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Problem Set 6: Magnetism

1. 10 points. A wire with a weight per unit length of 0.10 N/m is suspended directly above a second wire. The top wire
carries a current of 30 A and the bottom wire carries a current of 60 A. Find the distance of separation between the wires so
that the top wire will be held in place by magnetic repulsion.

What we want to do here is balance the force of gravity pulling the top wire downward, Fg, with a magnetic force between
the two wires that pushes the top wire up, FB,12. This means that the wires should repel each other, so the currents must
be running antiparallel to each other (i.e., in opposite directions). We know that the magnetic force per unit length between
the two current-carrying wires, FB,12 can be written as:

FB,12

l
=
µ0I1I2

2πd

This tells us that if we have a length l of one wire, the force on that length due to the other wire is FB,12. What is that
length? We aren’t given a length at all, which leads one to suspect it isn’t necessary. In fact, it isn’t, as we will find out shortly.

Next we need the gravitational force on the top wire - its weight. We are in fact given its weight per unit length already,
which we will call w= 0.10 N/m. Actually, this is highly convenient: this is the gravitational force (what weight is, really)
per unit length, Fg/l. If we think about it: we have an expression for the magnetic force per unit length already, and now
we have the gravitational force per unit length. All we have to do is equate them:

Fg = FB,12

Fg

l
=
FB,12

l

w =
µ0I1I2

2πd

=⇒ d =
µ0I1I2
2πw

=

[
4π × 10−7 N/A2

]
[30 A] [60 A]

2π [0.1 N/m]
≈ 3.6× 10−3 m = 3.6 mm

Note that the constant µ0 can be expressed in either T · m/A or N/A2 – the two sets of units are equivalent, though the
latter is much more convenient in this particular case.

2. 5 points. An electron moving along the positive x axis perpendicular to a magnetic field experiences a magnetic deflection
in the negative y direction. What is the direction of the magnetic field?

We need to remember two things here: the right hand rule, and the fact that positive and negative charges move oppositely
in response to electromagnetic fields. First, let us pretend that the charge in question is positive, just for clarity.

If a positive charge is moving along the x axis, and is deflected in the negative y direction, that means it is being acted on
by a force in the negative y direction. Using the right hand rule, your fingers should point along the particle’s velocity, and
the force should come out of the back of your hand. Your thumb then points along the required direction of the magnetic
field, namely, out of the page, or in the +z direction.



But wait! That is what will happen for a positive charge. Since the electron in question has a negative charge, it will simply
move in the opposite direction, so to move it in the negative y direction will require a magnetic field in the opposite direction
compared to a positive charge. Thus, the field must be pointing into the plane of the page, in the −z direction.

3. 10 points. A conductor suspended by two flexible wires as shown in the figure has a mass per unit length of 0.0400 kg/m.
What current must exist in the conductor in order for the tension in the supporting wires to be zero when the magnetic field
is 3.60 T into the page? What is the required direction for the current?

Each of the wires has in it a tension equal to the weight of the conductor, and this weight must be balanced by the magnetic
force on the conductor for the tension to be zero:

T = W − FB = mg − FB = 0

=⇒ FB = mg

The magnetic force on a conductor of length l, carrying a current I, in a magnetic field B is FB =BIl. Once again, do not
get nervous about the equation having a length l in it that you don’t know. Work out the problem in a way that makes
sense – if you do that, all the quantities you don’t know should disappear. Either that, or they should be something you can
determine from other quantities you do know. Of course, this only works on problem sets. Real life problems always have
things you don’t know in them, so you learn to estimate ...

We digress. The magnetic force on the conductor was easy, now we just need to find the weight of the conductor. We can
find that from its mass, which in turn must just be its mass per unit length (λ=0.04 kg/m) times the length l - the kilograms
per meter given, times meters, gives mass in kilograms:

m = λl

W = mg = λlg

Now we just put it together, and balance the weight and magnetic force:

FB = mg

BIl = λlg

=⇒ I =
λg

B
=

[0.04 kg/m]
[
9.81 m/s2

]
3.60 T

≈ 0.109
[kg/m] ·

[
m/s2

]
[N/A] ·m

= 0.109
kg ·m ·A

N · s2
= 0.109 A

In order to make the units come out correctly on this one, note that a Tesla (T) is the same as a Newton per Amp per
meter: 1 T=N/A ·m. What about the direction of the current? We want the magnetic force to point upward, balancing the
weight of the conductor. Using the right-hand rule: with force pointing upward, and magnetic field pointing into the page,
the current must flow to the right side. Try it: put your thumb along B, and make the back of your hand face upward in the
direction of the force. This puts your fingers pointing to the right, which must be the direction of the current.

4. 10 points. A 40.0 cm length of wire carries a current of 20.0 A. It is bent into a loop and placed with its normal perpen-
dicular to a magnetic field with a magnitude of 0.520 T. What is the torque on the loop if it is bent into a (a) equilateral
triangle? What is the torque if the loop is (b) a square, or (c) a circle?

