Name \qquad Date \qquad

PH 102 Exam III

General Rules: You are allowed 2 sides of an 8.5×11 in piece of paper with formulas and a calculator.

Part I: Multiple choice (50\%)

1. Answer all multiple choice problems.

2. No partial credit will be given for multiple choice questions.
3. What energy photon emitted is when an electron in a hydrogen atom goes from the $n=5$ energy level to the $n=2$? energy level?10.20 eV13.60 eV6.80 eV2.86 eV
4. Calculate the de Broglie wavelength of a 0.145 kg baseball moving at a speed of $45.2 \mathrm{~m} / \mathrm{s}(\approx 101 \mathrm{mph})$.$1.01 \times 10^{-34} \mathrm{~m}$$2.62 \times 10^{-24} \mathrm{~m}$$3.17 \times 10^{-9} \mathrm{~m}$$4.58 \times 10^{-2} \mathrm{~m}$
5. An inverted image of an object is viewed on a screen from the side facing a converging lens. An opaque card is then introduced covering only the upper half of the lens. What happens to the image on the screen?

Half the image would disappear.Half the image would disappear and be dimmer.The entire image would appear and remain unchanged.
\bigcirc The entire image would appear, but would be dimmer.
4. When ${ }_{92}^{238} \mathrm{U}$ decays to ${ }_{90}^{234} \mathrm{Th}$, what is emitted?beta particlegamma rayalpha particledeuteron
5. When an alpha particle hits a ${ }_{19}^{39} \mathrm{~K}$ nucleus, one of the products is a proton. The other product is:
$\bigcirc{ }_{20}^{42} \mathrm{Ca}$
${ }_{-}^{36} \mathrm{Ar}$${ }_{17}^{38} \mathrm{Cl}$None of the above
6. An x-ray photon is scattered by an electron. What happens to the frequency of the scattered photon, relative to that of the incident photon?it increasesit decreasesit does not changephotons cannot be scattered by electrons
7. A nonrelativistic electron and a nonrelativistic proton are moving and have the same de Broglie wavelength. Which of the following are also the same for the two particles?momentumfrequencykinetic energyspeed
8. A light-emitting diode (LED) emits blue photons of wavelength 480 nm . What would be the minimum voltage you would expect to apply to the LED before it emits light? (Hint: we assume all of the potential energy of one electron is converted into light.)2.6 V3.5 V1.2 V0.82 V

Part II: Problems (50\%)

1. Solve 2 problems out of the 5 below. All problems have equal weight.
2. Clearly mark the problems you choose by filling in the adjacent circle.
3. Show as much work as possible for partial credit.
4. Solve the problems on separate sheets. Staple your sheets to the exam when finished.1. Fill in the missing elements, atomic numbers, and atomic masses (denoted by question marks) in the following radioactive decay series.

$$
{ }_{90}^{228} \mathrm{Th} \xrightarrow{\alpha}{ }_{?}^{224} \mathrm{Ra} \xrightarrow{\alpha} \quad{ }_{8}^{?} ? \stackrel{\alpha}{\longrightarrow} \quad{ }_{84}^{216} \mathrm{Po} \xrightarrow{\alpha} \quad{ }_{?}^{212} ? \xrightarrow{\beta}{ }_{83}^{212} ? \xrightarrow{\beta} \mathrm{?} \mathrm{Po} \xrightarrow{\alpha} ?
$$2. A hydrogen atom has a radius of $\sim 0.05 \mathrm{~nm}$. (a) Assuming we know the position of an electron in a hydrogen atom to an accuracy of 1% of this radius, estimate the uncertainty in the velocity of the electron. How does this value compare to c ? (b) Compare this value to the uncertainty in the velocity of a ball of mass 0.2 kg and radius 0.05 m whose position is known within 1% of its radius.3. A molecule is known to exist in an unstable higher energy configuration for $\Delta t=10 \mathrm{nsec}$, after which it relaxes to its lower energy stable state by emitting a photon. (a) What uncertainty in the frequency Δf of the emitted photon is implied? (b) If this state is being probed with Nuclear Magnetic Resonance (NMR) at a frequency of $f \approx 200 \mathrm{MHz}$, what is the relative uncertainty in the measurement, $\Delta f / f$?

4. Calculate the binding energy in $M e V$ of a deuteron (the atom ${ }_{1}^{2} \mathrm{H}$), given that its atomic mass is 2.014102 u . Note that $m_{p^{+}}=1.007825 \mathrm{u}$, and $m_{n^{0}}=1.008665 \mathrm{u}$.5. In a coordination compound, the so-called "crystal field" gives rise to a difference in energy levels for some of the electrons in a transition metal ion. That is, electrons can occupy one of two states, separated by the crystal field splitting energy Δ.

