2%

First thing you need to do on a problem like this: draw a little picture to figure out what’s going on.
Really, it helps. Below is my attempt.

Now the problem is a bit more clear. The light from the bottom of the cistern goes up through the water,
and at the water-air interface, is refracted away from the normal. Using the angle and distance definitions
in the figure, we can first use geometry to find expressions for the two angles θ1 and θ2:



x

d/2

h

l

θ2

θ1

90
-θ
1

tan θ1 =
l

x

tan θ2 =
d/2
h

=
d

2h
=

2.9
4

=⇒ θ2 = 35.9◦

Next, we can use the law of refraction to find another relation between the two angles θ1 and θ2. The
index of refraction of the liquid in the cistern is nliquid =1.5 and the index of refraction of air is nair =1:

nair sin (90− θ1) = nliquid sin θ2

Now we can solve for θ1:

θ1 = 90− sin−1 (nliquid sin θ2)

= 90− 61.7◦

θ1 = 28.3◦

Given θ1, we can readily find x using our very first equation:

x =
l

tan θ1

=
1.2 m
0.538

= 2.23 m

© 10. Refer to the figure below. Red and blue light are incident on a glass-air interface, from the glass
side, at an angle of incidence θi. The index of refraction for red light is nred = 1.50 and nblue = 1.52 for blue



light. If θi is greater than some critical angle θc, the transmitted beam contains only red light.

(a) What is the minimum angle of incidence θc such that only red light emerges?
(b) What is the corresponding minimum refracted angle θr?

Percent choosing to answer: 80.4%
Average score: 56.3%
Similar to: HW 8, problem 4; 2005 physics graduate qualifier
Average score on HW 8 problem 4: 75.6

In order for only red light to come out, we have to have the blue light totally internally reflected within
the glass, but not the red. This is indeed possible for some range of angles, since the index of refraction for
blue light is higher. Total internal reflection for blue light takes place when:

nblue sin θc = nair sin 90◦ = 1 or

sin θc = 1/nblue = 1/1.52

θc = sin−1

[
1

nblue

]
= sin−1 0.658

=⇒ θc = 41.1◦

Since this θc is now also the same minimum angle of incidence for the red light, the minimum refracted
angle θr of red light is given by:

nred sin θc = nair sin θr = sin θr

sin θc = 1/nblue from above

sin θr = nred · 1/nblue = 1.50/1.52 = 0.987

θr = sin−1

[
nred

nblue

]
= sin−1 0.987

=⇒ θr = 80.7◦

One does not necessarily need the substitution sin θc = 1/nblue above – in practice at that point you
already know θc, so you can just calculate sin θc directly. It does make the result much more elegant and
comprehensible though – one sees that the two angles calculated above are not really independent, but both
simply determined by the refractive indicies. So yes, there are style points in physics too.



© 11. Use the figure at right to give a geometrical
proof that the virtual image formed by a flat mirror is
the same distance behind the mirror as the object is
in front of it, and of the same height as the object.

p q

mirror

P Q

θ

object image

h

P
′

h
′

R

θ

θ

Percent choosing to answer: 54.3%
Average score: 56.3%
Similar to: in-class examples, notes and book examples

There was a lot of leeway given on this on - a bulletproof, strict geometrical proof was not necessary to
get most of the credit, so long as your logic was correct and you made a reasonable case. I’ll sketch how one
may go about a proof below, just to give you an idea.

The two angles on the left side of the mirror labeled θ are equal based on the law of reflection. Using
wave optics, we can prove that this must be so, but you were given the law of reflection, and may take it as
fact. The angle θ on the right side of the mirror must also be the same, since it is an alternate interior angle
of the lower left θ. You were given this much, and could assume that all the θ angles are identical and start
from there.

Now, the line PQP′ connecting the tip of the image and object arrows is, by construction, perpendicular
to the mirror itself, and therefore parallel to the horizontal line connecting the bases of the arrows as well.
At this point, it is already obvious that h=h′ in fact.

Given that PQP′ and the mirror are perpendicular by construction, then ∠PQR and ∠P′QR are right
angles. Further, since PQP′ and the axis connecting the bases of the arrows are parallel, then the angle θ

at point R and ∠PRQ must sum to a right angle: θ+∠PRQ=90. The same must be true for ∠P′RQ and θ:
θ+∠P′RQ=90. Therefore, θ+∠PRQ=θ+∠P′RQ or ∠PRQ+∠P′RQ.

Now consider the triangles 4PQR and 4P′QR. These two triangles have two equivalent angles (∠PRQ=
∠P′RQ and ∠PQR=∠P′QR) which bound a shared side (QR), and by the angle-side-angle (ASA) theorem,
the two triangles are congruent. Therefore, h = h′, the image height is the same as the object height, and
PQ=P′Q, the image is as far behind the mirror as the object is in front of it.

© 12. While looking at her image in a cosmetic mirror, Dina notes that her face is highly magnified
when she is close to the mirror, but as she backs away from the mirror, her image first becomes blurry, then
disappears when she is about 38.0 cm from the mirror, and then inverts when she is beyond 38.0 cm.

(a) What type of mirror does Dina have?
(b) What is the focal length of the mirror?



(c) What is the radius of curvature of the mirror?
Percent choosing to answer: 95.7%
Average score: 77%
Similar to: HW 8 problem 8
Average score on HW 8 problem 8: 90.2

The fact that the image chagnes from upright to inverted immediately tells us that Dina has a concave
spherical mirror. A convex mirror always gives an upright image, as does a flat mirror. The point at which
the image (briefly) disappears and inverts is the focal length, so f =38 cm. For spherical mirrors, we know
that f =2R, the radius of curvature is just twice as big: R=76 cm.

The image below may jog your memory a bit. Right at the focal point, when the image goes from upright
and enlarged to inverted and enlarged, the image disappears.
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