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1. 10 points. In the 1996 movie Eraser, a corrupt business Cyrez is manufacturing a handheld rail gun which fires aluminum
bullets at nearly the speed of light. Let us be optimistic and assume the actual velocity is 0.75 c. We will also assume that the
bullets are tiny, about the mass of a paper clip, or m=5× 10−4 kg.

(a) What is the relativistic kinetic energy of such a bullet? (b) What rest mass would have to be completely converted to
energy to supply this kinetic energy? Note that 1 kg of TNT has an equivalent energy content of about 4× 109 J.

Calculating the relativistic kinetic energy is straightforward. Let mb be the mass of the bullet, and v its velocity.

KE = (γ − 1) mbc
2

=

 
1p

1− v2/c2
− 1

!
mc2

=

„
1√

1− 0.752
− 1

«`
5× 10−4 kg

´ `
3× 108 m/s

´2
= (1.51− 1)

`
4.5× 1013 kg ·m2/s2

´
= 2.30× 1013 J ≈ 5700 kg of TNT

We would like to supply this much energy by converting some bit of rest mass mr completely to energy. Thus, the kinetic
energy above should be equated with the rest energy of a mass mr used as propellant:

KEbullet = Erest, propellant

(γ − 1) mbc
2 = mrc

2

mr = (γ − 1) mb

mr ≈ (1.51− 1)
`
5× 10−4 kg

´
mr ≈ 2.56× 10−4 kg

In other words, in order to supply enough energy for the bullet to reach 0.75c, we would need the energy equivalent of a rest
mass of 2.56× 10−4 kg, about half the mass of the bullet itself.

2. 10 points. Two identical point charges +q are located on the y axis at y = +a and y = −a. (a) What is the electric
potential for an arbitrary point (x,y)?

We have two charges q separated by a distance 2a. We will choose the origin O to be precisely between the two charges, along
the line connecting the charges, and we wish to calculate the electric potential at an arbitrary point P(x, y) We can readily
write down the potential at the point P – it is just a superposition of the potential due to each of the charges alone.

For a single charge (call it q1) at position (0, a), the distance r1 to an arbitrary point (x,y) is readily found in two dimensions:

r1 =

q
x2 + (y − a)2



Given the distance and the magnitude of the charge, finding the electric potential V1 is easy too:

V1(x, y) =
keq1

r1
=

keq1q
x2 + (y − a)2

(1)

The potential due to the second charge has the same form, only the distance changes:

V2(x, y) =
keq2

r2
=

keq1q
x2 + (y + a)2

(2)

The total potential at P(x, y) is found by superposition - it is just the sum of the separate potentials due to each charge. Since
electric potential is a scalar, we don’t even need to worry about vectors:

Vtot(x, y) = V1(x, y) + V2(x, y) = ke

24 q1q
x2 + (y + a)2

+
q2q

x2 + (y − a)2

35
(extra) How about the electric field? There is no trick to this one either, you just have to grind through it. First, consider
one charge alone, and find the electric field due to it at point (x,y). Then find the x and y components. Do the same for the
other charge, and add the x and y components for each together to find the total field. It is messy.

Given the distance and the magnitude of the charge, finding ~E is easy too. For the first charge,:

|~E1| =
keq1

r2
1

=
keq1

x2 + (y − a)2

For the second charge, the total field at (x,y) is almost the same, only the distance changes: r2 ==
q

x2 + (y + a)2:

|~E2| =
keq2

r2
2

=
keq2

x2 + (y + a)2

The field due to both charges together can be found by superposition. Since electric field is a vector, we need to find the x and
y components of ~E1 and ~E2 and add them together: Ex,total =Ex,1 + Ex,2. In order to find the x components, we need to find
the angles θ1 and θ2 that r1 and r2 make with the x axis, since Ex =E cos θ.