The torque on a current loop, provided the current is constant, is just
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τ = BIA sin θ

We already know the current in each loop I, and the external magnetic field B. We also know that the area normal is
perpendicular to B, so θ=90 and we have simply τ=BIA. What about the area?

First, the square. With 0.4 m of wire in total, we can afford to make each side 0.1 m long. In that case, the area of the square
is just (0.1 m)2, or 0.01 m2. Thus:

τsquare = BIA = [0.52 T] [20 A]
[
0.01 m2

]
≈ 0.104 N ·m

The units are easier to see if you note, as in the last problem, that 1 T=N/A ·m, which makes the torque come out in units
of N ·m.

How about the triangle? With 0.4 m of wire, each (equal) side can be 0.4/3≈ 0.133 m long. The area of a triangle is half the
base times the height. Since each side of the triangle has an equal length of 0.4/3 m, you should be able to verify that its
height is

√
3/2 times the length a side, and its area is then (approximately) 7.7× 10−3 m2. The torque is then:

τtriangle = BIA ≈ [0.52 T] [20 A]
[
0.0077 m2

]
= 0.081 N ·m

And the circle? With 0.4 m of wire, the circumference of the wire can be 0.4 m, so C=2πr=0.4 m. Thus, r≈0.0647 m, and
the circle’s area is approximately 0.0127 m2. The torque is then:

τcircle = BIA = [0.52 T] [20 A]
[
0.0127 m2

]
≈ 0.132 N ·m

Thus, the torque is largest on the circle, next largest on the square, and smallest on the circle:

τcircle > τsquare > τtriangle

A circle is in fact the two-dimensional surface with the maximal area for a given perimeter, so it makes sense that its torque
is the largest for the same current and field. If all sides are the same length, the more sides an N sided polygon has, the
larger the area.

5. 5 points. A proton moving in a circular path perpendicular to a constant magnetic field takes 1.00µs to complete one



revolution. Determine the magnitude of the magnetic field.

If the proton moves in a circular path of radius r, its period of motion T can be found by equating the magnetic force to
the net centripetal force it must feel, noting that the period is the distance covered in one revolution (2πr) divided by the
velocity v. First, a force balance gives the velocity:

FB = Fc

qvB =
mv2

r

v =
qrB

m

Next, the velocity gives the period:

T =
2πr
v

=
2πmr
qrB

=
2πm
qB

This is a result we already derived in class. Now all we have to do is solve this for B, and plug in the given period of 1µs:

B =
2πm
qT

=
2π
[
1.67× 10−27 kg

]
[1.6× 10−19 C] [1.00µs]

≈ 6.55× 10−2 kg
C · s

= 6.55× 10−2 kg · s
C · s2

= 6.55× 10−2 kg ·m · s
C ·m · s2

= 6.55× 10−2 N
A ·m

= 6.55× 10−2 T

As it turns out, one Tesla is also a kilogram per Coulomb per second! (1 T=1 kg/C · s).

6. 10 points. What current is required in the windings of a long solenoid that has 1000 turns uniformly distributed over a
length of 0.400 m to produce at the center of the solenoid a magnetic field of magnitude of 1.00× 10−4 T.

The magnetic field produced by a solenoid of N turns over length L carrying a current I is given by:

B = µ0
N

L
I

All we need to do is plug in the given numbers, and solve this for I:

I =
BL

µ0N

=

[
10−4 T

]
[0.4 m][

4π × 10−7 N/A2
]

[1000]

= 0.0318
T ·m
N/A2 = 0.0318 A2 · T ·m

N

= 0.0318 A2 · 1
A

= 0.0318 A



Based on the problems above, you should now know that 1 T=1 N/A ·m, so 1 T ·m/N=1/A.

7. 15 points. One electron collides elastically with a second electron initially at rest. After the collision, the radii of their
trajectories are 1.00 cm and 2.40 cm. The trajectories are perpendicular to a magnetic field of magnitude 0.0440 T. Determine
the energy (in keV) of the incident electron.

The initial kinetic energy of the first electron, Ki must be split up between both electrons, based on conservation of energy –
after the collision, the first electron gives some of its kinetic energy to the second. If we call the final velocity of the electrons
v1f and v2f , we have:

Ki =
1
2
mv2

1f +
1
2
mv2

2f = Kf

Since both particles are electrons, we do note need to label the masses, they are all the same. After the collision, we know
that both particles follow a circular path, of radii r1 and r2, respectively, due to the B field perpendicular to their plane of
motion. This means that the magnetic force gives the centripetal force, and for each particle,

qvB =
mv2

r

=⇒ v =
qBr

m

Thus, given the radius of the electrons’ paths and the magnetic field, we know their velocity, which means we know their
kinetic energy. Plugging the equation above into the expression for Ki, and noting that q=−e for an electron,

Ki =
1
2
m

[
e2B2r21
m2

+
e2B2r22
m2

]
=
e2B2

2m
[
r21 + r22

]
≈ 1.84× 10−14 C2 · T2 ·m2

kg

= 1.84× 10−14 C2 · kg2 ·m2

kg · C2 · s2

= 1.84× 10−14 kg ·m2

s2
= 1.84× 10−14 J

= 115 keV

Here we used the result from a few problems ago that 1 T=1 kg/C · s. By now, you already know that 1 eV=1.6× 10−19 J.

