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Problem Set 3 SOLUTIONS

1. 10 points. Remember #7 on last week’s homework? Calculate the potential energy of that system of three charges,
for a circle of radius r. Take the zero of potential energy to be infinitely far away from all charges. Express your answer
in terms of the energy of charges q1 and q2 separated by r – e.g., a constant times keq1q2/r.

From last week, we had an arrangement of three charges on a circular track of radius r. Two of the charges (q1 and q2,
q1 =q2) were separated by 90◦ on the track, and hence a distance r12 =r

√
2 apart. The third charge (q3) was a distance d

from both of those. We found that d could be expressed in terms of r:
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We also found that the magnitude of q3 was fixed by the geometry given in the problem, and could express the magnitude
of q3 relative to q1 or q2:
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How do we find the potential energy of this system of charges? We just have to add together the potential energy of each
unique pair of charges. In this case, there are three pairings:

PEsystem = PE1&2 + PE1&3 + PE2&3

The potential energy of a pair of charges q1 and q2 separated by a distance r12 is straightforward:

PEpair =
keq1q2

r12

All we need to do is evaluate the sum above, plugging in the values we know:
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So the energy of this system of charges is about 4.12 times higher than if we had 2 charges alone separated by r, or about
2.9 times higher than if we removed q3 and just had q1 and q2 separated by r

√
2.



2. 15 points. (a) Find the equivalent capacitance of the capacitors in the figure below. (b) Find the charge on each
capacitor. (c) Find the potential difference across each capacitor.

+ -

12V
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Before we start, it is useful to remember that one farad times one volt gives one coulomb: 1 [F] · 1 [V] = 1 [C], and that
capacitance times voltage gives stored charge: Q=CV . Knowing this now will save some confusion on units later on. For
that matter, it is also good to remember that the prefix µ means 10−6.

In order to find a single equivalent capacitor that could replace all five in the diagram above, we need to look for purely
series and parallel combinations that can be replaced by a single capacitor. The uppermost 8 µF and 4 µF capacitors are
purely in series, so they can be replaced by a single equivalent we will call C84, as shown below:

Using our rule for combining series capacitors, we can find the value of C84 easily:

1

C84
=

1

8 µF
+

1

8 µF

=⇒ C84 =
8

3
µF ≈ 2.67 µF

Now we have this equivalent capacitance purely in parallel with the second 8 µF capacitor. We can replace C84 and the
second 8 µF capacitors with a single equivalent, which we will call C884:

Using our addition rule for parallel capacitors, we can find its value:

C884 = C84 + 8 µF ≈ 10.67 µF



This leaves us with three capacitors in series, as shown below:

Adding together these three in series, we have the overall equivalent capacitance, Ceq:
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1

C884
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6 µF

=⇒ Ceq ≈ 1.68 µF

Since we now have one single capacitor connected to a single voltage source, we can find the total charge stored in the
equivalent capacitor, Qeq:

Qeq = CeqV = (1.68 µF) (12V) ≈ 20.16 µC

Now in order to get the charge and voltage on each single capacitor, we have to work backwards and rebuild our original
circuit. We know that the Ceq capacitor is really three capacitors in series - the 6 µF, the 3 µF, and C884. Series capacitors
always have the same charge, and one must have the same charge as the equivalent capacitor: Q6µF =Q3µF =Q884 Since
we know the charge and capacitance for all three of these capacitors, we can now find the voltage on each, since V =Q/C:

V6µF =
Q6µF

6µF
=

20.16 µC

6µF
≈ 3.4V

V3µF =
Q3µF

3µF
=

20.16 µC

3µF
≈ 6.7V

V884 =
Q884

C884
=

20.16 µC

10.67 µF
≈ 1.9V

Notice that the voltage on all three of these series capacitors adds up to the total battery voltage - it must be so, based
on conservation of energy. Next, we know that C884 is really two capacitors in parallel - the lower 8 µF capacitor and C84.
Parallel capacitors have the same voltage, so we know that both of these have to have Vlower 8µF =V84 =V884 =1.9V across
them. We know the voltage and the capacitance for C84 and the lower 8 µF capacitors now, so we can find the stored
charge, Q=CV :