cos θ1 =
x

r1
=

xq
x2 + (y − a)2

cos θ2 =
x

r2
=

xq
x2 + (y + a)2

Thus, the x components of the field are:

Ex,1 = E1 cos θ1 =
keq1

x2 + (y − a)2
· x

r1
=

keq1

x2 + (y − a)2
· xq

x2 + (y − a)2
=

keq1xˆ
x2 + (y − a)2

˜ 3
2

Ex,2 = E2 cos θ2 =
keq2

x2 + (y + a)2
· x

r2
=

keq2

x2 + (y + a)2
· xq

x2 + (y + a)2
=

keq2xˆ
x2 + (y + a)2

˜ 3
2

Ex,total = Ex,1 + Ex,2

For the y component, we need the sin of the relevant angles:



sin θ1 =
y

r1
=

yq
x2 + (y − a)2

sin θ2 =
y

r2
=

yq
x2 + (y + a)2

Thus, the y components of the field are:

Ey,1 = E1 sin θ1 =
keq1

x2 + (y − a)2
· y

r1
=

keq1

x2 + (y − a)2
· yq

x2 + (y − a)2
=

keq1yˆ
x2 + (y − a)2

˜ 3
2

Ey,2 = E2 sin θ2 =
keq2

x2 + (y + a)2
· y

r2
=

keq2

x2 + (y + a)2
· yq

x2 + (y + a)2
=

keq2yˆ
x2 + (y + a)2

˜ 3
2

Ey,total = Ey,1 + Ey,2

We are told that both charges are the same, q1 =q2≡q. Doing that, we can put the whole mess together:

~E = keq

24 xˆ
x2 + (y + a)2

˜ 3
2

+
xˆ

x2 + (y − a)2
˜ 3

2

35 x̂ + keq

24 yˆ
x2 + (y + a)2

˜ 3
2

+
yˆ

x2 + (y − a)2
˜ 3

2

35 ŷ

(b) A circular ring of charge of radius a has a total positive charge Q distributed uniformly around it. The ring is in the x=0
plane with its center at the origin. What is the electric field (both magnitude and direction) along the x axis at an arbitrary
point x=b due to the ring of charge? Hint: Consider the total charge Q to be made up of many pairs of identical charges placed
on opposite points on the ring.

3. 10 points. The purely electrostatic crystallization energy for a mole of crystalline solid can be found by considering
the electrostatic potential energy of a lattice of ionic charges. We found that it could be expressed as a factor M times the
electrostatic energy of a single pair of ions:

Ecryst = −NAz2e2M

4πε0r

where NA is Avogadro’s number, z is the charge per ion in the crystal, r is the distance between ions in the crystal, and M is the
Madelung constant for the lattice as discussed in the notes. The values of M , z, and r for several common solids crystallizing
in the rocksalt (NaCl) structure are given below.

Compound chg/ion M r (pm)

LiF e 1.748 201.4
LiCl e 1.748 257.0
LiBr e 1.748 275.1
NaCl e 1.748 282
NaBr e 1.748 289.9

Note that 1 pm=10−12 m. As it turns out, the energy of crystallization determined from electrostatics is essentially the same
energy required to separate a mole of solid into a gas of its ions - we need additionally only a small correction factor to account
for the repulsion of the ions at small distances due to quantum effects.

(a) Calculate the crystallization energy, in electron volts, for the compounds in the table above. Which compound is the
“most stable?”



