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Problem Set 2: Solutions

Notes:

1. My solutions tend to be longer and more pedantic than yours need to be.
2. Problem 4 in particular is far too difficult for an exam.

3. Problems 1 and s are probably not too difficult for an exam, but it is close.

1. At each corner of a square is a particle with charge ¢. Fixed at the center of the square is a point
charge with opposite sign, of magnitude ). What value must @ have to make the total force on
each of the four particles zero? With @ set at that value, the system, in the absence of other forces,

is in equilibrium. Do you think the equilibrium is stable?

First, we need a sketch of situation described in the problem, see Fig.[1| below.

Figure 1: Left: Situation described in problem 1; the charges q1-qa are equivalent, while charge Q has the opposite sign. We assume the square has side
a, though we won’t need this distance in the final answer. Right: Forces on charge q2 due to the other charges.

We have four identical charges, labeled ¢; through ¢4 just to keep track of things, on the corners of a
square whose side we will assume has length a. An opposite charge @ sits in the middle of the square.
Now, we are not given a, and we will not need it in the final answer. Our final answer should not depend
on any precise dimensions, it should only depend on the fact that we have a square, and a square of any
dimension should give the same result by symmetry. Whether you believe this or not is irrelevant, it

something that should be proven: we’ll give the square a side a for now, and see if it cancels in the end

If this structure is to be in equilibrium, then the net force on any given corner charge should be zero. All

corner charges are the same, so it should not matter which one we choose to analyze. By considering the



symmetry of the structure, since we know ¢; = g2 = g3 = q4 we can see that if all the forces sum to zero
for charge ¢1, then it must be true for g2, g3, and g4 as well. Thus, we only need to worry about one of

the four charges.

It gets better. Since this structure has four-fold symmetry, the horizontal and vertical directions are equiv-
alent. If we define x and y axes to be horizontal and vertical, respectively (Fig.[1) this means that the net
force along « must be the same as the net force along y. It must be so, since there is nothing special to
distinguish « from y in the problem. That means we need only to consider either the net  or net y
component rather than the whole resultant force on a single charge. Thus, the problem is reduced to the

following: pick one corner charge, and sum the forces along one axis.

Pick charge g2, and let us sum the forces along the x axis. There are four forces acting, corresponding to
the other 3 corner charges and the central charge. Charge ¢; sits a distance a away, and gives a repulsive

force in the +z direction. We need not worry about components, the entire force acts along the z axis:

By = — (1)

Charge g3 sits a distance av/2 away, and gives a repulsive force upward and to the right at 45° (since
we have a square). The x component is then found by multiplying the magnitude of the force times
cos 45° =1/2/2:
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Charge ¢4 gives a repulsive force purely along the y axis, and does not contribute to our force balance at

all That leaves only the charge @, a distance v/2a/2 away, which provides an attractive force on g2. We

find its  component just like last time.
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Now we just need to add together all the 2 components and set the result equal to zero to impose

1Tf we had chosen to sum the forces along the y axis, g4 would give us the a contribution identical to F»; above, but ¢1 would
give no contribution, so the result would be the same in the end.



equilibrium:
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We no longer need to separately keep track of the ¢1-g4, so we can replace them all by just plain ¢. The

remaining task is simply to find a relationship between @ and ¢:
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Is the equilibrium stable? Qualitatively, we can answer this in a straightforward way; mathematically
it is harder (requiring calculus). If the equilibrium is stable, that means that if we displace @ by a tiny
amount, it should feel a restoring force pushing it back to its original position. If it is unstable, any tiny

push would send it to a completely new position. What happens in this case?

If we push @ (for example) toward go, it will feel a stronger attractive force from go than any other charge,
and it will move toward ga. The same is true for any direction we push @ - any displacement would put
it closer to one of the g charges than the other three. The forces keeping it in place would no longer be
balanced, and even a tiny perturbation would send it flying toward the closest ¢ charges. This means the

equilibrium is unstable.

2. A charge of 100 1C is at the center of a cube of side 0.8 m. (a) Find the total flux through each
face of the cube. (b) Find the flux through the whole surface of the cube. (c) Would your answers
to the first two parts change if the charge were not at the center of the cube?

It is easier to answer part (b) first. If the cube encloses the point charge, then the flux through the entire

cube must be found in accordance with Gauss’ lawi

2
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Don’t forget that 4 means 107°.