Qlower 8µF = 8 µF · V884 = 8 µF · 1.9V ≈ 15.2 µC

Q84 = C84 · V884 = 2.67 µF · 1.9V ≈ 5.1 µC

Finally, the capacitor C84 is really two capacitors in series, which must both have the same charge: Q4µF =Qupper 8µF =Q84.
Given the charge on both of the remaining capacitors and their capacitances, we can find the voltages:

V4µF =
Q4µF

4µF
=

5.1 µC

4µF
≈ 1.26V

Vupper 8µF =
Qupper 8µF

8µF
=

5.1 µC

8µF
≈ 0.63V



Now we know the charge and voltage on every single capacitance, as well as the overall charge (Qeq) and effective capacitance
(Ceq). Your numbers may be very slightly different than those above due to different choices in rounding, this is normal.
The results are summarized in the table below:

Table 1: Equivalent capacitances, charges, and voltages

Capacitor [µF] Charge [µC] Voltage [V]

top 8µF 5.1 0.63
4 µF 5.1 1.26
lower 8µF 15.2 1.9
6 µF 20.16 3.4
3 µF 20.16 6.7
Ceq 20.16 12

3. 10 points. A parallel-plate capacitor has 4.00 cm2 plates separated by 6.00mm of air. If a 12.0V battery is connected
to this capacitor, how much energy does it store in Joules? In electron volts?

If we want to find the energy stored in the capacitor, we need to know two of three things, minimally: the amount of
charge stored, the voltage applied, and the capacitance. Any two of these three are sufficient, based on our formula for the
potential energy stored in a capacitor:

∆PE =
1

2
Q∆V =

1

2
C (∆V )2 =

Q2

2C

We already know the applied voltage, ∆V = 12.0Volts. Since this is a parallel plate capacitor and we know its area A
and plate spacing d we can easily calculate the capacitance ... if we are very careful with units. Recall that the dielectric
constant of air is essentially one (κ≈1).

C =
κε0A

d

=
1 · ε0

`
4.00 cm2

´
·
`

1 m
100 cm

´2
6.00× 10−3 m

=

`
8.85× 10−12 F/m

´
·
`
4× 10−4 m2

´
6.00× 10−3 m

=
8.85× 4.00

6.00
· 10−13 F

≈ 5.90× 10−13 F = 0.590 pF

Now we know the capacitance and the voltage, we can find the energy readily:

∆PE =
1

2

`
5.90× 10−13 F

´
(12.0V)2 = 4.25× 10−11 F ·V2 = 4.25× 10−11 J

=
`
4.25× 10−11 J

´„ 1 eV

1.60× 10−19 J

«
= 2.66× 108 eV = 266MeV

This problem brings to mind a few hand SI unit conversions, which you should be able to verify: 1 J=1F · 1V2 =1C · 1V,
1C=1 F · 1V.

4. 5 points. A capacitor with air between its plates is charged to 150 V and then disconnected from the battery. When a
piece of glass is placed between the plates, the voltage across the capacitor drops to 25V. What is the dielectric constant
of the glass? (Assume the glass completely fills the space between the plates.)



When we insert a dielectric into a parallel plate capacitor, for the same amount of charge stored the voltage is reduced by
a factor κ, the dielectric constant:

∆Vempty = κ∆Vfilled

If the voltage is 150V while the capacitor is empty, and 25V when filled, then we must have κ=6.

Another way to see this is to think about the charge stored. If our (ideal) capacitor is fully charged at 150V and
disconnected, it keeps a total amount of charge Q. We can relate this charge to the voltage applied when the capacitor is
empty:

Q = Cempty∆Vempty = 150Cempty

When we insert the dielectric between the plates, the capacitor remains disconnected but is still fully charged. The charges
can’t go anywhere while the capacitor is disconnected, so we have the same Q. With the dielectric, however, we know that
the capacitance increases by a factor κ: Cfull = κCempty. We can relate the stored charge Q to the new capacitance and
voltage, and combine that with the expression above to find κ:

Q = Cfull∆Vfull = κCemptyVfull = 25κCempty

Q = 150Cempty

25κCempty = 150Cempty

=⇒ κ = 6

Remember, dielectrics increase the total charge stored and the capacitance, but decrease the voltage required to store the
same amount of charge.

5. 10 points. A potential difference of 100mV exists between the outer and inner surfaces of a cell membrane. The inner
surface is negative relative to the outer. How much work is required to move a sodium ion Na+ outside the cell from the
interior? Answer in electron volts and Joules. A singly-charged ion has a charge of 1e.

