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PH102 Final Exam PH 102 / LeClair

Summer 2009

Instructions

1. Answer six of the nine questions below. All problems have equal weight.

2. Clearly mark your which problems you have chosen using the tick box.

3. You are allowed 2 sheets of standard 8.5x11 in paper and a calculator.

2 1. Three protons and three electrons are to be placed at the vertices of a regular octahedron of
edge length a. We want to find the potential energy of the system, or the work required to assemble
it starting with the particles infinitely far apart. There are essentially two different arrangements
possible. What is the energy of each? Symbolic answer, please.

Figure 1: An octahedron. It has eight faces and six vertices.

Using the principle of superposition, we know that the potential energy of a system of charges is
just the sum of the potential energies for all the unique pairs of charges. The problem is then
reduced to figuring out how many different possible pairings of charges there are, and what the
energy of each pairing is. The potential energy for a single pair of charges, both of magnitude q,
separated by a distance d is just:

PEpair =
keq

2

d

First, we need figure out how many pairs there are for charges arranged on the vertices of an octa-
hedron, and for each pair, how far apart the charges are. Once we’ve done that, we need to figure
out the two different arrangements of charges and run the numbers.

How many unique pairs of charges are there? There are not so many that we couldn’t just list
them by brute force – which we will do anyway to calculate the energy – but we can also calculate
how many there are. In both distinct configurations, we have 6 charges, and we want to choose all
possible groups of 2 charges that are not repetitions. So far as potential energy is concerned, the pair
(2, 1) is the same as (1, 2). Pairings like this are known as combinations, as opposed to permutations
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where (1, 2) and (2, 1) are not the same. Calculating the number of possible combinations is done
like this:i

ways of choosing pairs from six charges =

(
6
2

)
= 6C2 =

6!
2! (6 − 2)!

=
6 · 5 · 4 · 3 · 2 · 1
2 · 1 · 4 · 3 · 2 · 1

= 15

We can verify this by simply enumerating all the possible pairings. Label the charges at each vertex
in some fashion, such as this:

q1

q2

q3

q4

q5

q6

We have six charges at six vertices, and thus 6C2 = 6!
2!4! =15 unique pairings of charges. Namely,

q1q2, q1q3,q1q4,q1q5,q1q6

q2q3, q2q4,q2q5,q2q6

q3q4,q3q5,q3q6

q4q5,q4q6

q5q6

Here all the qi have the same magnitude, the labels are just to keep things straight. At a given
vertex, all four nearest-neighbor vertices are at distance a, while the single “next-nearest neighbor”
is at a distance a

√
2. This means that there are three pairs charges which are separated by a

distance a
√

2, and the other twelve pairings are at a distance a. We have highlighted the a
√

2
pairings above. How can we find two different arrangements? Since there are an odd number of next-
nearest neighbor pairings, the first suspicion is that the difference between the two arrangements will
be in next-nearest neighbor pairings. If you experiment for a while, the two different arrangements
are these:
Now we need only add up the potential energies of all possible pairs of charges. All the nearest-
neighbor pairs will have the same energy, viz.,

|Unn| =
kq2

a
(1)

iA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/

permutations-combinations.htm

http://www.themathpage.com/aPreCalc/permutations-combinations.htm
http://www.themathpage.com/aPreCalc/permutations-combinations.htm
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All the next-nearest neighbor pairs will have

|Unnn| =
kq2

a
√

2
(2)

For the first arrangement we have 12 nearest-neighbor pairs: eight of them are +− pairings, and
four of them are ++ or −− pairs. We have three next-nearest neighbor pairs, two ++ or −−, and
one +−. Thus, the total energy must be

UA = 8
[
−kq2

a

]
+4
[
kq2

a

]
+2
[
kq2

a
√

2

]
+1
[
−kq2

a
√

2

]
=
kq2

a

[
1√
2

− 4
]

=

[
1√
2

− 4
]

|Unn| ≈ −3.29|Unn|

(3)
For the second arrangement, of the 12 nearest-neighbor pairs we have six +− pairs and six ++ or
−− pairs, and thus the total energy of nearest-neighbor pairs will be zero. We are left with only
the next-nearest neighbor terms, and for this arrangement, all three are +− pairs. Thus,

UB = −3
kq2

a
√

2
=

3√
2
|Unn| ≈ −2.12|Unn| (4)

Thus, UA < UB, and the first lattice is more stable, owing to its lower nearest-neighbor energy.
Though the second lattice has a smaller next-nearest neighbor energy, there are fewer next-nearest
neighbor pairs, and their energy is smaller than the nearest neighbor pairs. Usually, minimizing the
nearest-neighbor energy gives the most stable crystal, simply because the potential is decreasing
with distance.

