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Problem Set 4: Mostly Magnetic

Instructions:

1. Answer all questions below. Show your work for full credit.

2. All problems are due Tuesday 24 July 2012 by the end of the day
(11:59pm if electronically submitted, by 5pm as a hard copy)

3. You may collaborate, but everyone must turn in their own work.

1. A uniform magnetic field of magnitude 0.150 T is directed along the positive x axis. A positron
(a positively-charged electron) moving at 5.00 × 106 m/s enters the field along a direction that
makes an angle of 85◦ with the x axis. The motion of the particle is expected to be a helix in this
case. Calculate the pitch p and radius r of the trajectory.
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65. A cyclotron is sometimes used for carbon dating, as
described in Chapter 44. Carbon-14 and carbon-12 ions
are obtained from a sample of the material to be dated,
and accelerated in the cyclotron. If the cyclotron has a
magnetic field of magnitude 2.40 T, what is the difference
in cyclotron frequencies for the two ions?

66. A uniform magnetic field of magnitude 0.150 T is directed
along the positive x axis. A positron moving at 5.00 !
106 m/s enters the field along a direction that makes an
angle of 85.0° with the x axis (Fig. P29.66). The motion of
the particle is expected to be a helix, as described in
Section 29.4. Calculate (a) the pitch p and (b) the radius r
of the trajectory.

70. Table P29.70 shows measurements of a Hall voltage
and corresponding magnetic field for a probe used to
measure magnetic fields. (a) Plot these data, and deduce a
relationship between the two variables. (b) If the measure-
ments were taken with a current of 0.200 A and the sample
is made from a material having a charge-carrier density of
1.00 ! 1026/m3, what is the thickness of the sample?
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Consider an electron orbiting a proton and maintained in
a fixed circular path of radius R " 5.29 ! 10#11 m by the
Coulomb force. Treating the orbiting charge as a current
loop, calculate the resulting torque when the system is in a
magnetic field of 0.400 T directed perpendicular to the
magnetic moment of the electron.

68. A singly charged ion completes five revolutions in a uni-
form magnetic field of magnitude 5.00 ! 10#2 T in
1.50 ms. Calculate the mass of the ion in kilograms.

69. A proton moving in the plane of the page has a kinetic
energy of 6.00 MeV. A magnetic field of magnitude
B " 1.00 T is directed into the page. The proton enters
the magnetic field with its velocity vector at an angle
$ " 45.0° to the linear boundary of the field as shown in
Figure P29.69. (a) Find x, the distance from the
point of entry to where the proton will leave the field.
(b) Determine $%, the angle between the boundary and
the proton’s velocity vector as it leaves the field.

67.

!VH ("V) B (T)

0 0.00
11 0.10
19 0.20
28 0.30
42 0.40
50 0.50
61 0.60
68 0.70
79 0.80
90 0.90

102 1.00

Table P29.70

71. A heart surgeon monitors the flow rate of blood through
an artery using an electromagnetic flowmeter (Fig.
P29.71). Electrodes A and B make contact with the outer
surface of the blood vessel, which has interior diameter
3.00 mm. (a) For a magnetic field magnitude of 0.040 0 T,
an emf of 160 &V appears between the electrodes. Calcu-
late the speed of the blood. (b) Verify that electrode A is
positive, as shown. Does the sign of the emf depend on
whether the mobile ions in the blood are predominantly
positively or negatively charged? Explain.

72. As shown in Figure P29.72, a particle of mass m having
positive charge q is initially traveling with velocity v ĵ. At
the origin of coordinates it enters a region between y " 0
and y " h containing a uniform magnetic field B k̂
directed perpendicularly out of the page. (a) What is the
critical value of v such that the particle just reaches y " h?