We really just need to use the formula above and plug in the relevant numbers - being very careful with units. Note that the
charge per ion, z, is given in units of the elementary charge e - thus, z=1 for all of the compounds in the table, since they are
all salts made of monovalent alkali metals and halogens. What we really mean by z is “how many units of elementary charge
are there per ion,” and the answer is clearly 1 for these compounds. Probably, the table should have just listed 1 instead of e
to make this less confusing. Anyway, start like this, for LiF, noting that 1/4πε0 =ke:

ELiF = −NAz2e2M

4πε0r
= −keNAz2e2M

r

= −
`
9× 109 N ·m2/C2

´ `
6.02× 1023 mol−1

´
(1)2

`
1.602× 10−19 C

´2
(1.748)

201.4× 10−12 m

≈ −1.21× 106 J/mol = −1210 kJ/mol

This is not far from the accepted value of −1036 kJ/mol. Now we just do this for the other compounds in the table ... the
results are summarized below, in kJ/mol and eV/ion.i The most stable compound is the one with the lowest crystallization
energy, or the one that gains the most energy by crystallizing. In this case, it is LiF, which gains 1210 kJ/mol by crystallizing.
NaBr gains “only” 838 kJ/mol, which makes it less stable. Remember: negative energies generally mean a bound stable state,
and the more negative, the more stable.

Compound Ecryst (kJ/mol) Ecryst (eV/ion)

LiF -1210 -12.5
LiCl -946 -9.81
LiBr -884 -9.17
NaCl -862 -8.94
NaBr -838 -8.69

(b) Lime, CaO, is know to have the same structure as NaCl (and thus the same Madelung constant) and the edge length of
the unit cell for CaO is 481 pm. Thus, Ca-O distance is 241 pm. Evaluate the energy of crystallization, Ecryst for CaO.

Now one thing you need to remember from chemistry is that both Ca and O are doubly charged ions - Ca is 2+ and O is 2−.
Thus, there are 2 unit charges per ion, and z = 2. Other than that, we proceed as before. Since the crystal structure is the
same, so is M , we need only change z and r:

ECaO = −NAz2e2M

4πε0r
= −keNAz2e2M

r

= −
`
9× 109 N ·m2/C2

´ `
6.02× 1023 mol−1

´
(2)2

`
1.602× 10−19 C

´2
(1.748)

241× 10−12 m

≈ −4034 kJ/mol = −41.8 eV/ion

(c) Calculate the crystallization energy for MgO, for which z=2 and r=286 pm.

Proceed exactly as in (b):

EMgO = −NAz2e2M

4πε0r
= −keNAz2e2M

r

= −
`
9× 109 N ·m2/C2

´ `
6.02× 1023 mol−1

´
(2)2

`
1.602× 10−19 C

´2
(1.748)

286× 10−12 m

≈ −3400 kJ/mol = −35.2 eV/ion

We note that all of these numbers are within about 10% or so of what a modern density functional theory calculation would
give - the 10% we miss has to do with the repulsive forces when we try to push ions too close together, which we covered briefly

iIn order to get the latter, divide the kJ/mol result by NA to get J/ion, and then divide by 1.6× 10−19 J/eV to get eV/ion.



in quantum physics. The bulk of the total energy of a crystal, however, is just tied up in electrostatic energy.

4. A parallel plate capacitor has a capacitance C when there is vacuum between the plates. The gap between the plates is half
filled with a dielectric with dielectric constant κ in two different ways, as shown below. Calculate the effective capacitance, in
terms of C and κ, for both situations. Hint: try breaking each situation up into two equivalent capacitors.

κ

κ

(a) (b)

Dielectric parallel to the plates. It is easiest to think of this as two capacitors in series, both with half the plate spacing - one
filled with dielectric, one with nothing. First, without any dielectric, we will say that the original capacitor has plate spacing
d and plate area A. The capacitance is then:

C0 =
ε0A

d
(3)

The upper half capacitor with dielectric then has a capacitance:

Cd =
Kε0A

d/2
=

2Kε0A

d
= 2KC0 (4)

The half capacitor without then has

Cnone =
ε0A

d/2
=

2ε0A

d
= 2C0 (5)

Now we just add the two like capacitors in series:

1

Ceff
=

1

2KC0
+

1

2C0
(6)

Ceff =
4KC2

0

2KC0 + 2C0
(7)

=
2K

1 + K
C0 (8)

