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Problem Set 1 SOLUTIONS

1. 0.87c. The proper length of a meter stick, measured in its own reference frame, is obviously 1 m. For a
moving observer to see the meter stick as only L′=0.5 m long, we need a length contraction of a factor 2:

L′ =
Lp

γ
=⇒ Lp

L′ = γ = 2

Thus, for the meter stick to be contracted by a factor 2, we need γ =2. Using the equation for v in terms of γ
above, you should find v=0.87c:
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≈ 0.87c

2. 0.305c. We can use the result of the last problem here - once again, we know γ, and want to find the
corresponding v. Really, just an exercise to make sure you have your algebra down cold ...

v = c

√
1− 1

γ2
= c

√
1− 1

1.052
≈ 0.305c

3. 4.59 s. The proper time is that measured by in the reference frame of the pendulum itself, ∆tp =2.00 sec. The
moving observer has to observe a longer period ∆t′ for the pendulum, since from the observer’s point of view, the
pendulum is moving relative to it. Observers always perceive clocks moving relative to them as running slow.
The factor between the two times is just γ:

∆t′ = γ∆tp =
2.0 s√

1− 0.9002c2

c2

=
2.0 s√

1− 0.81
=

2.0 s√
0.436

≈ 4.59 s



4. 0.87c Once again, the factor between the two times is just γ. The clock at rest measures the proper time ∆tp.
If the moving clock runs only half as fast, its time intervals ∆t′ are twice as long ∆t′=2∆tp. Thus:

∆t′

∆tp
= γ = 2

From the first problem, we know that γ=2 occurs when v≈0.87c

5. 23.4m We presume that the motion is purely along the direction of the spaceship’s length. Since length
contraction occurs only along the direction of motion, the width is unaffected, it still appears to be 25.0 m for the
external observer. Along the direction of motion, the length should appear contracted by a factor γ. remember
that the proper length is that measured at rest. As usual, the primed quantities are for the external observer.

L′ =
Lp

γ

γ =
1√

1− v2

c2

=
1√

1− 0.952
≈ 3.2

=⇒ L′ =
75 m
3.2

≈ 23.4 m

6. 0.99c The first thing we need to do in order to avoid confusion is label everything properly. We will say the
observer on earth is in the unprimed reference frame, and those in the first ship are in the primed frame. Since
the spacecraft are moving in opposite directions, one of them has to be negative. Let us say that spaceship 1 is
moving in the positive direction, so that spaceship 2 has a negative velocity.

v1 = velocity of first ship observed from earth = 0.8c

v2 = velocity of second ship observed from earth = −0.9c

v′2 = velocity of second ship observed from first= ?

What we want to find is v′2, the relative velocity of the two ships. If we completely ignore relativity just for
a minute, what would the answer be? The relative velocity of the two ships would just be the velocity of one
minus the other - we subtract the two velocities as measured from earth to get their relative velocity. Now, to
do it correctly, we just need to use our relativistic velocity subtraction formula, taking care that one of them is
negative:

v′2 =
v2 − v1

1− v2v1
c2

=
−0.9c− 0.8c

1− (0.8) (−0.9)
=
−1.7c

1.72
≈ −0.99c

The overall answer comes out negative, which makes sense: the velocity of ship 2 is still in the negative direction
when viewed from ship 1.

7. 0.98c Just like the last problem, let us first label what we know. Let the observer on the ground be in the
unprimed frame, and the passenger in the car the primed frame:



vb = velocity of the ball relative to the ground = ?
vc = velocity of the car relative to the ground = 0.9c

v′b = velocity of the ball relative to the car = 0.7c

Again, ask yourself how you would figure this out without relativity first, and that will help you pick the proper
relativistic formula. Without relativity, you would just add the velocity of the car relative to the ground and
the velocity of the ball relative to the car. Thus, all we need to do use our correct relativistic velocity addition
formula:

vb =
vc + v′b

1 + vcv′
b

c2

=
1.6c

1 + (0.9) (0.7)
≈ 0.98c

8. 15.4 µs; 649m Let the earth be in reference frame O′ (primed frame), and the muon itself in O (unprimed
frame). First, since we know we will need it, for v = 0.990c, γ = 7.09. Next, the numbers we are given are
measured in the earth’s reference frame, so it will be easiest to calculate the time in the earth’s frame first. The
muon, according to earthbound observers, travels 4600m at a speed of 0.990c, so the apparent decay time is just
distance divided by velocity.

∆t′earth =
4600 m

0.990 (3× 108 m/s)
≈ 1.54× 10−5 s = 15.4 µs

This is not the proper time - proper time is measured in the muon’s own frame. According to the muon, the
earth is moving toward them! Given γ and time measured on earth, we can find the proper time in the muon’s
frame easily:

∆tp =
∆t′earth

γ
≈ 1.54 µs

7.09
= 2.18 µs

This makes sense - since the people on earth are the moving observers in this case, they should see a longer time
interval. About seven times longer, in this case, since γ≈7. The muon is at rest in its own frame, and measures
the shorter proper time interval. Now we have the proper time, meaured in the muon’s reference frame, and
the relative velocity, so we can calculate the distance from the muon’s point of view using quantities valid in its
reference frame.

dµ = v∆tp = v
∆t′earth

γ
≈ 649 m

9. v≤0.14c, v≤0.31c. First of all, what do we mean by error? You want to find percent error between momentum
calculated with the relativistic formula (viz., |~prel|=γm|~v|) and the classical formula (viz., |~pcalss =m|~v|). First,
we will drop the vector notation now, since error in momentum will only be in magnitude, not direction. Let -
prel ≡ |~prel| and pclass ≡ |~pclass|. The definition of error you want is the difference between the two, divided by
the correct one - the relativistic formula.



100% ·
∣∣∣∣prel − pclass

prel

∣∣∣∣≤ error desired

For the last line, we drop the percent Now we can just plug in what we know:
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∣∣∣∣= ∣∣∣∣γmv −mv

γmv
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γ��mv
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γ
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We can further simplify this:

∣∣∣∣γ − 1
γ

∣∣∣∣ =
∣∣∣∣1− 1

γ

∣∣∣∣≤ error∣∣∣∣1− error
∣∣∣∣ ≤ ∣∣∣∣ 1γ

∣∣∣∣
What we really want is v. Remember the equation for v in terms of γ from problem 2? Take that, and plug in
the expression above:

v = c
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1− 1

γ2
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√
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∣∣∣∣(1− error)
∣∣∣∣2

Now all we need to do is plug in the desired minimum errors - 1% or 0.01 for (a), and 5% or 0.05 for (b):

(a) v ≤ c

√
1−

∣∣∣∣(1− error)
∣∣∣∣2 = c

√
1−

∣∣∣∣(1− 0.01)
∣∣∣∣2 ≈ c

√
0.02 ≈ 0.14c

(b) v ≤ c

√
1−

∣∣∣∣(1− error)
∣∣∣∣2 = c

√
1−

∣∣∣∣(1− 0.05)
∣∣∣∣2 ≈ c

√
0.098 ≈ 0.31c


