University of Alabama
 Department of Physics and Astronomy

Problem Set 3: Electrical Energy

Instructions:

I. Answer all questions below. Show your work for full credit.
2. Due before the end of the day, is July 2009
3. Email: leclair.homework@gmail.com; hard copies: Gallalee i 10 or Bevill 228.
4. You may collaborate, but everyone must turn in their own work
I. A sphere the size of a basketball (radius 0.12 m) is charged to a potential of -500 V . About how many extra electrons are on it, per cm^{2} of surface?
2. A positive charge of q and a negative charge of $-4 q$ are placed a distance d apart. Taking the zero for electric potential to be an infinite distance from both charges, find another point where the electric potential is zero.
3. A single atomic layer of singly-charged ions (charge $+e$) can be arranged on a neutral insulating surface in one of two ways: either as a square or a triangular lattice. For four ions in the former configuration, and three in the latter, calculate the potential energy per unit charge. Which lattice is more stable?

4. The gap between the electrodes of a spark plug in an automobile is 0.64 mm . In order to produce an electric field of $3 \times 10^{6} \mathrm{~V} / \mathrm{m}$ required to initiate a spark, what minimum potential difference must you apply to the plug?
5. An electron in a neon light tube is accelerated from rest through a 2000 V potential difference. What velocity does the electron attain?
6. Find the equivalent capacitance for both combinations shown below. Be sure to consider the symmetry involved and the relative electric potential at different points in the circuits.

