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Problem Set 5: Solutions

1. What is the apparent depth of a swimming pool in which there is water of depth 3 m: (a) when
viewed from normal incidence, and (b) when viewed at an angle of 60◦ with respect to the surface
normal? The refractive index of water is 1.33.

As always, we first need to draw a little picture of the situation at hand.
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Note that the angle of incidence θi is with respect to the normal of the water’s surface itself, rather
than with respect to the air-water interface, as that is our usual convention. That means we are
interested in the incident angles for the observer of 90◦ (normal) and 60◦. The depth of the pool
will be dreal = 3 m. If an observer views the bottom of the pool with an angle θi with respect to
the surface normal, refracted rays from the bottom of the pool will be bent away from the surface
normal on the way to their eyes. That is, rays emanating from the bottom of the pool will make
an angle θr<θi with respect to the surface normal, and rays exiting the pool will make an angle θi
with the surface normal. This is owing to the fact that the light will be bent toward the normal in
the faster medium, the air, on exiting the water.

What depth does the observer actually see? They see what light would do in the absence of refrac-
tion, the path that light rays would appear to take if the rays were not “bent” by the water. In
this case, that means that the observer standing next to the pool would think they saw the light
rays coming from an angle θi with respect to the surface normal (dotted line in the pool). The
lateral position of the bottom of the pool would remain unchanged. If the real light rays intersect
the bottom of the pool a distance h from the edge, then the apparent bottom of the pool is also a
distance h from the edge of the pool. Try demonstrating this with a drinking straw in a glass of



water!

So what to do? First off, we can apply Snell’s law. If the index of refraction of air is na, and the
water has an index of refraction nw, then

nw sin θr = na sin θi (1)

We can also use the triangle defined by dreal and h:

tan θr =
h

dreal
(2)

as well as the triangle defined by dreal and hi:

tan (90− θi) =
dapp

h
=

1
tan θi

(3)

Solving the last two equations for h,

h = dreal tan θr = dapp tan θi (4)

=⇒ dapp = dreal

[
tan θr
tan θi

]
(5)

From Snell’s law, we already have a relationship between θr and θi already:

θr = sin−1

[
na sin θi
nw

]
(6)

Putting everything together,

dapp =
dreal

tan θi
tan θr =

dreal

tan θi

[
tan

(
sin−1

[
na sin θi
nw

])]
(7)

If you just plug in the numbers at this point, you would be able to solve part (a) of the question.
Do that, and you should find dapp≈1.49 m.

For part (b), you would have a problem using this expression as-is. One of the angles is θi = 0,
normal incidence, which means we have to divide by zero in the expression above. Dividing by zero
is worse than drowning kittens, far worse. Thankfully, we know enough trigonometry to save the

iAlong with an identify for tan θ, viz., tan (90−θ) = 1/ tan θ



poor kittens.

We can save the kittens by remembering an identity for tan
[
sin−1 (y)

]
. If we have an equation like

θ= sin−1 y, it implies sin θ= θ. This means θ is an angle whose sine is y. If θ in a right triangle,
it has an opposite side y and a hypotenuse 1 so that sin θ= 1, making the adjacent side

√
1− y2.

The tangent of angle θ must then be y/
√

1− y2. Something like this:
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1 θ=sin−1 (y)
tan θ = y/

√
1− y2

Thus, going back to our original example θ=sin−1 y, it must be true that

tan
[
sin−1 (y)

]
=

y√
1− y2

(8)

Using this identity in our equation for dapp,

dapp =
dreal

tan θi

 na sin θi

nw

√
1−

[
na sin θi
nw

]2
 = na

dreal

tan θi

[
sin θi√

n2
w − n2

a sin2 θi

]
=

nadreal cos θi√
n2
w − n2

a sin2 θi
(9)

Viewed from normal incidence with respect to the surface means θi=0 – looking straight down at
the surface of the water. In this case, sin θi=0, and the result is simple:

dapp = dreal
na
nw
≈ 2.26 m (10)

Viewed from 60◦ with respect to the normal gives, as before,

dapp = dreal cos 60

[
1√

1.332 − sin2 60

]
≈ 1.49 m (11)

There are easier ways to solve the normal incidence problem, without endangering any kittens
whatsoever. Solving that problem, however, is a special case, and of limited utility. You would
still have to solve the case of 60◦ incidence separately. I wanted to show you here that solving
the general problem just once is all you need to do, so long as you are careful enough. The easier



way to solve only part (b) would be to use the result we developed for a flat refracting surface,
q=−(n2/n1)p. In the present case, treat the apparent depth as q, the real depth as p, which implies
n2 is air and n1 is water. Since q is on the same side as p, it is negative, so the depth would be −q
away from the interface. That leads us to the following:

−q = dapp =
na
nw

p =
na
nw

dreal normal incidence only (12)

which is in perfect agreement with our expression above, derived from the more general problem.

2. A point source of light is placed at a fixed distance l from a screen. A thin convex lens of focal
length f is placed somewhere between the source and screen, a distance q from the screen and p

from the source. The lens is moved back and forth between the source and screen, but both screen
and source remain fixed, thus p + q= l at all times. What is the minimum value of l such that a
focused image will be formed at two different positions of the lens?

What we are told is that p + q = l at all times. We can also use the lens equation which relates
p, q, and the focal length f : 1/p + 1/q= 1/f . What will determine the minimum value for l? If
we want to focus an image, we need to have a real image, not a virtual one. For a convex lens,
this will happen only when p > f . We also know that q must be positive for the image to be
real. Combining these two facts, certainly we must have l= p+q > f since it must be separately
true that p > f and q > 0. Thus, we need only make sure that q is real and positive in order to
have a real image formed – if q is negative, the image is virtual. If q is imaginary, so is the image . . .