The work done in moving a charge q across a potential difference ∆V is readily calculated: W =−∆PE =−q∆V . In this
case the charge is e=1.6× 10−19 C, and ∆V =0.1V. Watch how easy it is to find the answer in electron volts:

W = −q∆V =
`
1.6× 10−19 C

´
(0.1V) ·

„
1 eV

1.6× 10−19 J

«
= −

`
(((((
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´
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1 eV

(((((
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«
= −0.1

[���C ·V] · eV
�J

remember: 1 J=1C · 1V

= −0.1 eV

In fact, we didn’t even need to go through all that. An electron volt is defined as the energy required to move one electron’s
equivalent of charge - 1e - through a potential difference of 1 Volt. Our ion has the same magnitude of charge as an electron,
and we move it through 0.1V. Following the definition of an electron volt, we must have ∆PE =0.1 eV. This is one reason
why electron volts are such a handy unit for many areas of physics.

Anyway: how about the answer in Joules? Well, if 1 eV=1.6× 10−19 J, then 0.1 eV=1.6× 10−20 J.

6. 5 points. A proton and an electron are accelerated from rest through a potential difference of 120V. Calculate the
speed and kinetic energy of each.

This one is just conservation of energy: electric potential energy is converted into kinetic energy. Let’s work it through all
the way though, but for a generic charge q of mass m. This solves the general problem, and at the end we can just plug



in the appropriate numbers for a proton and electron. This saves us the work of solving the same problem twice.

Initially, the charge is at rest, and thus has no kinetic energy. Our potential difference really only tells us the difference in
potential energy from the initial to final state, we still need to define a zero point for potential energy. We will define the
final potential energy to be zero, for convenience - this means the charge starts out at a potential energy of e∆V and ends
at 0, moving from high potential to low. With all of this, we can write down conservation of energy, and solve for kinetic
energy and velocity.

PEi + KEi = PEf + KEf

q∆V + 0 = 0 + KEf

Already, we have the kinetic energy. Since the proton and electron have the same magnitude of charge e, and the voltage
is the same in both cases, the kinetic energy is the same:

KEf = e∆V =
`
1.6× 10−19 C

´
(120V) · 1 eV

1.6× 10−19 J
= 120 eV

We could have just written this down without calculating anything at all. Recall that an electron volt is defined as the
energy required to move one electron’s equivalent of charge - 1e - through a potential difference of 1Volt. Both the proton
and electron have a charge of e, and both move through a potential difference of 120V. Therefore, the potential energy
change is 120 eV in both cases, so the kinetic energy is also 120 eV in both cases (or 1.92× 10−17 J).

Well. We still need the speed. Just plug in the non-relativistic kinetic energy formula, and solve for velocity:

KEf =
1

2
mv2

f = q∆V

v2
f =

2q∆V

m

vf =

r
2q∆V

m

Now we have something of a problem. For electrons, the charge is q=−e, doesn’t that lead to an imaginary number based
on the formula above? Yes, it would ... if we don’t think a bit first. The problem stated that the electron was accelerated
through a potential difference of 120V, it did not state whether the potential was higher at the start or the end! From
the phrasing of the problem, we have to assume that the electron starts out at a lower potential and moves to a higher
potential, since a negative charge will only be accelerated toward a higher potential. If this is the case, the final potential
is higher, then ∆V must be negative. In the formula above, both q and ∆V will be negative, and there is no problem. The
proton, on the other hand, will be attracted to regions of lower potential, so we have to assume that it moves from high
to low potential, meaning ∆V must be positive.

The key is to remember that the change in kinetic energy must be equal and opposite the change in potential energy. Both
charges gain kinetic energy and lose potential energy, so in both cases the initial potential energy must be positive (since
the final potential energy is set to zero). For protons, this means starting at a high potential and moving to a lower one.
For electrons, this means starting at a low potential and moving to a higher one, owing to its negative charge.

Another way to go about it is to use the now known value of kinetic energy, which sneaks around this problem all together:

KEf =
1

2
mv2

f

v2
f =

2KE

m

vf =

r
2KE

m



This formula is perhaps easier to use, since we already know KE. Plug in the known masses and charge, and you should
find:

vf = 1.5× 105 m/s proton

vf = 6.5× 106 m/s electron

7. 5 points A parallel plate capacitor is held at constant voltage. Initially there is only air between the plates. If a
dielectric with a dielectric constant of 2 is inserted into the capacitor, what happens to the energy stored in the capacitor?

