Name _

Date _____

PH 102 Exam III

General Rules: You are allowed 2 sides of an 8.5x11 in piece of paper with formulas and a calculator.

Part I: Multiple choice (50%)

- 1. Answer all multiple choice problems.
- 2. No partial credit will be given for multiple choice questions.
- 1. What energy photon emitted is when an electron in a hydrogen atom goes from the n=5 energy level to the n=2? energy level?
 - $\bigcirc 10.20 \,\mathrm{eV}$
 - \bigcirc 13.60 eV
 - \bigcirc 6.80 eV
 - $\bigcirc 2.86\,\mathrm{eV}$
- **2.** Calculate the de Broglie wavelength of a 0.145 kg baseball moving at a speed of 45.2 m/s ($\approx 101 \text{ mph}$).
 - $\bigcirc~1.01\times10^{-34}\,\mathrm{m}$
 - $\bigcirc~2.62\times10^{-24}\,\mathrm{m}$
 - \bigcirc 3.17 \times 10⁻⁹ m
 - $\bigcirc 4.58 \times 10^{-2} \,\mathrm{m}$
- **3.** An inverted image of an object is viewed on a screen from the side facing a converging lens. An opaque card is then introduced covering *only the upper half* of the lens. What happens to the image on the screen?
 - \bigcirc Half the image would disappear.
 - \bigcirc Half the image would disappear and be dimmer.
 - \bigcirc The entire image would appear and remain unchanged.
 - \bigcirc The entire image would appear, but would be dimmer.
- 4. When ${}^{238}_{92}$ U decays to ${}^{234}_{90}$ Th, what is emitted?
 - \bigcirc beta particle
 - ⊖ gamma ray
 - \bigcirc alpha particle
 - \bigcirc deuteron
- 5. When an alpha particle hits a $^{39}_{19}$ K nucleus, one of the products is a proton. The other product is:
 - $\bigcirc \frac{42}{20}$ Ca
 - $\bigcirc \frac{36}{18} \text{Ar}$
 - $\bigcirc \frac{38}{17}$ Cl
 - \bigcirc None of the above

November 29, 2007 P. LeClair

- **6.** An x-ray photon is scattered by an electron. What happens to the frequency of the *scattered photon*, relative to that of the incident photon?
 - \bigcirc it increases
 - \bigcirc it decreases
 - \bigcirc it does not change
 - $\bigcirc\,$ photons cannot be scattered by electrons
- **7.** A nonrelativistic electron and a nonrelativistic proton are moving and have the same de Broglie wavelength. Which of the following are also the same for the two particles?
 - \bigcirc momentum
 - \bigcirc frequency
 - \bigcirc kinetic energy
 - \bigcirc speed
- 8. A light-emitting diode (LED) emits blue photons of wavelength 480 nm. What would be the minimum voltage you would expect to apply to the LED before it emits light? (Hint: we assume all of the potential energy of one electron is converted into light.)
 - $\bigcirc~2.6\,\mathrm{V}$
 - $\bigcirc~3.5\,\mathrm{V}$
 - $\bigcirc 1.2 \,\mathrm{V}$
 - $\bigcirc 0.82 \,\mathrm{V}$

Part II: Problems (50%)

- 1. Solve 2 problems out of the 5 below. All problems have equal weight.
- 2. Clearly mark the problems you choose by filling in the adjacent circle.
- 3. Show as much work as possible for partial credit.
- 4. Solve the problems on separate sheets. Staple your sheets to the exam when finished.
- 1. Fill in the missing elements, atomic numbers, and atomic masses (denoted by question marks) in the following radioactive decay series.

 $\overset{228}{_{90}}\mathrm{Th} \xrightarrow{\alpha} \quad \overset{224}{_{?}}\mathrm{Ra} \xrightarrow{\alpha} \quad \overset{?}{_{86}}? \xrightarrow{\alpha} \quad \overset{216}{_{84}}\mathrm{Po} \xrightarrow{\alpha} \quad \overset{212}{_{?}}? \xrightarrow{\beta} \quad \overset{212}{_{83}}? \xrightarrow{\beta} \quad \overset{?}{_{?}}\mathrm{Po} \xrightarrow{\alpha} \quad \overset{?}{_{?}}? \xrightarrow{\beta} \quad \overset{?}{_{?}}\mathrm{Po} \xrightarrow{\alpha} \quad \overset{?}{_{?}}? \xrightarrow{\beta} \quad \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \quad \overset{?}{_{?}}? \xrightarrow{\beta} \quad \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \quad \overset{?}{_{83}}? \xrightarrow{\beta} \quad \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \quad \overset{?}{_{83}}? \xrightarrow{\beta} \quad \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \quad \overset{?}{_{83}}? \xrightarrow{\beta} \quad \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \xrightarrow{\alpha} \overset{?}{_{83}}\mathrm{Po} \xrightarrow{\alpha} \xrightarrow{\alpha$