Back to (a). If the charge sits symmetrically at the center of the cube, then the flux must be the same over
every face of the cube. Thus, each side takes 1/6 of the total flux, since there are six sides:
Nm
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If the charge were not in the center of the cube, the flux through the whole cube in (b) would be the same,
provided that the charge were still fully enclosed by the cube. If the charge were partially penetrated by
one side of cube (say, half in and half out) then this would not be the case, and we would need to figure
out how much of the charge was inside the cube and how much was outside. In either case, we could not
say anything very clever about the flux through any given side - figuring that out relied crucially on the
charge being symmetrically placed with respect to the six sides of the cube, so we could say they all had
equal flux. If the charge were off-center, closer to one side than the others, this is no longer true, and our

answer to (a) no longer holds.

3. A pyramid has a square base of side a, and four faces which are equilateral triangles. A charge
Q is placed on the center of the base of the pyramid. What is the net flux of electric field emerging

from one of the triangular faces of the pyramid?

This is another one of those cases where we have to rely on the symmetry of the situation in order to have
any hope. First, we know that the total flux must just be 47k.Q or Q/¢,. If the charge @ is embedded
in the base of our pyramid, half in and half out, the pyramid must be intercepting half of the total flux.
Even if it is just above or just below the base, it does not matter, it only matters that the charge @ is
actually on the base. The field from the charge @ is then parallel to the base of the pyramid, and thus the

base itself intercepts no field lines and has zero flux.

Thus, the pyramid intercepts half of the total flux, but does so only with its four triangular sides. The
field lines from the charge are parallel to the base of the pyramid, so there can be no net flux through the
base. Since the charge is exactly at the center of the pyramid, each of the other four sides of the pyramid
must receive the same fraction of the flux through the pyramid. Thus, the pyramid receives half of the
total flux, and each triangular side must have one quarter of that, or one eighth of the total per side. The

flux per triagular face must then be $7k.Q, or Q/8¢,.

4. Suppose three positively charged particles are constrained to move on a fixed circular track. If
all the charges were equal, an equilibrium arrangement would obviously be a symmetrical one with
the particles spaced 120° apart around the circle. Suppose two of the charges have equal charge
¢, and the equilibrium arrangement is such that these two charges are 60° apart rather than 120°.
What must be the relative magnitude of the third charge?

The first thing we need to do is figure out the geometry and draw a picture. First, all three charges are

confined to a circular track, which we will say has radius r. Two of the charges are the same, which we



will call ¢; and g9, and they sit 60° apart on the circle. Where will the third, unequal charge (g3) sit? In
order for the forces on it due to charges 1 and 2 to be balanced, it must be equidistant from both on the
circle. If charges 1 and 2 are 60° apart, then there are 300° left in the circle, and the third charge must sit
halfway around that - the third charge must be 150° from both of the other charges.

Next, we should pick a coordinate system and origin. For reasons I hope will be clear soon, we will
choose the origin to be on charge ¢1, with the +y direction pointing toward the center of the circle and
the x axis tangential to the circle, as shown below. We could have equally chosen g5 as the origin, since it
1s identical to ¢1, it makes no difference For convenience, we label the center of the circle as point C

so we can easily refer to it later.

q2

tangent
origin O on q
Fi2 Fis
o]
180=Y+90+ 15
180 =X+ 90 + 60 €

Figure 2: Geometry implied by problem 4.

Since charges ¢1 and ¢o are 60° apart on the circle, we can form an equilateral triangle with point C' as
one corner. Based on this, we can find the distance between ¢ and g5 in terms of the radius of the circle
r: r12 =7. Charges ¢ and ¢ are identical, and therefore experience a repulsive force of magnitude Fio
directed along the line connecting them. This force must be at a 30° angle to the x and y axes, based
on the geometry above. Charge g3 has a different magnitude, but the same sign as ¢1, and thus the force

between them F3 is also repulsive.

In order for the charges to stay in the positions above, what must be true? For charge ¢1, the forces in the
y direction are irrelevant, since ¢; is constrained to stay on the circle anyway. Only net forces along the =

direction will force it to move around the circle one way or the other. Thus, in order for this situation to

"One could choose any point as the origin and get the same result, but in my opinion the geometry is more transparent in
the present case.



be the equilibrium configuration, the forces on ¢ in the x direction tangential to the track must cancel.
Since ¢ and g2 are identical, the forces along the tangential direction of the circle will also vanish for ¢o
automatically. Finally, since the system is symmetric, g3 must also have no net force along the direction
of the circle if neither of the other charges do. Thus, it is sufficient to find the forces in the x direction
for ¢; and equate them. This means we need to find the 2 components of Fi2 and Fi3, set them equal to

one another, and solve for ¢s.