This is a lot like question 4. If we insert a dielectric into the capacitor with a fixed voltage, the capacitance goes up by a
factor κ, as does the total amount of stored charge. Without a dielectric, we can write the stored energy in three different
ways:

∆PEempty =
1

2
Cempty (∆V )2

∆PEempty =
Q2

empty

2Cempty

∆PEempty =
1

2
Qempty∆V

We will verify that all three formulas give the same result, just for “fun.” Once we fill the capacitor with a dielectric, the
voltage is held constant at ∆V , but the capacitance and charge stored increase: Cfull =κCempty and Qfull =κQempty. Using
this and the relations above, we can find the energy stored with dielectric present in terms of the original stored energy
without:

∆PEfilled =
1

2
Cfull (∆V )2 =

1

2
κCempty (∆V )2 = κ∆PEempty

∆PEfilled =
Q2

full

2Cfilled
=

κ2Q2
empty

2κCempty
= κ

Q2
empty

2Cempty
= κ∆PEempty

∆PEfilled =
1

2
Qfull∆V =

1

2
κQempty∆V = κ∆PEempty

No matter which formula we choose to solve the problem, the answer is the same: the stored energy also increases by a
factor κ, or 2 times. Naturally you didn’t need to solve it all three ways, one was enough - I just wanted to show you that
it made no difference which formula you started with.

8. 15 points. Two charges, +q and −q, are separated by a distance d. Show that the electric potential far from both
charges is approximately V = kqd cos θ

r2 . The following approximations may be useful (referring to the figure below, with the

origin between the two charges): r−r+≈r2, r−−r+≈ xd
r

=d cos θ.

d+q -q

r

θ

r+
r-

First, we should pick a coordinate system and an an origin. The easiest choice seems to be putting the origin at the
midpoint between the two charges. We will pick an x− y system with the x axis running along a line connecting the two
charges, and a y axis running perpendicular. Finally, define the +x and +y directions as the direction from the origin
toward the distant point, which we will call P . This puts point P at coordinates (x, y, ), and the positive and negative



charge at (x− d
2
, y) and (x + d

2
, y) respectively. With these choices, we can easily write down the distance from P to the

origin (r), to the positive charge (r+), and to the negative charge (r−) just using the distance formula:

r =
p

x2 + y2

r+ =

s„
x− d

2

«2

+ y2

r− =

s„
x +

d

2

«2

+ y2

Already, we know enough to write down the potential at point P due to the two charges. The principle of superposition
says that the total electric potential at point P can be found by adding together the electric potentials from individual
charges. Since potential is a scalar, we don’t even need to worry about vectors, we just find the potential due to the
positive charge, the potential due to the negative charge, and add them together as numbers. We will choose the zero for
electric potential to be infinitely far away, so the potential at point P is just:

VP =
keq

r+
+

ke (−q)

r−
=

keq (r− − r+)

r+r−

At this point, it is clear why you are given the approximations above. Plug them in, and we are done:

VP ≈
keqd cos θ

r2

Where did these magical approximations come from? They were given in the problem, so one could just plug them in, but
we will quickly derive them just to be safe. First write down r+ and expand:

r+ =

s„
x− d

2

«2

+ y2 =

r
r2 − xd +

d2

4
= r

r
1− xd

r2
+

d2

4r2

One of the conditions of the problem is that the point P is distant, which means r�d. If this is the case, then the d2/r2

term under the square root is negligible:

r+ ≈ r

r
1− xd

r2

Again, since r � d, the fraction under the radical should be small compared to 1, and we can use the approximation
(1 + a)n≈1+ax. Comparing this with what we have above, n= 1

2
and a=−xd

r2 :

r+ ≈ r

„
1− xd

2r2

«
Now, do the same thing for r− - you get the same result, except the minus sign becomes a plus. Now we can approximate
the difference between the two easily:

r− − r+ = r

„
1 +

xd

2r2

«
− r

„
1− xd

2r2

«
=

xd

r
= d cos θ

For the last step, we used the fact that cos θ = x/r, which you should be able to verify. You can also find this approxi-
mation geometrically, noting that r+ ≈ r − d cos θ

2
and r+ ≈ r − d cos θ

2
. Try drawing a line from one charge that meets r

perpendicularly to see how this works.



