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Problem Set 9: SOLUTIONS

1. 15 points. An observer to the right of the mirror-lens combination shown in the figure sees two real images that are the
same size and in the same location. One image is upright and the other is inverted. Both images are 1.70 times larger than
the object. The lens has a focal length of 11.2 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length
of the mirror. (Don’t assume that the figure is drawn to scale.)
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What we first need to do here is sort out which image is which. One image must be that formed from light going directly from
the object through the lens. If this is the case, since it is a biconvex lens any real image formed will be inverted. One can only
have an upright virtual image from this type of lens. Since the object and image are on opposite sides of the lens, a real image
is formed, and the upside-down image must be the one formed directly by the lens, as shown below:
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Now that we know which one is the image from the lens, we can use the known focal length and magnification factor to find
the location of the image and object. The magnification of both mirror and lens is given as M =−1.7, thus:

M = − ql

pl
= −1.7

=⇒ ql = 1.7pl

Given a relationship between the image and object distances for the lens, and the known focal length (fl = 11.2 cm), we can
find the image and object distances:
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1.7pl = 2.7 (0.112m)

=⇒ pl = 0.178m

=⇒ ql = 1.7pl = 0.303m

Great! But what about the second image, and how do we now involve the mirror? If the first image is light coming directly off
of the object and focused by the lens, the second image must be light coming off of the object, then reflected back through the
lens and focused. This makes some sense - a concave spherical mirror like the one shown always makes an inverted real image.
The image formed by the mirror is an object for the lens, so it must be a real image. The inverted real image from the mirror
is again inverted by the lens, so that the image formed by the combination of the mirror and lens is real and upright, as shown
below:
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Thus, light from the object moving to the left is reflected by the mirror, forming a real inverted image between the mirror and
lens, which is then focused by the lens to create a real upright image to the right of the mirror. Now we know that the second
image is at the same horizontal position as that formed by the lens alone. If this is the case, the image formed by the mirror
must be at the same position as the original object, but inverted. If the image from the mirror and the object itself both form
an image at the same position on the other side of the lens, they must be at the same position themselves - for a given image
position relative to the lens, there is only a single possible object position. Thus, if the two images are at the same place, they
both result from objects at the same place.

What this means then, is two things: first, since the image from the mirror forms at the same position as the object, pm =qm.
Recall that for a mirror, both p and q are positive if they are on the same side as the mirror, when the image is real. Second,
given that the spacing between the mirror and lens is known, we can relate pm and pl - together, they must make up the total
distance between mirror and lens (see figure above):

pm + pl = 0.400m

pm = 0.400− pl = 0.222m

Now we have pm in terms of pl, and we know that pm =qm, so we can use the mirror equation to find the focal length.
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=⇒ fm = 0.111m

2. 15 points. The index of refraction for violet light in silica flint glass is nviolet =1.66, and for red light it is nred =1.62. In
air, n=1 for both colors of light.

What is the angular dispersion of visible light (the angle between red and violet) passing through an equilateral triangle
prism of silica flint glass, if the angle of incidence is 50◦? The angle of incidence is that between the ray and a line perpendicular
to the surface of the prism. Recall that all angles in an equilateral triangle are 60◦.

What we need to do is find the deviation angle for both red and violet light in terms of the incident angle and refractive index
of the prism. The angular dispersion is just the difference between the deviation angles for the two colors. First, let us define
some of the geometry a bit better, referring to the figure below.
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Let the angle of incidence be θ1, and the refracted angle θ2 at point A. The incident and refracted angles are defined with
respect to a line perpendicular to the prism’s surface. Similarly, when the light rays exit the prism, we will call the incident
angle within the prism θ3, and the refracted angle exiting the prism θ4 at point C. If we call index of refraction of the prism
n, and presume the surrounding material is just air with index of refraction 1.00, we can apply Snell’s law at both interfaces:

n sin θ2 = sin θ1

n sin θ3 = sin θ4



Fair enough, but now we need to use some geometry to relate these four angles to each other, the deviation angle δ, and the
prism’s apex angle ϕ. Have a look at the triangle formed by points A, B, and C. All three angles in this triangle must add up
to 180◦. At point A, the angle between the prism face and the line AC is ∠BAC =90−θ2 - the line we drew to define θ1 and
θ2 is by construction perpendicular to the prism’s face, and thus makes a 90◦ angle with respect to the face. The angle ∠BAC
is all of that 90◦ angle, minus the refracted angle θ2. Similarly, we can find ∠BCA at point C. We know the apex angle of the
prism is ϕ, and for an equilateral triangle, we must have ϕ=60◦

