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1. 5 points. Neutrons have an average lifetime of 15 minutes when at rest in the laboratory. What is the
average lifetime (measured in the lab) of a neutron moving at a speed of (a) 25% of the speed of light? (b)
50%? (c) 95%?

The neutron’s lifetime is always the same in its own reference frame, a constant 15 minutes which we will call
the ‘proper’ time interval ∆tp. In the laboratory, we are in motion relative to the neutron, and hence we measure
a dilated (longer) time interval ∆t′. For each speed, then, we just need to calculate the dilated time interval,
and that is the observed lifetime in the laboratory frame. The dilated interval is:

∆t′ = γ∆tp = γ (15 min)

For each part, then, we just need to calculate γ for the given speed v.

part a: ∆t′a = γ (15min) =
1√

1− (0.25c)2 /c2

(15min) =
15 min√
1− 0.252

= 1.03 (15min) = 15.5 min

part b: ∆t′b =
1√

1− (0.5c)2 /c2

(15 min) =
15 min√
1− 0.52

= 1.15 (15 min) = 17.3 min

part c: ∆t′c =
1√

1− (0.95c)2 /c2

(15min) =
15 min√
1− 0.952

= 3.20 (15min) = 48.0 min

2. 5 points. If a moving clock has a time dilation factor of 10, what is its speed?

The ‘time dilation factor’ is just the ratio of the time that passes for the moving clock compared to that of an
observer in motion relative to it. It is implied that the observer is keeping the ‘proper’ time. We know how to
relate these times:

∆t′clock = γ∆tobserver

The dilation factor is then:

[dilation factor] =
∆t′clock

∆tobserver
= γ = 10



We now just need the definition of γ, and we can solve for the velocity of the clock v

γ =
1√

1− v2/c2
= 10√

1− v2

c2
=

1
10

1− v2

c2
=

1
102

=
1

100
v2

c2
= 1− 1

100

v2 = c2

(
1− 1

100

)
v = ± c

√
1− 1

100
v ≈ ± 0.995c

One minor point: remember that when we take a square root, we have a positive and a negative answer, hence
the ±. Physically, this represents the fact that we can’t tell from the information given whether the clock is
coming or going - the answer is the same no matter what direction the clock is moving relative to the observer,
it is only important that it is moving.

3. 10 points. A bassist taps the lowest E on his bass at 140 beats per minute during one portion of a song.
What tempo would an observer on a ship moving toward the bassist at 0.70c hear?

What we are really interested in is the time interval between the taps. That time interval will be dilated (longer)
for the moving observer, and hence the taps will sound farther apart (the tapping will be slower).

The ‘proper time’ interval ∆tp is that measured by the bassist, which is 1/140 min/beat (so that there are
140 beats/min).i The time interval between taps measured by the moving observer ∆t′ is longer by a factor
gamma:

∆t′ = γ∆tp =
1√

1− 0.72c2

c2

·
(

1 min
140 beats

)
=

1√
1− 0.72

·
(

1 min
140 beats

)
≈ 0.1 min

beat

The beats per minute heard by the moving observer is just 1/∆t′:

[beats per minute, heard by observer] =
1

∆t′
=

1
0.1

= 100

So, the bass line seems to be moving about 40% slower.

4. 10 points. Two identical spaceships are traveling in the same direction. An observer on earth measures the
first to have a speed of 0.80c, and observes the second to be 1.50 times as long as the first one. What is the
speed of the second spaceship, relative to the earth?

iThe time interval is just the inverse of the rate of tapping in beats per unit time.



The main trick to this problem is keeping everything straight - beyond that, it is just an application of length
contraction. We don’t even really need to worry about reference frames or transformations - everything is mea-
sured by the earthbound observer. This earthbound observer will see the ships as appearing shorter than their
rest lengths, since they are in relative motion.