The second approximation we need is more straightforward to find. We just write down r+r−, using the approximate forms
above, and once again drop terms that have d2/r2 in them:

r+r− ≈ r

„
1− xd

2r2

«
· r
„

1 +
xd

2r2

«
≈ r2

„
1− x2d2

4r2

«
≈ r2

9. 15 points. Five identical point charges +q are arranged in two different manners as shown below - in once case as
a face-centered square, in the other as a regular pentagon. Find the potential energy of each system of charges, taking
the zero of potential energy to be infinitely far away. Express your answer in terms of a constant times the energy of two
charges +q separated by a distance a. Bonus (3 points): could one make a two-dimensional repeating crystal with either
of these arrangements? Justify your answer.

a

+q

a

+q

Using the principle of superposition, we know that the potential energy of a system of charges is just the sum of the
potential energies for all the unique pairs of charges. The problem is then reduced to figuring out how many different
possible pairings of charges there are, and what the energy of each pairing is. The potential energy for a single pair of
charges, both of magnitude q, separated by a distance d is just:

PEpair =
keq

2

d

Since all of the charges are the same in both configurations, all we need to do is figure out how many pairs there are in
each situation, and for each pair, how far apart the charges are.

How many unique pairs of charges are there? There are not so many that we couldn’t just list them by brute force - which
we will do as a check - but we can also calculate how many there are. In both configurations, we have 10 charges, and we
want to choose all possible groups of 2 charges that are not repetitions. So far as potential energy is concerned, the pair
(2, 1) is the same as (1, 2). Pairings like this are known as combinations, as opposed to permutations where (1, 2) and (2, 1)
are not the same. Calculating the number of possible combinations is done like this:i

ways of choosing pairs from five charges =

 
5

2

!
= 5C2 =

5!

2! (5− 2)!
=

5 · 4 · 3 · 2 · 1
2 · 1 · 3 · 2 · 1 = 10

So there are 10 unique ways to choose 2 charges out of 5. First, let’s consider the face-centered square lattice. In order to
enumerate the possible pairings, we should label the charges to keep them straight. Label the corner charges 1−4, and the
center charge 5 (it doesn’t matter which way you number the corners, just so long as 5 is the middle charge). Then our
possible pairings are:

iA nice discussion of combinations and permutations is here: http://www.themathpage.com/aPreCalc/permutations-combinations.htm

http://www.themathpage.com/aPreCalc/permutations-combinations.htm


(1, 2) (1, 3) (1, 4) (1, 5)

(2, 3) (2, 3) (2, 5)

(3, 4) (3, 5)

(4, 5)

And there are ten, just as we expect. In this configuration, there are only three different distances that can separate a
pair of charges: pairs on adjacent corners are a distance a

√
2 apart, a center-corner pairing is a distance a apart, and a far

corner-far corner pair is 2a apart. We can take our list above, and sort it into pairs that have the same separation:

Table 2: Charge pairings in the square lattice

#, pairing type separation pairs

4, center-corner a (1, 5) (2, 5) (3, 5) (4, 5)
4, adjacent corners a

√
2 (1, 4) (3, 4) (2, 3) (1, 2)

2, far corner 2a (1, 3) (2, 4)

And we are nearly done already. We have four pairs of charges a distance a apart, four that are a
√

2 apart, and two that
are 2a apart. Write down the energy for each type of pair, multiply by the number of those pairs, and add the results
together:

PEsquare = 4 (energy of center-corner pair) + 2 (energy of far corner pair) + 4 (energy of adjacent corner pair)

= 4

»
keq

2

a

–
+ 2

»
keq

2

2a

–
+ 4

»
keq

2

a
√

2

–
=

keq
2

a

»
4 + 1 +

4√
2

–
=

keq
2

a

h
5 + 2

√
2
i
≈ 7.83

kq2

a

For the pentagon lattice, things are even easier. This time, just pick one charge as “1”, and label the others from 2-5 in a
clockwise or counter-clockwise fashion. Since we still have 5 charges, there are still 10 pairings, and they are the same as
the list above. For the pentagon, however, there are only two distinct distances - either charges can be adjacent, and thus
a distance a apart, or they can be next-nearest neighbors. What is the next-nearest neighbor distance?

