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Problem Set 1: Solutions

1. The orbital speed of the Earth around the Sun is 30 km/s. In one year, how many seconds do the
clocks on the Earth lose with respect to the clocks of an inertial reference frame at rest relative to the
Sun? Hint: if v/c is small, the following approximations are valid:√
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If we are to consider an inertial frame at rest relative to the sun, it must be the one keeping the proper
time interval ∆tp. Over the course of one year, we have

∆tp = 1 yr ≈ 3.156× 107 s (1)

The observers on earth are in motion relative to the sun, and therefore they measure a dilated time
interval ∆t′=γ∆tp. We are asked for the difference between the two clocks after one year as measured in
the sun’s inertial frame, or

difference = ∆t′ − ∆tp = γ∆tp − ∆tp = (γ − 1) ∆tp (2)

Since in this case the relative velocity of earth is small with respect to c, v = 30 km/s = 3 × 104 s so
v/c=10−4, we can use the second approximation given.
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≈ 0.16 s (4)



2. A cannonball flies through our classroom at a speed of 0.30c. Measurement of the transverse diameter
(“width”) of the cannonball gives a result of 0.20 m. What can you predict for the measurement of the
longitudinal diameter (“length”) of the cannonball?

If the cannonball is moving at high speed relative to an observer, along the direction of motion its length
will appear shorter by a factor γ. Along the transverse direction (perpendicular to the direction of mo-
tion), no contraction will occur and the width observed will be the proper one Lp = 0.2 m. Given the
cannonball’s speed of v=0.3c, the length will appear to be
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3. A flexible drive belt runs over two flywheels whose axles are mounted on a rigid base (Fig. 1). In the
reference frame of the base, the horizontal portions of the belt have a speed v and therefore are subject to
length contraction, which tightens the belt around the flywheels. However, in a reference frame moving
to the right with the upper portion of the belt, the base is subject to length contraction, which ought
to loosen the belt around the flywheels. Resolve this “paradox” with by a qualitative argument. Hint:
consider the lower portion of the belt as seen in the reference frame of the upper portion.

v

Figure 1: Question 3

Viewed from the laboratory frame, both the upper and lower belt should contract, as they are in motion
relative to the observer. The fact that the top and bottom move in opposite directions does not matter in
this case - both are contracted by the same amount, since length contraction depends on the square of the
relative velocity. Thus, the belt appears to tighten.

Viewed from a frame traveling with the upper belt, the base appears to contract, since relative to the top
portion of the belt, the pulleys on either side are moving away at velocity |v|. Why does the belt not
loosen? This is because relative to the top of the belt, the bottom of the belt is moving at velocity |2v| (ig-
noring the proper relativistic addition of velocities for the moment), and is thus length contracted twice
as much as the the distance between the pulleys. Thus, the pulleys get closer together, but the bottom of
the belt shortens even more, and overall the belt should appear to tighten.



Viewed from the bottom belt, the situation is reversed - both pulleys are moving at velocity v and the
base contracts, but the top belt is moving at |2v| and contracts twice as much. Still, the net effect is that
the belt appears to tighten, a fact which all three reference frames agree on.

4. A spaceship is moving at a speed of 0.60c toward the Earth. A second spaceship, following the first
one, is moving at a speed of 0.90c toward the Earth. What is the speed of the second spaceship as observed
in the reference frame of the first?

Let our primary reference frame O be at rest with respect to the earth, and our second frame O′ be at
rest with respect to the first ship. The velocities of the two ships with respect to earth are then

v1 = 0.6c

v2 = 0.9c (5)

The second ship is going in the same direction as the first, but faster. Therefore, observers in the first
ship, in the O′ frame, will see the second ship as going forward in the same direction as they are. How
fast? If we did not worry about relativity, we would say that the speed of the second ship relative to
the first is the difference between their velocities - the second ship is going at 0.9c relative to earth, but
the first ship is already going at 0.6c relative to earth. Without relativity, we would simply say that the
second ship is going 0.3c faster than the first.

Accounting for relativity, we still subtract velocities, but use the proper relativistic formula for the veloc-
ity of the second ship viewed from the first:
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≈ 0.65c

5. Consider a particle of mass m moving at a speed of 0.10c. What is its kinetic energy according to the
relativistic formula? What is its kinetic energy according to the Newtonian formula? What is the percent
deviation between these two results?

The classical formula for kinetic energy gives:
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m (0.10c)2 = 0.005mc2 (6)

The relativistic formula yields – being very careful to carry enough digits – something just a bit larger:

Kr = (γ − 1) mc2 =
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The percent deviation is then (note that the mc2 bits cancel)
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≈ 0.8% (8)

Even at a tenth the speed of light, it is not a big difference.

6. Show that the momentum of a particle can be expressed in the concise form ~p = E
c2

~v.

Relativistic energy is given by

E = γmc2 (9)

meaning we can write

γm =
E

c2
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Relativistic momentum is

~p = γm~v (11)

Substituting Eq. 10 into Eq. 11 . . .

~p = γm~v =
E

c2
~v (12)