2 2. An interstellar dust grain, roughly spherical with a radius of 3 × 10−7 m, has acquired a
negative charge such that its electric potential is −0.15 Volts.

(a) How many extra electrons has it picked up?
(b) What is the strength of the electric field at its surface?

If it is spherical, Gauss’ law tells us that we may treat it as a point charge (so long as we are outside
the dust grain, anyway). The excess charge must therefore be equivalent to a point charge which
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at a distance d= 3 × 10−7 m creates a potential of −0.15 Volts. If there are n excess electrons on
the dust grain, the net charge is qnet =−ne. Thus,

−0.15 V =
kqnet

d
=

−kne

3× 10−7 m
n ≈ 31 electrons (5)

Here we rounded to the nearest integer for n. The same point charge would produce an electric
field at a distance of 3× 10−7 m of

E =
−kne

(3× 10−7 m)2
≈ 5× 105 V/m (6)

2 3. A 50 kV direct-current power line consists of two conductors 2 m apart. When this line is
transmitting a power of 10 MW, how strong is the magnetic field halfway between the conductors?

2 4. A spaceship traveling at 0.70c away from the Earth launches a projectile of muzzle speed 0.90c
(relative to the spaceship). What is the speed of the projectile relative to Earth if it is launched in
the forward direction? In the backward direction?

2 5. Two positively charged particles separated by a distance d, each with charge q and mass m,
are initially moving at the same speed v in opposite directions perpendicular to the line joining
them. A magnetic field applied perpendicularly to the plane of the page will bend the paths of the
particles into circles. What strength of magnetic field is necessary to make them collide head-on
midway between the two starting points? (Ignore the electrical forces between the charges.)

2 6. The bottom half of a beaker of depth 20 cm is filled with water (n=1.33) and the top half is
filled with oil (n=1.48). If you look into this beaker from above, how far below the upper surface
of the oil does the bottom of the beaker seem to be?

We must account for refraction in both materials. In general, looking into a material of index n2

from a material of index n1, the apparent depth is

dapp = dreal
n1

n2
(7)

Here we have air, water, and oil, which we will give indices na, nw, and no, respectively. Looking
down through the oil, which has an actual depth dreal =10 cm, we would say its boundary with the
water would be at a depth

doil = dreal
na

no
(8)

What about looking through the water layer below? Same thing, the light will be refracted, but
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now in an amount dictated by the index of the water. We don’t need to worry about the oil since
the rays of interest both enter and exit the oil, the apparent depth of the water doesn’t depend on
the oil being there or not.

dwater = dreal
na

nw
(9)

The total apparent depth of the beaker is then

dapp = dwater + doil = dreal

(
na

nw
+
na

no

)
≈ 14.2 cm (10)

2 7. A particle of charge q and mass m, moving with a constant speed v perpendicular to a
constant magnetic field B follows a circular path. If the angular momentum is quantized so that
|~L |=mvr=n h, determine the allowed radii for the particle in terms of the preceding quantities.

2 8. The circuit at right is known as a Wheatstone Bridge, and
it is a useful circuit for measuring small changes in resistance.
Perhaps you can figure out why. Three of the four branches
on our bridge have identical resistance R, but the fourth has a
slightly different resistance, ∆R more than the other branches,
such that its total resistance is R+ ∆R.

In terms of the source voltage Vs, base resistance R and change in
resistance ∆R, what is the potential difference between points a
and b? You may assume the voltage source and wires are perfect
(no internal resistance and no voltage drop, respectively).

R R

R R+ΔR

Vs a b

Wheatstone Bridge

Remember that ideal voltmeters draw no current, so the meter in the center of the bridge doesn’t
really do anything. If we label the nodes on the bridge a-d, as shown in the figure at right, the
voltmeter simply tells us the potential difference between points d and b, ∆Vdb. Knowing that, we
will simply leave it out of our diagram to make things a bit more clear.

Looking more carefully at the bridge, we notice that it is nothing more than two sets of series
resistors, connected in parallel with each other. This immediately means that the voltage drop
across the left side of the bridge, following nodes a→d→c, must be the same as the voltage drop
across the right side of the bridge, following nodes a→b→c – both are ∆Vac, and both must be the
same as the source voltage: ∆Vac=Vs. If we can find the current in each resistor, then with the
known source potential difference we will know the voltage at any point in the circuit we like, and
finding ∆Vdb is no problem.