Both ships have a proper length Lp when measured in their own rest frame. The observer on earth measures the
first ship to have some contracted length L1 and the second L2, and we are told L2 =1.5L1. Already, from that
last fact we know that ship 2 must be going slower than ship 1: if both ships are identical, and ship 1 appears
shorter, then its length contraction is more severe, and it is traveling at a higher relative velocity. Before we get
started, make the following definitions:

v1 = velocity of ship 1, relative to earth
γ1 = ship 1, relative to earth
v2 = velocity of ship 2, relative to earth
γ2 = ship 2, relative to earth

For the first ship, its length contraction must be

L1 =
Lp

γ1

For ship 2, it is:

L2 =
Lp

γ2
= 1.5

Lp

γ1

From the last equation, we can relate γ1 and γ2, and solve for v2:

Lp

γ2
=

1.5Lp

γ1
=⇒ γ1 = 1.5γ2

1√
1− v2

1
c2

=
1.5√
1− v2

2
c2

cross multiply & square

1.52

(
1− v2

1

c2

)
=

(
1− v2

2

c2

)
solve for v2

2

v2
2 = 1− 1.52

(
1− v2

1

c2

)
note v1 = 0.8c

v2 ≈ 0.44c

In this case, we are told the space ships are traveling in the same direction, so we know we should take the
positive root in the last step.

5. 10 points. A radioactive atom in a beam produced by an accelerator has a speed of 0.80c relative to the
laboratory. The atom decays and ejects an electron of speed 0.50c relative to itself. What is the speed of the
electron relative to the laboratory if ejected in (a) the forward direction? (a) The backward direction?

The essence of this problem is that we have one object, a radioactive atom, going at 0.80c relative to the labo-
ratory, and it ejects a second object, an electron, at 0.50c relative to itself. How fast is the second object going



with respect to the lab? This is just velocity addition, the same way we would find out without relativity - we
add the first object’s velocity to the second.

First, let’s be clear on our definitions. Let the laboratory reference frame be an unprimed system, with the the
atom moving along the +x direction. Thus, if the electron is ejected in the forward direction, its velocity is
positive, if it is ejected in the backward direction, its velocity is positive. Let the reference frame of the first
object (the radioactive atom) be the primed system. Thus,

v1 = velocity of the atom, relative to the lab
v2 = velocity of the electron, relative to the lab
v′2 = velocity of the electron, relative to the atom

The velocity of the electron relative to the lab frame is just the velocity of the atom relative to the lab, plus the
velocity of the electron relative to the atom, corrected by our relativistic factor. For a forward-ejected electron,
the latter velocity is positive, v′2 =0.5c, and we need just apply the velocity addition formula:

forward ejection: v2 =
v1 + v′2

1 + v1v′
2

c2

=
0.8c + 0.5c

1 + (0.5c)(0.8c)
c2

≈ 0.93c

When the electron is ejected backward, then v′2 =−0.5c, but the rest is the same:

backward ejection: v2 =
v1 + v′2

1 + v1v′
2

c2

=
0.8c + (−0.5c)

1 + (−0.5c)(0.8c)
c2

≈ 0.5c

A nice numerical coincidence! In the second case, the numbers were ‘doctored’ to make the velocity come out
the same in either reference frame, except for the change of sign. It is nothing more than a coincidence though.

6. 10 points. Show that the velocity of a relativistic particle can be expressed as follows:

~v =
c~p√

m2c2 + p2

The easiest way is to start with the right-hand side and show that it reduces to v. Since there is only one vector
on either side, and the rest are only constants, we know that ~v and ~p must be in the same direction. Thus, it is
sufficient to show that the magnitude of each side is the same, and we can drop the vector notation.
Start by substituting the relativistic expression for γ, and then multiply both numerator and denominator by c.
After that, just start grouping terms ...

cp√
m2c2 + p2

=
γmvc√

m2c2 + p2
=

(c

c

) γmvc√
m2c2 + p2

=
γmvc2

c
√

m2c2 + p2
=

(
γmc2

)
v√

m2c4 + p2c2

(
note E = γmc2 and E =

√
m2c4 + p2c2

)
=

Ev

E
= v



7. 15 points. Suppose that a spaceship traveling at 0.80c through our solar system suffers a totally inelastic
collision with a small meteoroid of mass 2.0 kg. (a) What is the kinetic energy of the meteoroid in the reference
frame of the spaceship? (b) In the collision all of this kinetic energy suddenly becomes available for inelastic
processes that damage the spaceship. The effect on the spaceship is similar to an explosion. How many tons of
TNT will release the same explosive energy? One ton of TNT releases ≈4.2×109 J.