- 2. A hydrogen atom has a radius of ~ 0.05 nm. (a) Assuming we know the position of an electron in a hydrogen atom to an accuracy of 1% of this radius, estimate the uncertainty in the velocity of the electron. How does this value compare to c? (b) Compare this value to the uncertainty in the velocity of a ball of mass 0.2 kg and radius 0.05 m whose position is known within 1% of its radius.
- 3. A molecule is known to exist in an unstable higher energy configuration for Δt = 10 nsec, after which it relaxes to its lower energy stable state by emitting a photon. (a) What uncertainty in the frequency Δf of the emitted photon is implied? (b) If this state is being probed with Nuclear Magnetic Resonance (NMR) at a frequency of f≈200 MHz, what is the relative uncertainty in the measurement, Δf/f?
- 4. Calculate the binding energy in MeV of a deuteron (the atom ²₁H), given that its atomic mass is 2.014102 u. Note that $m_{p^+} = 1.007825$ u, and $m_{n^0} = 1.00866$ 5u.
- \bigcirc 5. In a coordination compound, the so-called "crystal field" gives rise to a difference in energy levels for some of the electrons in a transition metal ion. That is, electrons can occupy one of two states, separated by the crystal field splitting energy Δ .

The octahedral complex $[Cr(NH_3)_6]^{3+}$ has a crystal field splitting of $\Delta_o \sim 2.16 \text{ eV}$, while $[Co(NH_3)_6]^{3+}$ has $\Delta_o \sim 2.84 \text{ eV}$. What color are these compounds? Make use of the table below. If a compound absorbs a certain color of light, it exhibits the color *complementary* to the color of absorbed light.

λ (nm)	absorbed color	observed color
400	violet	greenish-yellow
450	blue	yellow
490	blue-green	red
570	yellow-green	violet
580	yellow	dark blue
600	orange	blue
650	red	green

Table 1: Absorbed wavelength λ and observed color

1. The energy required to break one O=O bond in ozone $(O_3, O=O=O)$ is about 500 kJ/mol. What is the maximum wavelength of the photon that has enough energy to photodissociate ozone by breaking one of the O=O bonds? You must show your work to receive bonus points. Note that Avagadro's number is $N_A = 6.02 \times 10^{23}$ things/mol.

$$O_3 \xrightarrow{hf} O + O_2$$

Useful Things

Constants:

b
$$hc$$
 $=$ $1239.84 \text{ eV} \cdot \text{nm}$ k_e $=$ $8.98755 \times 10^9 \text{ N} \cdot \text{m}^2 \cdot \text{C}^{-2}$ $\frac{h}{m_ec}$ $=$ e $=$ $1.60218 \times 10^{-19} \text{ C}$ **Quadratic formula:** c $=$ $\frac{1}{\sqrt{\mu_0\epsilon_0}} = 2.99792 \times 10^8 \text{ m/s}$ $0 = ax^2 + bx^2 + c \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ h $=$ $6.62607 \times 10^{-34} \text{ J} \cdot \text{s} = 4.13566 \times 10^{-15} \text{ eV} \cdot \text{s}$ $0 = ax^2 + bx^2 + c \Longrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ h $=$ $\frac{h}{2\pi}$ **Basic Equations (non-relativistic):** m_{e^-} $=$ $9.10938 \times 10^{-31} \text{ kg} = 0.510998 \text{ MeV}/c^2$ \vec{F}_{net} $=$ $m\vec{a}$ Newton's Second Law m_{p^+} $=$ $1.67262 \times 10^{-27} \text{ kg} = 938.272 \text{ MeV}/c^2$ \vec{F}_{centr} $=$ $-\frac{mv^2}{r} \hat{\mathbf{r}}$ Centripetal u u $931.494 \text{ MeV}/c^2$ KE $=$ $(\gamma - 1) mc^2 \approx \frac{1}{2}mv^2$ Kinetic energy N_A $=$ $6.02214 \times 10^{23} \text{ things/mole}$ $KE_{\text{initial}} + PE_{\text{initial}}$ $=$ $KE_{\text{final}} + PE_{\text{final}}$