8. 10 points. Electrons are accelerated from rest through a potential difference of 350 V. The electrons travel along a curved
path because of the magnetic force exerted on them, and the radius of the path is measured to be 7.5 cm. If the magnetic
field is perpendicular to the motion of the electrons, what is the magnitude of the magnetic field?

This one is just conservation of energy to start with, as we did weeks ago. The electrons of charge −e are accelerated from
rest by a potential difference ∆V , which means they loose a potential energy e∆V and gain kinetic energy. In order for the
electrons to be accelerated by the potential difference, it must be negative - staring out low, and ending high, since electrons
are negatively charged.



Ki + Ui = Kf + Uf

0 + (−e) (−∆V ) =
1
2
mv2

f + 0

=⇒ v =

√
2e∆V
m

Given the electrons velocity v and the radius of its path r, we have already found in several problems above their relationship
to the magnetic field B:

B =
mv

er

=
m

er

√
2e∆V
m

=

√
2m∆V

er2

=

√
2 [9.11× 10−31 kg] [350 V]
[1.6× 10−19 C] [0.075 m]2

≈ 8.4× 10−4 T

It takes some doing ... but if you recognize that 1 V = 1 N ·m/C, 1 T = 1 kg/C · s, and 1 N = 1 kg ·m/s2, you can make the
units work out.

9. 10 points. A coil consists of 200 turns of wire. Each turn is a square of side 18 cm, and a uniform magnetic field directed
perpendicular to the plane of the coil is turned on. If the field changes linearly (i.e., uniformly) from 0 to 0.5 T in 0.80 s,
what is the magnitude of the induced voltage in the coil while the field is changing?

If the square has side l=0.18 m, the area of one turn of the coil is A= l2 =0.182 =0.0324 m2. The magnetic flux through the
coil at t=0 is zero because B=0 then. At time t, the flux through one turn is

ΦB = BA = (0.50 T)
(
0.0324 m2

)
= 0.0162 T ·m2 (1)

The induced voltage is then the difference in flux for one turn over the elapsed time, multiplied by the number of turns

∆V = N
∆ΦB

∆t
= 200

(
0.0162 T ·m2 − 0

)
0.80 s

= 4.1 Tm2/s = 4.1 V (2)

10. 10 points. What is the maximum voltage induced across a coil of 4000 turns, average radius 12 cm, rotating at 30
revolutions per second in the earth’s magnetic field, where the field is approximately 5× 10−5 T?

The coil is rotating at constant angular velocity, while the magnetic field is static. As the loop rotates, the magnetic flux
oscillates in time, since the area of the facing the magnetic field is oscillating in time. At some point in time, the area normal
of the loop will make an angle θ with the magnetic field. Since the loop rotates with constant angular velocity, we know
θ=wt. Thus, the flux through the loop must be

ΦB = ~B · ~A = BA cos θ = BA cosωt

The induced voltage is given by Faraday’s law, noting that there are N=4000 turns in the loop, and that we know the area
of the loop in terms of the given radius r.



∆V = −N∆ΦB

∆t
= −NBA∆ (cosωt)

∆t

Though we cannot easily derive what the rate of change is on the right side of the equation above without calculus, your text
gives it as −ω sinωt - the rate of change goes up linearly with ω, which seems logical enough. That gives

∆V = −NBA (− sinωt)ω = NBAω sinωt = NBωπr2 sinωt

We are given the rotation rate in revolutions per second, which is the frequency f , not the angular frequency ω=2πf . Making
the substitution, and plugging in the values given,

∆V = 2π2NBfr2 sin (2πft) ≈ 1.7 sin (188t) V

Since we are asked for the maximum voltage, we really want |∆V |=1.7 V.

11. 5 points. A superconducting solenoid designed for whole-body imaging by nuclear magnetic resonance is 0.9 m in
diameter and 2.2 m long. The field at the center is 0.4 T. Estimate roughly the energy stored in the field of this coil, in Joules.

A solenoid is really nothing more than a ginormous inductor, a big coil of wire. The energy stored in an inductor is U= 1
2LI

2.
For the specific case of a single coil - a solenoid - we know the inductance is:

L = µ0n
2V

Where n is the number of turns per unit length and V the volume of the inductor. Putting this in the energy equation:

U =
1
2
µ0n

2V I2

Great. But we don’t know n or I in this case directly. We do know the magnetic field for a solenoid, however, which will
give us the product nI, really all we need:

B = µ0nI

=⇒ nI =
B

µ0

Putting it all together, and noting that the volume of a cylinder is πr2l, where r is the radius and l the length:

U =
1
2
µ0n

2V I2

=
1
2
µ0V (nI)2

=
1
2
µ0V

B2

µ2
0

=
πr2lB2

2µ0
≈ 89100 J

= 89.1 kJ