The first thing to realize is that a helix is basically a curve described by circular motion in one
plane, in this case the y− z plane, and linear motion along the perpendicular direction, in this case
the x axis. A helix of circular radius a and pitch p can be described parametrically by

x(t) =
pt

2π
y(t) = a cos t

z(t) = a sin t

As we can see, the motion in the y− z plane obeys y2 + z2 =a2, describing a circle of radius a, and
along the x axis we just have constant velocity motion. Since the x, y, and z motions are uncoupled
(e.g., the equation for x(t) has no y’s or z’s in it), things are in fact pretty simple.



The circular motion comes from the component of the velocity perpendicular to the magnetic field,
the component of velocity lying in the y − z plane, which we will call v⊥. The pitch is just how
far forward along the x axis the particle moves in one period of circular motion T . Thus, if the
velocity along the x axis is vx,

p = vxT = (v cos 85◦)T

We have already discovered that the period and radius of circular motion for a particle in a magnetic
field does not depend on the particle’s velocity, it only matters that there is always a velocity
component perpendicular to the magnetic field

T =
2πm
qB

and r =
mv⊥
qB

Putting everything together,

p =
2πmv
Bq

cos 85◦ ≈ 1.04× 10−4 m

r =
mv

qB
sin 85◦ ≈ 1.89× 10−4 m

By the way, here is an interesting tidbit from MathWorld:i

A helix, sometimes also called a coil, is a curve for which the tangent makes a constant angle
with a fixed line. The shortest path between two points on a cylinder (one not directly above
the other) is a fractional turn of a helix, as can be seen by cutting the cylinder along one of
its sides, flattening it out, and noting that a straight line connecting the points becomes helical
upon re-wrapping. It is for this reason that squirrels chasing one another up and around tree
trunks follow helical paths.

2. Find the magnetic field at point P for each of current configurations shown below. Hint for a:
Magnetic due to the straight portions is zero at P. Hint for b: Two half-infinite wires make one
infinite straight wire. Hint c: use superposition and symmetry!

(a) The easiest way to do solve this is by superposition – our odd current loop is just the same
as two quarter circles plus two small straight segments. We know that the magnetic field at the
center of a full circular loop of radius r carrying a current I is

B =
µoI

2r
(loop radius r)

Since the magnetic field obeys superposition, we could just as well say that our full circle is built
ihttp://mathworld.wolfram.com/Helix.html

http://mathworld.wolfram.com/Helix.html
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out of four equivalent quarter circles! The field from each quarter circle, by symmetry, must be one
quarter of the total field, so the field at the center of a quarter circle must simply be

B =
µoI

8r
(quarter circle, radius r)

In other words: a quarter circle gives you a quarter of the field of a full circle. Here we have two
quarter circle current segments contributing to the magnetic field at P : one of radius b, and one
of radius a. The currents are in the opposite directions for the two loops, so their fields are in
opposing directions. The outer loop of radius b has its field pointing into the page, and the inner
loop of radius a has its field pointing out of the page, so if we (arbitrarily) call in plane direction
positive, we can subtract the field of the smaller loop from that of the larger.

What about the straight bits of wire? For those segments, the direction field is zero. Since the
magnetic field “circulates” around the wire, along the wire axis it must be zero. Even if it were
not, by symmetry the two straight bits would have to give equal and opposite contributions and
cancel each other anyway. There is no field contribution at P from the straight segments! Thus,
the total field is just that due to the quarter circle bits,

~B =
µoI

8b
− µoI

8a
=
µoI

8

(
1
b
− 1
a

)

(b) There is a sneaky way to solve this problem using symmetry. Qualitatively, we can immediately
observe that the field must point out of the plane of the page. Think of the hairpin as being broken
up into three sections: an upper semi-infinte wire, a half circle, and a lower semi-infinite wire. All
three segments give the same direction of field at P . Further, if we were to rotate the entire hairpin
in the plane of the page, this will not change. Do that in your head once . . . rotate the entire setup,
say, 90◦ clockwise, and you will find that the magnetic field at P will not change. If this is the
case, let us consider the particular case where we have the same arrangement of wires rotated a
full 180◦, and add this to the existing setup, as shown below:

Since both the “normal” and “rotated” hairpins give the same field, this arrangement just gives
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us twice the field of the original arrangement. With this arrangement, we can break the problem
down into two infinite wires and a single circular loop of radius r. We have already calculated the
field due to straight wires and loops; at point P , these three fields superimpose, and the calculation
is trivial:

2B =
µoI

2πb
+
µoI

2πb
+
µoI

2b
=⇒ B =

µoI

4πb

(
1 +

2
π

)

3. Find the force on a square loop (side a) placed as shown below, near an infinite straight wire.
Both loop and wire carry a steady current I.

a
a

d

I

I

We know how to find the force between parallel segments of wire. If the parallel segments are of
length l, we know

F =
µoI1I2l

2πd
(1)

Here we have a top parallel segment of length a a distance d+a away, and a bottom parallel segment
a distance d away. The bottom segment has its current antiparallel to the main wire, making this a
repulsive force, while the top segment has its current parallel to the main wire, giving an attractive
force. In finding the net force, this means we should subtract the force on the top segment from



that on the bottom, since they act in opposite directions.

What about the sides? We have to think carefully about the directions now. Charges in the left
segment move at a right angle to the field from the main wire (which pokes out of the page at the
position of the left segment), and will feel a force to the right. Charges in the right segment, by
the same logic, will feel a force to the left. These forces will be equal and opposite, and the net
effect on the loop, if it is rigid, will cancel. (Were the loop flexible, it would be squished along the
horizontal direction.
Overall, the net force is just the difference between that on the top segment and that on the bottom:

Fnet = Fbott − Ftop =
µoI

2a

2πd
− µoI

2a

2π (d+ a)
=
µoI

2a

2π

(
1
d
− 1
d+ a

)
=
µoI

2

2π
a2

d (d+ a)
(2)

4. What is the induced EMF between the ends of the wingtips of a Boeing 737 when it is flying
over the magnetic north pole? The internet has most of the numbers you require.

The induced voltageii can be found by considering the motion of the conducting metal plane in a
perpendicular magnetic field, and making a few seemingly outlandish (but justifiable) assumptions.

First, at the south magnetic pole, the magnetic field will be essentially straight down. If the 737 is
flying level over the ground, this means that its metal (conducting) skin is in motion relative to a
magnetic field. This in turn means that there will be a motionally-induced voltage. If the field is
straight down, and the 737 travels straight forward, then positive charges will experience a force in
the port (left) direction, and negative charges toward the starboard (right). This means that the
wingtips will have a potential difference between them due to the magnetic force on the charges in
the conducting skin. If the wingspan is l meters, the airplane’s velocity v and the vertical magnetic
field B, then we know the potential difference due to motion in a magnetic field is ∆V =Blv.

The wingspan of a 737 is roughly 30 m, and its cruising speed is about 200 m/s.iii Currently, the
earth’s magnetic fieldiv at the south magnetic polev is about 60µT. Putting this together,

∆V = Blv = (60µT) (30 m) (200 m/s) ≈ 0.36 V

iiI try to avoid using the term“EMF” and usually just use “voltage” instead. EMF is a bit antiquated and tends
to confuse students in my opinion. If you see “EMF” just read it as “potential difference” or “voltage.”

iiihttp://en.wikipedia.org/wiki/Boeing_737
ivhttp://www.ngdc.noaa.gov/geomag/magfield.shtml
vhttp://en.wikipedia.org/wiki/South_Magnetic_Pole

http://en.wikipedia.org/wiki/Boeing_737
http://www.ngdc.noaa.gov/geomag/magfield.shtml
http://en.wikipedia.org/wiki/South_Magnetic_Pole


5. Show that, if the condition R1R2 =L/C is satisfied by the components of the circuit below, the
difference in voltage between points A and B will be zero at any frequency.
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