University of Alabama
 Department of Physics and Astronomy

Problem Set 3: Electrical Energy \& Capacitance

Instructions:

- Answer all questions below. Show your work for full credit.
- Due before 5pm, 1 Feb 2008
- Problem sets may turned in via email or hard copy
- Hard copies may be left in Dr. LeClair's mailbox (Gallalee 206) or office (Bevill 228)
- You may collaborate, but everyone must turn in their own work

1. 10 points. Remember $\# 7$ on last week's homework? Calculate the potential energy of that system of three charges, for a circle of radius r. Take the zero of potential energy to be infinitely far away from all charges. Express your answer in terms of the energy of charges q_{1} and q_{2} separated by r-e.g., a constant times $k_{e} q_{1} q_{2} / r$.
2. 15 points. (a) Find the equivalent capacitance of the capacitors in the figure below. (b) Find the charge on each capacitor. (c) Find the potential difference across each capacitor.

3. 10 points. A parallel-plate capacitor has $4.00 \mathrm{~cm}^{2}$ plates separated by 6.00 mm of air. If a 12.0 V battery is connected to this capacitor, how much energy does it store in Joules? In electron volts?
4. 5 points. A capacitor with air between its plates is charged to 150 V and then disconnected from the battery. When a piece of glass is placed between the plates, the voltage across the capacitor drops to 25 V . What is the dielectric constant of the glass? (Assume the glass completely fills the space between the plates.)
5. 10 points. A potential difference of 100 mV exists between the outer and inner surfaces of a cell membrane. The inner surface is negative relative to the outer. How much work is required to move a sodium ion Na^{+}outside the cell from the interior? Answer in electron volts and Joules. A singly-charged ion has a charge of $1 e$.
6. 5 points. A proton and an electron are accelerated from rest through a potential difference of 120 V . Calculate the speed and kinetic energy of each.
7. 5 points A parallel plate capacitor is held at constant voltage. Initially there is only air between the plates. If a dielectric with a dielectric constant of 2 is inserted into the capacitor, what happens to the energy stored in the capacitor?
8. 15 points. Two charges, $+q$ and $-q$, are separated by a distance d. Show that the electric potential far from both charges is approximately $V=\frac{k q d \cos \theta}{r^{2}}$. The following approximations may be useful (referring to the figure below, with the origin between the two charges): $r_{-} r_{+} \approx r^{2}, r_{-}-r_{+} \approx \frac{x d}{r}=d \cos \theta$.

9. 15 points. Five identical point charges $+q$ are arranged in two different manners as shown below - in once case as a face-centered square, in the other as a regular pentagon. Find the potential energy of each system of charges, taking the zero of potential energy to be infinitely far away. Express your answer in terms of a constant times the energy of two charges $+q$ separated by a distance a. Bonus (3 points): could one make a two-dimensional repeating crystal with either of these arrangements? Justify your answer.

10. 10 points. If each of the charges in the pentagon arrangement above are $1 \mu \mathrm{C}$ and $a=1 \mathrm{~m}$, what is the electric potential at the center of the pentagon? Again take the zero of potential energy infinitely far away.