First, we focus on F2, whose = component we will label Fis ;. We now know the distance between ¢;
and ¢o, so the magnitude of the rotal force is easily written down with Coulomb’s law:
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In order to find the z component, we need to know the angle that F1o makes with the z axis. Based
purely on symmetry, we would say it must be 30°. Explicitly ...the angle we are looking for is the
one labeled X in the figure above. We know that the tangent line at charge ¢; forms a 90° angle with a
(vertical) radial line. We also know that the angle between the line 712 and the vertical radial line is 60°.
Together, those three angles make a straight line, for 180°. Thus, 180=X + 90 + 60, or X =30°. Thus,
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Now, what about the force between charges 1 and 3, F31? We can write down the force between them

easily:

F13 = 5 (14)

What 1s the distance d between g1 and ¢3? For this, we will need the law of cosines (and the fact that
cos 150° = — cos 30° = —\/§/2):
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In order to find the 2 component of Fy3, we’ll need the angle Y in the figure above, the angle F13 makes

with the = axis. Again using the fact that angle Y plus a right angle plus 15° make a straight line, we



deduce Y = 75° Putting all this together,
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Now, this is probably a little-known fact, but we can find cos 75° exactly:
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If you didn’t know this random factoid, no worries: just leave the cos 75° in there and continue. What

you do not want to do is just plug in 0.2588 instead - keep everything symbolic until the last step, and it

is much, much easier to check your work. Anyway ...
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Now we just need to set F3 , = F12 , and solve for g3 in terms of ¢; or ¢a:
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Thus, the charge g3 must be approximately 12.5 times as big as ¢1 and g2 in order for the latter two
charges to be 60° apart. Physically, it makes sense that g3 is bigger - ¢1 and g2 are closer together than
they would be if all three charges are equal, so they must be feeling more repulsion from ¢3 than from

each other, which means g3 must be bigger.

Now, if you left the cos 75° in there, that is FINE! Knowing how to express cos 75° in exact form
is a rather esoteric bit of knowledge, and fairly useless in our modern electronic age ...it is fine to

leave a cos 75° in your final symbolic answer. Again: the thing you should resist strongly is to plug in

“We could also argue on different grounds that it must be half the angle made up by g3, C, and g1, 150° /2.



cos 75° &~ 0.2588 right away. As soon as you start using numbers instead of symbols (or at least values

known functions), you have lost one easy way to check your work.

s. Two small spheres, each of mass 2.00g, are
suspended by light strings 10.0cm in length. A

uniform electric field is applied in the horizon-
tal (z) direction. The spheres have charges equal
to —5 x 1078 C and +5 x 1078 C. Determine the
electric field that enables the spheres to be in equi-

librium at an angle 6=10.0°.

Again, we will need a more detailed sketch. Let the distance between the two charges at equilibrium be
d. As with the first problem, we need only consider one charge or the other - by symmetry the other
charge will have all the same forces. Let us consider the positive charge then. It will have four forces
present: those due to the electric field (F'g), the negative charge (F}), its weight (mg), and the tension in
the string (T'). Considering all that, here is our sketch and axis definitions:

Figure 3: Left: Situation described in problem s; we define the distance between the two charges at equilibrium to be d. Right: Forces on charge +q
due to the electric field (Fig), the negative charge (Fy), its weight (mg), and the tension in the string (T)).

The electric forces F'y and Fj are readily calculated. The positive charge +¢ will feel a force due to the
electric field Fg=¢F, and a force due to the negative charge a distance d away
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We can find d by trigonometry in terms of the known 6 and I:

sin0:d{2 = d=2lsind (19)



What about the tension in the string? At equilibrium, we know that the y component of the tension

must be precisely balanced by the weight of the charge:

Fynet =T cost) —mg =0 = T = c:;ge (20)
Now we are ready to sum the forces in the z direction, which must also total zero at equilibrium:
Fynee =Fp — Fy; —Tsinf =0 (21)
0=qFE — k;f — = sing (22)
qF = 4l2k:1qn220 + mgtan6 (23)
= E= 4l2k:13120 <n;g> tan ~ 4.4 x 10° [N/C] (24)

When plugging in your numbers, be careful to convert everything to base SI units - m not cm, kg not g.