Dielectric “perpendicular” to the plates. In this case, we think of the half-filled capacitor as two capacitors in parallel, one
filled with dielectric, one with nothing. Now each half capacitor has half the plate area, but the same spacing. The upper half
capacitor with dielectric then has a capacitance:

Cd =
Kε0

1
2
A

d
=

Kε0A

2d
=

1

2
KC0 (9)

The half capacitor without then has

Cnone =
ε0

1
2
A

d
=

ε0A

2d
=

1

2
C0 (10)

Now we just add our parallel capacitors:



Ceff =
1

2
KC0 +

1

2
C0 (11)

=
1

2
(K + 1) C0 (12)

=
K + 1

2
C0 (13)

5. 10 points. The battery in your car stores about 103 W · h worth of energy at a potential difference of 12V. One day while
doing yard work, you decide to run your 200W car stereo without the engine running. In order to start your car, you need to
deliver 500A at 7.2V for at least 1 sec. How long can you run your stereo before you can no longer start the car?

This is basically a conservation of energy problem: your battery has only so much energy available, and you want to use it all
up between the stereo and starting the car. The total energy of the battery should first be converted into W · s, or Joules:

Ebatt =
`
103 W · h

´
(3600 s/h) = 3.6× 106 J

The power required to start the car can be found from the given current and voltage requirements. Then, noting that energy
is power times time, we can find how many Joules should be required to start the car:

Pstart = (500 A) (7.2V) = 3600W

Estart = Pstart∆tstart = 3600 J

The power used by the stereo is just its power times the time we are able to run it:

Estereo = Pstereo∆tstereo = (200 W) ∆tstereo

Now we just set up the total energy balance, and solve for our one unknown - how long we can afford to run the stereo:

Ebatt = Estart + Estereo

3.6× 106 J = 3600 J + (200W) ∆tstereo

∆tstereo ≈ 18000 s ≈ 5 h

Of course, the reality of things is always different - can a nearly dead battery really still generate 500 A? When entering the
real world, one should always give these estimates a hefty safety margin. Better yet, buy an iPod. It is far more stylish and
efficient, if not cheaper.

6. 10 points. How many different resistance values can be constructed from a 2Ω, 4Ω, and a 6Ω resistor? (You only have
one of each.) Show how you would get each resistance value either individually or by combining them.

There is no trick: just find them by brute force. There are 16 different values of resistance.

combination number of ways resistances (Ω)

single resistor 3 2, 4, 6
2 in series 3 6, 8, 10
2 in parallel 3 1.3, 1.5, 2.4
3 in series 1 12
3 in parallel 1 1.1
1 in parallel with series comb. of other 2 3 1.7, 2.7, 3.0
1 in series with parallel comb. of other 2 3 4.4, 5.5, 7.3



There are 17 combinations overall, but a resistance of 6Ω shows up twice. Thus, there are 16 different resistance values. If we
insist that all three resistors are used (which we did not), then of course there are only 8.

7. 10 points. An electron is moving at a speed of 0.01c on a circular orbit of radius 10−10 m around a proton. (a) What is
the strength of the resulting magnetic field at the center of the orbit? (The numbers given are typical, in order of magnitude,
for an electron in an atom.)

The easiest way to proceed is to consider the electron in its circular orbit to be a very tiny current loop. But what is the
current? Think back to the definition of current: I = ∆Q/∆t. The electron has a constant speed v in its orbit, which means
that the “current” corresponding to this single charge is just the amount of charge −e divided by how long it takes to orbit the
nucleus - the circumference divided by the electron’s velocity.