In a regular pentagon,ii each of the angles is 108◦, and in our case, each of the sides has length a, as shown below. We can
use the law of cosines to find the distance d between next-nearest neighbors.

1
0
8
o

d
a

a

d2 = a2 + a2 − 2 · a · a cos 108◦ = 2a2 (1− cos 108◦)

=⇒ d = a
√

2− 2 cos 108◦ = aφ ≈ 1.618a

iiSee http://www.jimloy.com/geometry/pentagon.htm

http://www.jimloy.com/geometry/pentagon.htm


Here the number φ is known as the “Golden Ratio.”iii The distances a and d automatically satisfy the golden ratio in a
regular pentagon, d/a=φ. Given the nearest neighbor distance in terms of a, we can complete a table of pairings for the
pentagon:

Table 3: Charge pairings in the pentagonal lattice

#, pairing type separation pairs

5, next-nearest neighbors d (1, 3) (1, 4) (2, 4) (2, 5) (3, 5)
5, adjacent a (1, 2) (2, 3) (3, 4) (4, 5) (5, 1)

Now once again we write down the energy for each type of pair, and multiply by the number of pairs:

PEpentagon = 5 (energy of adjacent pair) + 5 (energy of next-nearest neighbor pair)

= 5

»
keq

2

a

–
+ 5

»
keq

2

d

–
= 5

»
keq

2

a

–
+ 5

»
keq

2

a
√

2− 2 cos 108◦

–
=

keq
2

a

»
5 +

5√
2− 2 cos 108◦

–
≈ keq

2

a

»
5 +

5

1.618

–
≈ 8.09

kq2

a

So the energy of the pentagonal lattice is higher, meaning it is less favorable than the square lattice. Neither one is
energetically favored though - since the energy is positive, it means that either configuration of charges is less stable than
just having all five charges infinitely far from each other. This makes sense - if all five charges have the same sign, they
don’t want to arrange next to one another, and thus these arrangements cost energy to keep together. If we didn’t force
the charges together in these patterns, the positive energy tells us that they would fly apart given half a chance. For this
reason, neither one is a valid sort of crystal lattice, real crystals have equal numbers of positive and negative charges, and
are overall electrically neutral.

And the bonus? One can tile a floor with square tiles, but never with regular pentagons where all five sides are the same
length. Try it - it won’t work unless you make some of the pentagon’s sides different lengths, or squish it in some way. In
fact, only three regular polygons can tile a floor without gaps - triangles, squares, and hexagons. A good explanation why
can be found here: http://mathforum.org/sum95/suzanne/whattess.html.

Also acceptable: since all charges are positive, these arrangements are inherently unstable anyway, and mutual repulsion
would prevent one from making a crystal.

10. 10 points. If each of the charges in the pentagon arrangement above are 1 µC and a = 1m, what is the electric
potential at the center of the pentagon? Again take the zero of potential energy infinitely far away.

This one is easier than it sounds. The electric potential at the center due to one charge q a distance d away is:

V =
keq

d

Since every charge is the same, and the same distance from the center of the pentagon, the principle of superposition says
that we just need to find the potential due to one of the charges and multiply it by five. How far is each charge from the
center? Have a look at the figure below.

The interior angles of the pentagon, defined by drawing lines from each vertex to the center, are 360◦/5=72◦. Once again
we can use the law of cosines to relate the distance d to a:

iiiSee http://www.jimloy.com/geometry/golden.htm and the prior link

http://mathforum.org/sum95/suzanne/whattess.html
http://www.jimloy.com/geometry/golden.htm


72o

d

a
d

a2 = d2 + d2 + 2 · d · d cos 72◦

=⇒ d =
ap

2 (1− cos 72◦)
≈ 0.85m

The potential at the center of the pentagon is just five times the potential due to a single charge of 1 µC at a distance of
d≈0.5m:

Vcenter = 5Vsingle = 5 · keq

d
≈

5
`
9× 109 N ·m/C2

´ `
1× 10−6 C

´
0.85m

≈ 52900 N ·m/C = 52.9 kV

For the very last part, we note that one newton per coulomb is one volt per meter, [N/C]=[V/m], so volts must be newtons
times meters per coulomb.