Just remember that it is equivalent to say that in the spaceship’s reference frame (in which they are sitting still),
the meteoroid is traveling toward them at 0.80c when it bombards them. The physics is the same, but it makes
the situation more transparent. At that relative velocity, we can readily calculate the meteoroid’s kinetic energy:

K = (γ − 1) mc2 =

 1√
1− (0.80c)2

c2

− 1

mc2 =
[

1√
1− 0.802

− 1
]

(2 kg)
(
3× 108 m/s

)2
1.2× 1017 J

For the units to work out, remember that 1 J=1 N ·m=1 kg ·m2/s2. How many tons of TNT is this? A lot:

1.2× 1017 J
4.2× 109 J

ton TNT

≈ 2.86× 107 tons TNT = 28.6 Mtons TNT

This corresponds roughly to the yield of the largest hydrogen bombs built by the US; the Soviet “Tsar Bomba,”
the most powerful weapon ever detonated, reached about 50 Mtons.ii

8. 10 points. Given ~p=γm~v and E =γmc2, derive the relationship E2 =c2p2 + m2c4.

This time, it is easier to solve the expression above for c2p2, and demonstrate the equality. We will need one
sneaky trick: at one point, we will both add and subtract the same term (c2) to come up with a clever grouping
of terms. Watch closely ...

E2 = c2p2 + m2c4

=⇒ p2c2 = E2 −m2c4

=
(
γ2m2v2

)
c2 =

(
γ2m2c2

) [
v2

]
(regroup)

=
(
γ2m2c2

) [
v2 + c2 − c2

] (
add and subtract c2

)
= γ2m2c2v2 + γ2m2c4 − γ2m2c4 (multiply out and group)

= γ2m2c4 + γ2m2c2
(
v2 − c2

)
(note E = γmc)

= E2 + γ2m2c2
(
v2 − c2

)
Well, we are halfway there, but that last term is a problem. Let’s take that separately, and work it through.
First plug in the definition of γ:

iihttp://en.wikipedia.org/wiki/Nuclear weapon yield and http://en.wikipedia.org/wiki/Tsar Bomba

http://en.wikipedia.org/wiki/Nuclear_weapon_yield
http://en.wikipedia.org/wiki/Tsar_Bomba


γ2m2c2
(
v2 − c2

)
= m2c2

 v2 − c2(√
1− v2

c2

)2

 = m2c2

[
v2 − c2

1− v2

c2

]

= m2c2

c2
(

v2

c2 − 1
)

1− v2

c2

 factor out c2

= m2c4

−
(
1− v2

c2

)
1− v2

c2


= −m2c4

After a messy start, it comes out beautifully simple. Now, plug that back into our work above, and we are done.

p2c2 = E2 + γ2m2c2
(
v2 − c2

)
= E2 −m2c4

=⇒ E2 = c2p2 + m2c4

9. 10 points. Combustion of gasoline releases 1.3×108 J of energy per gallon. (a) How much mass is converted
to energy? (b) Compare this with 2.8 kg, the mass of one gallon of gasoline.

All we want to find out is what would be the matter equivalent of 1.3×108 J worth of rest energy:

ER = mc2 = 1.3× 108 J

=⇒ m =
1.3× 108 J

c2
=

1.3× 108 J
(3× 108 m/s)2

= 1.4× 10−9 J · s2

m2
= 1.4× 10−9 kg

For the units to work out, remember that 1 J=1 N ·m=1 kg ·m2/s2. This is a tiny amount of mass, especially
compared to a gallon of gasoline:

m

mass of 1 gal gasoline
=

1.4× 10−9 kg
2.8 kg

≈ 5.1× 10−10

10. 15 points. Research Problem: one page, double spaced, 1 inch margins. According to special relativity, the
time order of events can be reversed under certain conditions. Does this violate causality? That is, could a ball
hit the ground before it had been thrown?

See the notes, and do a little web searching. For instance:

http://en.wikipedia.org/wiki/Causality (physics)

http://stason.org/TULARC/education-books/startrek-relativity-FTL/8-1-What-is-Meant-Here-by-Causality-and-Unsolvable-Paradoxes.

html

http://en.wikipedia.org/wiki/Causality_(physics)
http://stason.org/TULARC/education-books/startrek-relativity-FTL/8-1-What-is-Meant-Here-by-Causality-and-Unsolvable-Paradoxes.html
http://stason.org/TULARC/education-books/startrek-relativity-FTL/8-1-What-is-Meant-Here-by-Causality-and-Unsolvable-Paradoxes.html

