University of Alabama
 Department of Physics and Astronomy

Problem Set 5: Mostly Magnetism

Instructions:

I. Answer all questions below. Show your work for full credit.
2. Due before the end of the day, 2 I July 2009
3. Email: leclair.homework@gmail.com; hard copies: Gallalee ino or Bevill 228.
4. You may collaborate, but everyone must turn in their own work
I. A black box with three terminals, a, b, and c, contains nothing but three resistors and connecting wire. Measuring the resistance between pairs of terminals, you measure $R_{a b}=30 \Omega, R_{a c}=60 \Omega$, and $R_{b c}=70 \Omega$. Show that the box could be either of those below.

2. In a motorboat, the compass is mounted at a distance of 0.80 m from a cable carrying a current of 20 A from an electric generator to a battery. (a) What magnetic field does this current produce at the location of the compass? Assume the cable is a long, straight wire. (b) The horizontal (north) component of the Earth's magnetic field is $1.8 \times 10^{-5} \mathrm{~T}$. Since the compass points in the direction of the net horizontal magnetic field, the current will cause a deviation of the compass needle. Assume that the magnetic field of the current is horizontal and at a right angle to the horizontal component of the earth's magnetic field. Under these circumstances, by how many degrees will the compass deviate from true north?
3. Suppose you move along a current-carrying wire at the same speed $v_{d} \ll c$ as the drift speed of electrons in the wire. Do you now measure a magnetic field of zero?
4. A wire having a mass per unit length of $0.50 \mathrm{~g} / \mathrm{cm}$ carries a 2.0 A current horizontally to the right. What are the direction and magnitude of the minimum magnetic field needed to lift this wire vertically upward?