Let the current from the source Vs be I. This current I leaving the source will at node a split in
to separate currents I1 and I2; conservation of charge requires I= I1 + I2. At node c, the currents
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recombine into I. On the leftmost branch of the bridge, the current I1 creates a voltage drop I1R
across each resistor. Similarly, on the rightmost branch of the bridge, each the resistor R has a
voltage drop I2R and the lower resistor has a voltage drop I2 (R+ δR). Equating the total voltage
drop on each branch of the bridge:

Vs = I1R+ I1R = I2R+ I2 (R+ δR)

=⇒ I1 =
Vs

2R

I2 =
Vs

2R+ δR

Now that we know the currents in terms of known quantities, we can find ∆Vdb by “walking” from
point d to point b and summing the changes in potential difference. Starting at node d, we move
toward node a against the current I1, which means we gain a potential difference I1R. Moving from
node a to node b, we move with the current I2, which means we lose a potential difference I2R.
Thus, the total potential difference between points d and b must be

∆Vdb = I1R− I2R = R (I1 + I2) = R

(
Vs

2R
−

Vs

2R+ δR

)
∆Vdb = Vs

(
1
2

−
R

R+ δR

)
= Vs

(
δR

4R+ 2δR

)

If the change in resistance δR is small compared to R (δR�R), the term in the denominator can
be approximated 4R+ δR ≈ 4R, and we have

∆Vdb = Vs
δR

4R
(δR� R)

Thus, for small changes in resistance, the voltage measured across the bridge is directly proportional
to the change in resistance, which is the basic utility of this circuit: it allows one to measure small
changes on top of a large ‘base’ resistance. Fundamentally, it is a difference measurement, meaning
that one directly measures changes in the quantity of interest, rather than measuring the whole
thing and trying to uncover subtle changes. This behavior is very useful for, e.g., strain gauges,
temperature sensors, and many other devices.

Let z = 0 at the intersection of the plane of the bottom coil and the z axis. The field from the
bottom coil at an arbitrary point a distance z along the axis due to the bottom coil is just the
quantity given above. At a position z, since the separation of the coils is R, we are a distance R− z

from the upper coil. We need only replace z with R − z in the expression above to find the field
from the upper coil at a distance z < R from the bottom coil. Since the currents are in the same
directions for both coils, the magnetic fields are in the same direction, and we may just add them
together:
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2 9. A Helmholtz coil consists of two identical circular
coils separated by a distance equal to their radius R,
as shown at right. Each carries current I in the same
direction. Find the field at any point along the axis
between the two coils (the z axis in the figure). Hint:
The field from a single loop of radius R a distance z
along the axis is:

B =
µ0I

2
R2

(z2 + R2)3/2
(single loop)

I I

z

Helmholtz Coil

Btot = Blower + Bupper =
µoI

2
R2

(z2 + R2)3/2
+
µoI

2
R2[

(R− z)2 + R2
]3/2



Constants:

NA = 6.022× 1023 things/mol

ke =
1

4πεo
= 8.98755× 109 N ·m2 ·C−2

µo ≡ 4π× 10−7 T ·m/A

εo =
1

4πke
= 8.85× 10−12 C2/N ·m2

e = 1.60218× 10−19 C

h = 6.6261× 10−34 J · s = 4.1357× 10−15 eV · s

 h =
h

2π

c =
1

√
µ0ε0

= 2.99792× 108 m/s

me− = 9.10938× 10−31 kg = 0.510998MeV/c2

mp+ = 1.67262× 10−27 kg = 938.272MeV/c2

m
n0 = 1.67493× 10−27 kg = 939.565MeV/c2

1u = 931.494MeV/c2

hc = 1239.84eV · nm

Quadratic formula:

0 = ax2 + bx2 + c =⇒ x =
−b±

√
b2 − 4ac

2a

Basic Equations:
~Fnet = m~a Newton’s Second Law

~Fcentr = −
mv2

r
r̂ Centripetal

Magnetism

|~FB| = q|~v ||~B | sin θvB

|~FB| = BIl sin θ wire

~B =
µ0I

2πr
θ̂ wire

~B =
µ0I

2r
θ̂ loop

~B = µ0
N

L
I ẑ ≡ µ0nI ẑ solenoid

|~F12|

l
=

µ0I1I2
2πd

2 wires, force per length

Current:

I =
∆Q

∆t
= nqAvd

J =
I

A
= nqvd

vd =
−eτ

m
E τ = scattering time

ρ =
m

ne2τ

∆V =
ρl

A
I = RI

R =
∆V

I
=
ρl

A

P = E · ∆t = I∆V = I2R =
[∆V]2

R
power

Ohm:

∆V = IR

P = E · ∆t = I∆V = I2R =
[∆V]2

R
power

EM Waves:

c = λf =
|~E |

|~B |

I =

[
photons

time

] [
energy

photon

] [
1

Area

]
I =

energy

time · area
=
EmaxBmax

2µ0
=

power (P)

area
=
E2
max

2µ0c

Electric Potential:

∆V = VB −VA =
∆PE

q

∆PE = q∆V = −q|~E ||∆~x | cosθ = −qEx∆x

↑ constant E field

Vpoint charge = ke
q

r

PEpair of point charges = ke
q1q2
r12

PEsystem = sum over unique pairs of charges =
∑

pairs ij

keqiqj
rij

−W = ∆PE = q(VB −VA)

Optics:

E = hf =
hc

λ

n =
speed of light in vacuum

speed of light in a medium
=
c

v

λ1
λ2

=
v1
v2

=
c/n1
c/n2

=
n2
n1

refraction

n1 sin θ1 = n2 sin θ2 Snell’s refraction

λf = c

M =
h′

h
= −

q

p

1

f
=

1

p
+

1

q
=

2

R
mirror & lens

n1
p

+
n2
q

=
n2 −n1
R

spherical refracting

q = −
n2
n1
p flat refracting

1

f
=

(
n2 −n1
n1

)[
1

R1
−

1

R2

]
lensmaker’s

Electric Force & Field
~Fe,12 = q~E12 =

keq1q2
r212

r̂12

~E = ke
|q|

r2

ΦE = |~E |A cosθEA =
Qinside
ε0

∆PE = −W = −q|~E ||∆~x | cosθ = −qEx∆x

↑ constant E field

Capacitors:

Qcapacitor = C∆V

Cparallel plate =
ε0A

d

Ecapacitor =
1

2
Q∆V =

Q2

2C
Ceq, par = C1 +C2

Ceq, series =
C1C2
C1 +C2

Cwith dielectric = κCwithout

8



Resistors:

IV source =
∆Vrated
R+ r

∆VV source = ∆Vrated
R

r+R

II source = Irated
r

r+R

Req, series = R1 +R2

1

Req, par
=

1

R1
+

1

R2

RC circuits

QC(t) = Q0

[
1 − e−t/τ

]
charging

QC(t) = Q0e
−t/τ discharging

Q(t) = C∆V(t)

τ = RC

Vectors:

|~F | =
√
F2x + F2y magnitude

θ = tan−1
[
Fy
Fx

]
direction

Induction:

ΦB = B⊥A = BA cos θBA

∆V = −N
∆ΦB

∆t

L = N
∆ΦB

∆I
=
NΦB
I

∆V = |~v ||~B |l = |~E |l motional voltage

ac Circuits

τ = L/R RL circuit

τ = RC RC circuit

XC =
1

2πfC
“resistance” of a capacitor for ac

XL = 2πfL “resistance” of an inductor for ac

ωcutoff =
1

τ
= 2πf

Relativity

γ =
1√

1 − v2
c2

∆t′moving = γ∆tstationary = γ∆tp

L′moving =
Lstationary

γ
= γ (x− vt)

∆t′ = t′1 − t′2 = γ

(
∆t−

v∆x

c2

)

vobj =
v+ v′obj

1 +
vv′obj
c2

v′obj =
vobj − v

1 −
vvobj
c2

KE = (γ− 1)mc2

Erest = mc2 p = γmv

E2 = p2c2 +m2c4

Right-hand rule #1

1. Point the fingers of your right hand along the direction of ~v .

2. Point your thumb in the direction of ~B .

3. The magnetic force on a + charge points out from the back of your

hand.

Right-hand rule #2:

Point your thumb along the direction of the current (magnetic field).

Your fingers naturally curl around the direction the magnetic field (cur-

rent) circulates.

Unit Symbol equivalent to

newton N kg·m/s2

joule J kg·m2/s2 =N·m
watt W J/s=m2·kg/s3

coulomb C A·s
amp A C/s

volt V W/A=m2·kg/·s3·A
farad F C/V=A2·s4/m2·kg

ohm Ω V/A=m2·kg/s3·A2

tesla T Wb/m2 =kg/s2·A
electron volt eV 1.6× 10−19 J

- 1T ·m/A 1N/A2

- 1T ·m2 1V · s
- 1N/C 1V/m

Power Prefix Abbreviation

10−12 pico p

10−9 nano n

10−6 micro µ

10−3 milli m

10−2 centi c

103 kilo k

106 mega M

109 giga G

1012 tera T
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