I =
∆Q

∆t

=
−e

2πr/v
=
−ev

2πr

=
−
`
1.6× 10−19 C

´ `
0.1 · 3× 108 m/s

´
2π (10−10 m)

≈ −7.6× 10−4 A = −760 µA

Given this current around a circular loop, we know how calculate the field at the center:

Bcenter =
µ0I

2r
=
−µev

4πr2
≈ −4.8T

(b) If the nucleus of the atom (at the center of the orbit) consists of a single proton, what would its precession frequency be?
Hint: from the nucleus’ point of view, it is orbiting the electron in a circular path. Recall ω=qB/m and ω=2πf .
From the electron’s reference frame, it is the proton that is revolving around it, experiencing the magnetic field due to the
electron. This leads to a precessional motion, for which we can calculate the frequency given the charge (+e) and mass (mp)
of a proton:

f =
ω

2π
=

e|B|
2πm

=
µe2v

8π2mr2
≈ 73MHz

In fact, this is a crude estimate of the hydrogen proton resonance frequency. We are off by a factor of about 2.79, having
neglected all of quantum physics. The missing factor is basically the proton’s “g-factor”, which is a bit too much to go in to
right now ...

8. 10 points. A hydrogen atom initially in its ground state (n=1) absorbs a photon and ends up in the state for which n=3.
If the atom eventually returns to the ground state, what photon energies could the atom emit?

There are two different ways the electron can go from the third to the first level: it can jump from 3 to 1 directly, or it can first
go from 3 to 2, and then from 2 to 1. In the former case, the electron must loose an energy ∆E1 =E3−E1 by emitting a photon.
In the latter case, the electron must first emit a photon of energy ∆E2 =E3−E2, followed by one of energy ∆E3 =E2−E1. This
makes a total of three different photons that can be emitted:

∆E1 = E3 − E1 =
−13.6 eV

32
− −13.6 eV

12
≈ 12.1 eV

∆E2 = E3 − E2 =
−13.6 eV

32
− −13.6 eV

22
≈ 1.89 eV

∆E3 = E2 − E1 =
−13.6 eV

22
− −13.6 eV

12
≈ 10.2 eV



9. 10 points. Initially, the radioactive decay rate of a particular group of nuclei is 300 counts per second. After 5 minutes,
the decay rate drops to about 38 counts per second.

(a) What approximately is the half life of this nucleus?
(b) What will be the approximate decay rate (in counts per second) after 2.5 additional minutes?
The radioactive decay rate (or the number of atoms in the sample, for that matter) follows an exponential law:

R(t) = R0

„
1

2

«t/T1/2

where R0 is the initial rate, R(t) the rate after a time t, and T 1
2

is the half life. If the rate is reduced from 300 to 38 counts

per second after 5 minutes, or 300 seconds:

38 = 300

„
1

2

«300/T1/2

38

300
=

„
1

2

«300/T1/2

ln
38

300
=

300

T1/2

ln
1

2

T1/2 =
300 ln 1

2

ln 38
300

≈ 100 s

After an additional 2.5 minutes, a total of 450 seconds have elapsed. Using the now known half-life with the initial decay rate,
we can find the rate after 450 seconds:

R(t) = R0

„
1

2

«t/T1/2

R(450 s) = 300

„
1

2

«450/100

≈ 13.5 counts/sec

10. 10 points. Calculate the binding energy in MeV of a deuteron (the atom 2
1H), given that its atomic mass is 2.014102 u.

Note that mp+ =1.007825 u, and mn0 =1.00866 5u.

The binding energy is the difference in the mass of the bare protons and neutrons and the nucleus itself, all times c2 to get an
energy. For a deuteron, we have one neutron and one proton, so we add those two masses together, and subtract off the mass
of the deuteron itself:

Binding Energy =

2664 X
all p+

and n0

mc2

3775−matomc2

=

»`
1 p+´ · „1.007825

u

p+

«
+
`
1 n0´ · “1.008665

u

n0

”–
c2 − 2.014102 u · c2

= 0.002388 u · c2

= 0.002388 u · c2

„
931MeV

u · c2

«
= 2.224MeV

Note that in that last step, we used the (given) conversion of 931MeV/u·c2 to get from a mass difference to an energy ...