Other Things:

$$\begin{split} \lambda f &= c & \lambda_{\text{out}} - \lambda_{\text{in}} &= \frac{h}{m_e c} \left(1 - \cos \theta\right) \\ M &= \frac{h'}{h} = -\frac{q}{p} & \lambda &= \frac{h}{|\vec{\mathbf{p}}|} = \frac{h}{\gamma m v} \approx \frac{h}{m v} \\ \frac{1}{f} &= \frac{1}{p} + \frac{1}{q} = \frac{2}{R} & \Delta x \Delta p &\geq \frac{h}{4\pi} \\ E_{\text{photon}} &= hf = \frac{hc}{\lambda} = \frac{1239.84 \text{ eV} \cdot \text{nm}}{\lambda (\text{nm})} & \Delta E \Delta t &\geq \frac{h}{4\pi} \\ e \Delta V &= \text{KE}_{\text{max}} = hf - \phi & E_n &= -13.6 \text{ eV}/n^2 \\ E^2 &= p^2 c^2 + m^2 c^4 & E_i - E_f &= -13.6 \text{ eV} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) = hf \text{ Hydrogen only} \\ \text{alpha particle} &= \frac{4}{2} \alpha = \frac{4}{2} \text{ He} & \text{beta particle} = -\frac{0}{1} \beta = e^{-} & mvr &= n\hbar \\ \text{Binding Energy} &= \left[\sum_{p^+ \& n^0} mc^2\right] - m_{\text{atom}} c^2 & v^2 &= \frac{n^2 \hbar^2}{m_e^2 r^2} = \frac{k_e e^2}{m_e r} \end{split}$$

Periodic Table of the Elements

		-																	_
Hr (223)	87	132.90545	$\hat{\mathbf{D}}$	55	85.4678	Rb	37	39.0983	K	19	22.989770	Na	11	6.941	Li	3	1.00794	Η	
Ra (226)	88	137.327	ř	56	87.62	Sr	38	40.078	Ca	20	24.3050	Mg	12	9.012182	Be	4			
Ac (227)	68	138.9055	2	57	88.90585	Y	39	44.955910	Sc	21									
Rt (261)	104	178.49	Ηf	72	91.224	Zr	40	47.867	Ti	22									
Db (262)	105	180.9479	Ţ,	73	92.90638	Nb	41	50.9415	V	23									
Sg (263)	106	183.84	W	74	95.94	Mo	42	51.9961	Ω	24									
Bh	107	186.207	RP	75	(98)	Tc	43	54.938049	Mn	25									
Hs (265)	108	190.23	Ď	76	101.07	Ru	44	55.845	Fe	26									
Mt (266)	109	192.217	ŀ	77	102.90550	Rh	45	58.933200	<u>റ</u>	27									
(269)	110	195.078	₽	78	106.42	Pd	46	58.6934	Ż	28									
(272)	111	196.96655	AII	79	107.8682	Ag	47	63.546	Cu	29									
(277)	112	200.59	Ηq	80	112.411	Cd	48	65.39	Zn	30									
		204.3833]	81	114.818	In	49	69.723	Ga	31	26.981538	Al	13	10.811	в	5			
(289) (287)	114	207.2	Ъ	82	118.710	Sn	50	72.61	Ge	32	28.0855	<u>N</u>	14	12.0107	0	6			
		208.98038	אַ	83	121.760	Зb	51	74.92160	As	33	30.973761	P	15	14.00674	Z	7			
(289)	116	(209)	Po	84	127.60	Te	52	78.96	Se	34	32.066	S	16	15.9994	0	8			
		(210)	Δt	85	126.90447	μ	53	79.904	Br	35	35.4527	Ω	17	18.9984032	Ч	9	1.00794	Η	_
(293)	118	(222)	Rn	98	131.29	Xe	54	83.80	Kr	36	39.948	Ar	18	20.1797	Ne	10	4.002602	He	2

232.0381 231.03588	Th Pa	90 91	140.116 140.90765	Ce Pr	58 59
238.0289		92	144.24	Nd	60
(237)	qN	93	(145)	Pm	61
(244)	Pu	94	150.36	Sm	62
(243)	Am	95	151.964	Eu	63
(247)	Cm	96	157.25	Gd	64
(247)	Bk	97	158.92534	Tb	65
(251)	Ωſ	86	162.50	Dy	66
(252)	Es	66	164.93032	Ho	67
(257)	Fm	100	167.26	Ęŗ	89
(258)	Md	101	168.93421	Tm	69
(259)	No	102	173.04	Yb	70
(262)	Lr	103	174.967	Lu	71

S.E. Van Bramer, 7/22/99 1995 IUPAC masses and Approved Names from http://www.chem.qmw.ac.uk/iupac/AtWt/ masses for 107-111 from C&EN, March 13, 1995, P 35 112 from http://www.gsi.de/z112e.html 114 from C&EN July 19, 1999 116 and 118 from http://www.lbl.gov/Science-Articles/Archive/elements-116-118.html