(90◦ − θ2) + (90◦ − θ3) + ϕ = 180◦

=⇒ ϕ = θ2 + θ3 = 60◦

How do we find the deviation angle? Physically, the deviation angle is just how much in total the exit ray is “bent” relative
to the incident ray. At the first interface, point A, the incident ray and reflected ray differ by an angle θ1−θ2. At the second
interface, point C, the ray inside the prism and the exit ray differ by an angle θ4−θ3. These two differences together make
up the total deviation - the deviation is nothing more than adding together the differences in angles at each interface due to
refraction. Thus:

δ = (θ1 − θ2) + (θ4 − θ3) = θ1 + θ4 − (θ2 + θ3)

Of course, one can prove this rigorously with quite a bit more geometry, but there is no need: we know physically what the
deviation angle is, and can translate that to a nice mathematical formula. Now we can use the expression for ϕ in our last
equation:

δ = θ1 + θ4 − ϕ

We were given θ1 =50◦, so now we really just need to find θ4 and we are done. From Snell’s law above, we can relate θ4 to θ3

easily. We can also relate θ3 to θ2 and the apex angle of the prism, ϕ. Finally, we can relate θ2 back to θ1 with Snell’s law.
First, let us write down all the separate relations:

sin θ4 = n sin θ3

θ3 = ϕ− θ2

n sin θ2 = sin θ1
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If we put all these together (in the right order) we have θ4 in terms of known quantities:
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With that, we can write the full expression for the deviation angle:
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Now we just need to calculate the deviation separately for red and violet light, using their different indices of refraction. You
should find:

δred = 48.56◦

δblue = 53.17◦



The angular dispersion is just the difference between these two:

angular dispersion = δblue − δred = 4.62◦

3. 15 points. As light from the Sun enters the atmosphere, it refracts due to the small difference between the speeds of light
in air and in vacuum. The optical length of the day is defined as the time interval between the instant when the top of the Sun
is just visibly observed above the horizon, to the instant at which the top of the Sun just disappears below the horizon. The
geometric length of the day is defined as the time interval between the instant when a geometric straight line drawn from the
observer to the top of the Sun just clears the horizon, to the instant at which this line just dips below the horizon. The day’s
optical length is slightly larger than its geometric length.

By how much does the duration of an optical day exceed that of a geometric day? Model the Earth’s atmosphere as uniform,
with index of refraction n=1.000293, a sharply defined upper surface, and depth 8767 m. Assume that the observer is at the
Earth’s equator so that the apparent path of the rising and setting Sun is perpendicular to the horizon. You may take the
radius of the earth to be 6.378× 106 m. Express your answer to the nearest hundredth of a second.

First, we need to draw a little picture. This is the situation we have been given:
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We presume that some human is standing at point A on the earth’s surface, looking straight out toward the horizon. This line
of sight intersects the boundary between the atmosphere and space (which we are told to assume is a sharp one) at point B.
Light rays from the sun, which is slightly below the horizon, are refracted toward the earth’s surface at point B, and continue
on along the line of sight from B to A. We know the index of refraction of vacuum is just unity (nvacuum = 1), while that of
the atmosphere is n=1.000293. The day appears to be slightly longer because we see the sun even after it has gone through
an extra angle of rotation δθ due to atmospheric refraction.

To set up the geometry, we first draw a radial line from point B to the center of the earth. This line, BC, will intersect the
boundary of the atmosphere at point B, and will be normal to the atmospheric boundary. This defines the angle of incidence
θ2 and the angle of refraction θ1 for light coming from the sun. The difference between these two angles, δθ, is how much the
light is bent downward upon being refracted from the atmosphere. How do we relate this to the extra length of the day one
would observe? We know that the earth revolves on its axis at a constant angular speed - one revolution in 24 hours. Thus,
we can easily find the angular speed of the earth:

earth’s angular speed = ω =
one revolution

1day
=

360◦

86400 s

Here we used the fact that there are 24 · 60 · 60=86400 seconds in one day. Given the angular velocity of the earth, we know
exactly how long it will take for the earth to rotate through the “extra” angle δθ due to refraction:

δθ = ωδt

We only need one last bit: the atmospheric refraction occurs twice per day – once at sun-up and once at sun-down. The total



“extra” length of the day is then 2δt. Thus, if we can find δθ, we can figure out how much longer the day seems to be due to
atmospheric refraction. In order to find it, we need to use the law of refraction and a bit of geometry. First, from the law of
refraction and the fact that ∆θ=θ2 − θ1, we can state the following:

n sin θ1 = sin θ2 = sin (θ1 + δθ)

In order to proceed further, we draw a line from point A to the center of the earth, point D. This forms a triangle, 4ABD.
Because line AD is a radius of the earth, by construction, it must intersect line AB at a right angle, since the latter is by
construction a tangent to the earth’s surface. Thus, 4ABD is a right triangle, and
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Plugging this into the previous equation,

n sin θ1 = sin (θ1 + δθ)

n
Re

Re + d
= sin θ2 = sin (θ1 + δθ)

In principle, we are done at this point. The previous expression allows one to calculate θ1, while the present one allows one to
find δθ if θ1 is known. From that, one only needs the angular speed of the earth.
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Of course, it is more satisfying to have an analytic approximation. We will leave that as an exercise to the reader for now.

4. 10 points. What is the apparent depth of a swimming pool in which there is water of depth 3 m, (a) When viewed from
normal incidence? (b) When viewed at an angle of 60◦ with respect to the surface? The refractive index of water is 1.33.

5. 15 points. Light is deviated by a glass prism of index n as shown in the figure below. The ray in the prism is parallel to
the base. Show that the refractive index is related to the deviation angle δ and the prism angle ϕ by the equation
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ϕ
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for this angle of incidence (i.e.,, the angle of incidence such that the ray in the prism is parallel to the base). The deviation
angle δ is a minimum for this angle of incidence, and is known as the angle of minimum deviation. Hint: You can solve this
and the first problem together, if you keep things as general as possible - this is just a special case of the first problem.
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6. 10 points. Prove that if two thin lenses are placed in contact, they are equivalent to a single lens of focal length

fequiv =
f1f2

f1 + f2

where f1 and f2 are the focal lengths of the two thin lenses. In some sense, lenses in series add like capacitors do.

7. 10 points. A thin lens of focal length f is used to form an enlarged real image of an object on a screen. The separation
of the screen and object is s. (a) Deduce an expression for the distance between the object and the lens. (b) What is the
minimum ratio s/f for the formation of a real image?

We have a thin lens forming a real image from an object a distance s from the lens. Based on the fact that it is a real image,
it must be a converging lens. Given the focal length f , we need only use the lens equation to find the object distance p. The
only trick of sorts is that we are calling the object distance s here instead of the usual p, that is all.
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That is all there is to the first part of the question. The second part asks about the formation of a real image. For a thin
converging lens, real images are formed when the object is outside of the focal length, that is, the object distance is greater
than the focal length, s>f . The minimum ratio of s/f is thus s/f =1, that is all we were asking for.

8. 5 points. A thin convex lens of focal length f produces a real image of magnification m. Show that the object distance p
is given by

p =
m + 1

m
f

The magnification of the lens m can be defined in terms of the image and object distances, q and p, respectively:

m =
−q

p

For a lens, the image is only real if both p and q are positive, meaning they are on opposite sides of the lens. If both p and
q are positive, then m is negative, and we could just as well write mp =!q instead of mp =−q - whether the magnification is
positive or negative just tells us if the image is inverted or not. For a convex lens forming a real image, we know very well the
image is inverted, so we can drop the negative sign without worry. Thus, we just say mp=q. Using the lens equation:
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9. 5 points. A transparent sphere of unknown composition is observed to form an image of the Sun on the surface of the
sphere opposite the Sun. What is the refractive index of the sphere material? Hint: assume the object distance is effectively
infinite. You may take the refractive index of air to be 1.0.

The surface of the sphere forms a lens of radius R. If the image is formed precisely on the back of the sphere, that means that
the distance from the front of the sphere, the front of the refracting surface, to the image position is just the diameter of the
sphere, or 2R. If we call the index of refraction of the sphere n and that of the air 1.0, we can use the equation for a spherically
refracting surface:
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It is safe to assume that the sun is very, very far away compared to the diameter of the sphere. In that case, if p is very, very
large, then 1/p is very, very small, and we may neglect it. This leaves us with:
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