The octahedral complex $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ has a crystal field splitting of $\Delta_{\mathrm{o}} \sim 2.16 \mathrm{eV}$, while $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ has $\Delta_{\mathrm{o}} \sim 2.84 \mathrm{eV}$. What color are these compounds? Make use of the table below. If a compound absorbs a certain color of light, it exhibits the color complementary to the color of absorbed light.

Table 1: Absorbed wavelength λ and observed color

$\lambda(\mathbf{n m})$	absorbed color	observed color
400	violet	greenish-yellow
450	blue	yellow
490	blue-green	red
570	yellow-green	violet
580	yellow	dark blue
600	orange	blue
650	red	green

BONUS (worth 1 normal question):

1. The energy required to break one $\mathrm{O}=\mathrm{O}$ bond in ozone $\left(\mathrm{O}_{3}, \mathrm{O}=\mathrm{O}=\mathrm{O}\right)$ is about $500 \mathrm{~kJ} / \mathrm{mol}$. What is the maximum wavelength of the photon that has enough energy to photodissociate ozone by breaking one of the $\mathrm{O}=\mathrm{O}$ bonds? You must show your work to receive bonus points. Note that Avagadro's number is $N_{A}=6.02 \times 10^{23}$ things $/ \mathrm{mol}$.

$$
O_{3} \xrightarrow{h f} O+O_{2}
$$

Useful Things

$$
\begin{aligned}
& k_{e}=8.98755 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2} \\
& e=1.60218 \times 10^{-19} \mathrm{C} \\
& c=\frac{1}{\sqrt{\mu_{0} \epsilon_{0}}}=2.99792 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
& h=6.62607 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.13566 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \\
& \hbar=\frac{h}{2 \pi} \\
& m_{e^{-}}=9.10938 \times 10^{-31} \mathrm{~kg}=0.510998 \mathrm{MeV} / c^{2} \\
& m_{p^{+}}=1.67262 \times 10^{-27} \mathrm{~kg}=938.272 \mathrm{MeV} / c^{2} \\
& m_{n^{0}}=1.67493 \times 10^{-27} \mathrm{~kg}=939.565 \mathrm{MeV} / c^{2} \\
& 1 \mathrm{u}=931.494 \mathrm{MeV} / c^{2} \\
& N_{A}=6.02214 \times 10^{23} \text { things } / \text { mole } \\
& h c=1239.84 \mathrm{eV} \cdot \mathrm{~nm} \\
& \frac{h}{m_{e} c}=2.42631 \times 10^{-12} \mathrm{~m} \\
& 0=a x^{2}+b x^{2}+c \Longrightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \overrightarrow{\mathbf{F}}_{\text {net }}=m \overrightarrow{\mathbf{a}} \text { Newton's Second Law } \\
& \overrightarrow{\mathbf{F}}_{\text {centr }}=-\frac{m v^{2}}{r} \hat{\mathbf{r}} \text { Centripetal } \\
& \mathrm{KE}=(\gamma-1) m c^{2} \approx \frac{1}{2} m v^{2} \text { Kinetic energy } \\
& \mathrm{KE}_{\text {initial }}+\mathrm{PE}_{\text {initial }}=\mathrm{KE}_{\text {final }}+\mathrm{PE}_{\text {final }}
\end{aligned}
$$

Other Things:

$$
\begin{array}{rlrl}
\lambda f & =c & \lambda_{\text {out }}-\lambda_{\text {in }} & =\frac{h}{m_{e} c}(1-\cos \theta) \\
M & =\frac{h^{\prime}}{h}=-\frac{q}{p} & \lambda & =\frac{h}{|\overrightarrow{\mathbf{p} \mid}|}=\frac{h}{\gamma m v} \approx \frac{h}{m v} \\
\frac{1}{f} & =\frac{1}{p}+\frac{1}{q}=\frac{2}{R} & \Delta x \Delta p & \geq \frac{h}{4 \pi} \\
E_{\text {photon }} & =h f=\frac{h c}{\lambda}=\frac{1239.84 \mathrm{eV} \cdot \mathrm{~nm}}{\lambda(\mathrm{~nm})} & \Delta E \Delta t & \geq \frac{h}{4 \pi} \\
e \Delta V & =\mathrm{KE}_{\max }=h f-\phi & E_{n} & =-13.6 \mathrm{eV} / n^{2} \\
E^{2} & =p^{2} c^{2}+m^{2} c^{4} & E_{i}-E_{f} & =-13.6 \mathrm{eV}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)=h f \text { Hydrogen only } \\
\text { alpha particle } & ={ }_{2}^{4} \alpha={ }_{2}^{4} \mathrm{He}^{\text {beta particle }}={ }_{-1}^{0} \beta=e^{-} \\
\text {Binding Energy } & =\left[\sum_{p^{+} \& n^{0}} m c^{2}\right]-m_{\text {atom }} c^{2} & =n \hbar \\
v^{2} & =\frac{n^{2} \hbar^{2}}{m_{e}^{2} r^{2}}=\frac{k_{e} e^{2}}{m_{e} r}
\end{array}
$$