Mathematically, what we want to do is combine the two expressions we have into a single one that
relates q to f and l (by eliminating p), since f and l are the fixed constants in this problem. We
then enforce that q is real and positive, and the conditions under which this is true will give the
minimal value of l. There are several ways to combine the equations and solve for q. Here are two
ways to go about it, each giving the same result in the end:

Method 1
l = p+ q =⇒ p = l − q (13)

1
q

=
1
f
− 1
p

=
1
f
− 1
l − q

(14)

1
q

=
l − q

f (l − q)
− f

f (l − q)
(15)

1
q

=
l − q − f
f (l − q)

(16)

fl − fq = ql − q2 − qf (17)

q2 − lq + fl = 0 (18)

Method 2
l = p+ q =⇒ p = l − q

(19)
1
f

=
1
p

+
1
q

=
p+ q

pq
=

l

pq
(20)

1
f

=
l

pq
=

l

q (l − q)
(21)

ql − q2 = fl (22)

q2 − lq + fl = 0 (23)



Both cases lead us to:

q =
1
2

(
l ±
√
l2 − 4fl

)
(24)

From the solution to the quadratic above, we can see that there are two real image positions q1
and q2 when the factor under the square root is positive, which occurs when l2 > 4fl or l > 4f .
When the length l is exactly four times the focal length, l= 4f , there is only one solution to the
quadratic, and this is the minimum l which gives q real and positive. Thus, the critical position is
when l=4f , which results in q= l

2 and q=p.

3. Referring to the previous question, it is found that at one position the image height is a, while
at the second, the image height is b. Show that the height of the object is

√
ab.

In order to find the image height, we need the magnification factor. To get the magnification factor,
we need p and q for both image positions. The previous problem gives us two image positions q1
and q2 for any l>4f :

{q1, q2} =
1
2

(
l ±
√
l2 − 4fl

)
(25)

or more explicitly,

q1 =
1
2

(
l +
√
l2 − 4fl

)
(26)

q2 =
1
2

(
l −
√
l2 − 4fl

)
(27)

There will be corresponding values for the object positions p in each case, given by pi= l − qi.

p1 = l − q1 =
1
2

(
l −
√
l2 − 4fl

)
(28)

p2 = l − q2 =
1
2

(
l +
√
l2 − 4fl

)
(29)

In fact, p1 =q2 and p2 =q1, and this is no accident: the problem is completely symmetric if we swap
image and object, so it must come out this way.

We know we have two positions for image and object, and we know that the image height is different
in each case (while of course the object height is constant). Knowing the magnification factor for a
spherical lens is M=−q/p, we can relate the two heights in each case. Let the images have heights
a and b for cases 1 and 2, respectively, and call the object height h. Then



M1 =
a

h
= − q1

p1
(30)

M2 =
b

h
= − q2

p2
(31)

This doesn’t do much good yet, as we know neither h, M1, nor M2. However, we can multiply the
two equations we have:

ab

h2
=
q1q2
p1p2

(32)

Now remember that we noted p1 =q2 and p2 =q1, and we are done:

ab

h2
=
q1q2
p1p2

=
q1q2
q2q1

= 1 (33)

=⇒ h =
√
ab (34)

If you didn’t notice this, you can work it out explicitly, it isn’t much more work. First, q1q2. Note
that the product has the form (x+ y)(x− y)=x2 − y2 to make things easier.

q1q2 =
[

1
2

(
l +
√
l2 − 4fl

)] [1
2

(
l −
√
l2 − 4fl

)]
=

1
4

(
l +
√
l2 − 4fl

)(
l −
√
l2 − 4fl

)
(35)

=
1
4
[
l2 −

(
l2 − 4fl

)]
= fl (36)

Not as messy as it looks. For the denominator, p1p2, we know the result will be the same since
p1 =q2 and p2 =q1:

p1p2 =
[

1
2

(
l −
√
l2 − 4fl

)] [1
2

(
l +
√
l2 − 4fl

)]
=

1
4
[
l2 −

(
l2 − 4fl

)]
= fl (37)

Different method, same result: q1q2/p1p2 =1, and thus h=
√
ab.

4. A spherical mirror which forms only virtual images has a radius of curvature of R=0.5 m. (a)
Is the mirror concave or convex? What is the focal length of the mirror? (b) Where should an
object be placed to obtain a magnification of +0.5?

If the images are always virtual, the mirror must be convex. A concave mirror will only form
virtual images if p< f . The focal length is |f |=R/2 in general. When we form a virtual mirror
with a convex lens, we are forming the image on the far side of the mirror, where both q and the
focal length f are negative. This means f=−R/2=−0.25 m.



We desire M =+0.5, and we know for a spherical mirror M =−q/p. This tells us that q=−Mp=
−0.5p. As noted above, since the image is virtual and formed behind the mirror, q<0, and this is
consistent with both M and p being positive (as p must be if the object is in front of the mirror).
We can use this in the mirror equation to find p:

1
p

+
1
q

=
1
p
− 1
Mp

=
1
p

(
1− 1

M

)
=

1
f

= − 2
R

(38)

=⇒ p = −R
2

(
1− 1

M

)
=
R

2

(
1
M
− 1
)

=
0.25 m

2

(
1

0.5
− 1
)

= 0.25 m (39)

Thus, the object should be placed at p=0.25 m, which gives q=−0.125 with M=+0.5, consistent
with f=−R/2=−0.25 m.


