University of Alabama
 Department of Physics and Astronomy

Problem Set 6: Magnetism

Instructions:

- Answer all questions below. Show your work for full credit.
- Due before 5pm, 3 Mar 2008
- Problem sets may turned in via email or hard copy
- Hard copies may be left in Dr. LeClair's mailbox (Gallalee 206) or office (Bevill 228)
- You may collaborate, but everyone must turn in their own work

1. 10 points. A wire with a weight per unit length of $0.10 \mathrm{~N} / \mathrm{m}$ is suspended directly above a second wire. The top wire carries a current of 30 A and the bottom wire carries a current of 60 A . Find the distance of separation between the wires so that the top wire will be held in place by magnetic repulsion.
2. 5 points. An electron moving along the positive x axis perpendicular to a magnetic field experiences a magnetic deflection in the negative y direction. What is the direction of the magnetic field?
3. 10 points. A conductor suspended by two flexible wires as shown in the figure has a mass per unit length of $0.0400 \mathrm{~kg} / \mathrm{m}$. What current must exist in the conductor in order for the tension in the supporting wires to be zero when the magnetic field is 3.60 T into the page? What is the required direction for the current?

4. 10 points. A 40.0 cm length of wire carries a current of 20.0 A . It is bent into a loop and placed with its normal perpendicular to a magnetic field with a magnitude of 0.520 T . What is the torque on the loop if it is bent into a (a) equilateral triangle? What is the torque if the loop is (b) a square, or (c) a circle?
5. 5 points. A proton moving in a circular path perpendicular to a constant magnetic field takes $1.00 \mu \mathrm{~s}$ to complete one revolution. Determine the magnitude of the magnetic field.
6. 10 points. What current is required in the windings of a long solenoid that has 1000 turns uniformly distributed over a length of 0.400 m to produce at the center of the solenoid a magnetic field of magnitude of $1.00 \times 10^{-4} \mathrm{~T}$.
7. 15 points. One electron collides elastically with a second electron initially at rest. After the collision, the radii of their trajectories are 1.00 cm and 2.40 cm . The trajectories are perpendicular to a magnetic field of magnitude 0.0440 T . Determine the energy (in keV) of the incident electron.
8. 10 points. Electrons are accelerated from rest through a potential difference of 350 V . The electrons travel along a curved path because of the magnetic force exerted on them, and the radius of the path is measured to be 7.5 cm . If the magnetic field is perpendicular to the motion of the electrons, what is the magnitude of the magnetic field?
9. 10 points. A coil consists of 200 turns of wire. Each turn is a square of side 18 cm , and a uniform magnetic field directed perpendicular to the plane of the coil is turned on. If the field changes linearly (i.e., uniformly) from 0 to 0.5 T in 0.80 s , w hat is the magnitude of the induced voltage in the coil while the field is changing?
10. 10 points. What is the maximum voltage induced across a coil of 4000 turns, average radius 12 cm , rotating at 30 revolutions per second in the earth's magnetic field, where the field is approximately $5 \times 10^{-5} \mathrm{~T}$?
11. 5 points. A superconducting solenoid designed for whole-body imaging by nuclear magnetic resonance is 0.9 m in diameter and 2.2 m long. The field at the center is 0.4 T . Estimate roughly the energy stored in the field of this coil, in Joules.