116 and 118 from http://www.lbl.gov/Science-Articles/Archive/elements-1 16-118.html masses for 107-111 from C\&EN, March 13, 1995, P 35
112 from http://www.gsi.de/z112e.html 1995 IUPAC masses and Approved Names from http://www.chem.qmw.ac.uk/iupac/AtWt/

$\mathrm{L}_{6.941}^{3}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 9.012182 \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 10.811 \end{gathered}$	$\stackrel{6}{\mathrm{C}}$	$\stackrel{7}{\mathrm{~N}}$	$\stackrel{8}{\mathrm{O}}_{15.9994}$	$\underset{18.9984032}{\mid r}$	$\begin{gathered} \mathrm{N}_{\mathrm{N}}^{\mathrm{Ne}} \\ 20.1797 \end{gathered}$
11 Na 22.989770												${ }_{26.981538}^{\mathrm{Al}}$					$\underset{39.948}{\mathrm{Ar}}$
	${ }_{40.078}^{20}$		$\begin{aligned} & 22 \\ & \mathrm{Ti} \end{aligned}$ 47.867		$\stackrel{24}{\mathrm{Cr}}$	$\begin{array}{\|c\|} \hline \mathbf{M} \\ 54.938049 \\ \hline \end{array}$	$\underset{55.845}{\stackrel{26}{\mathrm{Fe}}}$	$\begin{array}{\|c\|} \hline 27 \\ \mathrm{Co} \\ \hline \end{array}$		$\mathrm{Cu}_{63.546}^{29}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \text { n } \\ & 65.39 \end{aligned}$	Ga 69.723	$\stackrel{32}{\mathrm{Ge}}$	${\underset{74.92160}{33}}_{\substack{\text { A } \\ \hline}}$	$\underset{78.96}{\mathrm{Se}}$	$\stackrel{35}{\mathrm{Br}}$	$\stackrel{36}{\mathrm{~K} r}$
	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \\ \hline \end{gathered}$	39 Y 88.90585	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.224 \\ \hline \end{gathered}$		$\begin{gathered} 42 \\ \mathbf{M o} \\ 95.94 \end{gathered}$	$\begin{aligned} & \hline 43 \\ & \mathrm{~T} \mathrm{c} \\ & \hline(98) \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline 45 \\ \mathrm{Rh} \\ 102.90550 \\ \hline \end{array}$	$\stackrel{46}{\stackrel{46}{10642}}$ 106.42	$\begin{array}{\|c\|} \hline 47 \\ \mathrm{Ag} \\ 107.8682 \\ \hline \end{array}$	$\stackrel{48}{\mathrm{C}}$ 112.411	$\operatorname{In}_{114.818}^{49}$			${ }_{5}^{52}$		$\begin{gathered} \mathbf{5 4}_{131.29}^{\mathrm{Xe}} \\ \hline \end{gathered}$
55 CS 132.90545					$\begin{gathered} 74 \\ \mathbf{W} \\ \hline 183.84 \end{gathered}$					$\underset{196.96655}{79}$			$\begin{array}{r} 82 \\ \mathrm{~Pb} \\ 207.2 \\ \hline \end{array}$	$\underset{208.98038}{83}$	$\begin{gathered} \hline 84 \\ \mathrm{PO} \\ (209) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 85 \\ & \mathrm{At} \\ & (210) \\ & \hline \end{aligned}$	$\underset{(222)}{86}$
87 Fr (223)	88 Ra (226)	89 Ac (227)	$\underset{(261)}{104}$	${\underset{(262)}{ }}_{105}^{b}$	$\begin{gathered} 106 \\ \mathrm{Sg}_{(263)} \end{gathered}$	107 Bh (262)	108	$\underset{(266)}{109}$	$\begin{gathered} 110 \\ (269) \end{gathered}$	$\begin{gathered} 111 \\ (272) \end{gathered}$	112 (277)		$\begin{gathered} 114 \\ (289) \\ (287) \\ \hline \end{gathered}$		$\begin{aligned} & 116 \\ & (289) \end{aligned}$		$\begin{gathered} 118 \\ (293) \end{gathered}$

