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Problem Set 6: Solutions

1. Find the magnetic field at point P due to the current distribution shown below. Hint: Break the loop into
segments, and use superposition.
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Problem 3: A current loop

The easiest way to do solve this is by superposition – our odd current loop is just the same as two semicircles
plus two small straight segments. We know that the magnetic field at the center of a full circular loop of radius r

carrying a current I is

B =
µoI

2r
(loop radius r)

Since the magnetic field obeys superposition, we could just as well say that our full circle is built out of two
equivalent half circles! The field from each half circle, by symmetry, must be half of the total field, so the field at
the center of a semicircle must simply be

B =
µoI

4r
(semicircle, radius r)

In other words: a half circle gives you half the field of a full circle. Here we have two semicircular current
segments contributing to the magnetic field at P : one of radius b, and one of radius a. The currents are in the
opposite directions for the two loops, so their fields are in opposing directions. Based on the axes given, it is the
outer loop of radius b that has its field pointing out of the page in the ẑ direction, and the inner loop of radius a

in the −ẑ direction.

What about the straight bits of wire? For those segments, the direction field is zero. Since the magnetic field
“circulates” around the wire, along the wire axis it must be zero. Even if it were not, by symmetry the two



straight bits would have to give equal and opposite contributions and cancel each other anyway. There is no field
contribution at P from the straight segments! Thus, the total field is just that due to the semicircular bits,
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µoI

4b
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2. You want to confine an electron of kinetic energy 3.0× 104 eV by making it circle inside a solenoid of radius
0.1 m under the influence of the force exerted by the magnetic field. The solenoid has 12000 turns of wire
per meter. What minimum current must you put through the wire if the electron is not to hit the wall of the
solenoid?

If we have a charged particle (charge e) moving with velocity v perpendicular to a magnetic of magnitude B, we
know the particle will undergo circular motion with a radius

r =
mv

qB

We want this radius to be equal to or smaller than the radius of the solenoid R = 0.1 m, such that the circular
orbit fits inside the solenoid. The kinetic energy given tells us the velocity of the electron:

K =
1
2
mv2

v =

√
2K

m

Thus,

r =
m

eB

√
2K

m
≤ R

The larger the B field, the smaller the radius. For a solenoid, we know that the B field produced is proportional
to the current I in the solenoid, B =µonI , where n is the number of turns per unit length (given). Substituting
in the equation above and solving for I ,

R ≤ m

eB

√
2K

m
= r

R ≤ m

eµonI

√
2K

m

I ≥
√

2Km

eµonR
≈ 0.39 A

To get the numbers to come out, we have to remember to convert our energy units (1 eV=1.6× 10−19 J) . . .



3. Consider an electron orbiting a proton and maintained in a fixed circular path of radius R =5.29 × 10−11 m
by the Coulomb force. Treating the orbiting charge as a current loop, calculate the resulting torque when the
system is in a magnetic field of 0.400 T directed perpendicular to the magnetic moment of the electron.

First, need to know the current that corresponds to one orbiting electron. From the current I , magnetic field
B, and the orbital radius R we can find the torque. An electron in a circular orbit of radius R has a period of
T =2πR/v, where v it he electron’s velocity. If a single electron charge −e orbits once every T seconds, then the
current is by definition

I =
∆q

∆t
=
−e

T
=
−ev

2πR

We can find the velocity from the condition for circular motion. The only force present (that we know of) is the
electric force, which must then provide the centripetal force on the electron. The electric force is just that of two
point charges e and −e separated by a distance R.

Fcentr = FE

−mev
2

r
=
−kee

2

R2

=⇒ v =

√
kee2

meR

We can now substitute this in our expression for current above:

I =
−ev

2πR
=
−e

2πR

√
kee2

meR
=
−e2

2π

√
ke

meR3

Finally, since the magnetic field is perpendicular to the electron’s magnetic moment, the magnitude of the torque
is given by τ =IAB where A is the area of the “current loop” formed by the orbiting electron, A=πR2. Thus,

τ = IAB =
−e2

2π

√
ke

meR3
πR2B = −1

2
e2B

√
keR

me
≈ −3.7× 10−24 N ·m

The negative sign reminds us that current is the direction that positive charge flows, and thus the direction of the
torque is given by the right hand rule consistent with the current, which is opposite the direction that the electron
orbits.

4. The electric field of a long, straight line of charge with λ coulombs per meter is

E =
2keλ

r

where r is the distance from the wire. Suppose we move this line of charge parallel to itself at speed v. (a) The



moving line of charge constitutes an electric current. What is the magnitude of this current? (b) What is the
magnitude of the magnetic field produced by this current? (c) Show that the magnitude of the magnetic field is
proportional to the magnitude of the electric field, and find the constant of proportionality.

The current can be found by thinking about how much charge passes through a given region of space per unit
time. If we were standing next to the wire, in a time ∆t, the length of wire that passes by us would be v∆t. The
corresponding charge is then ∆q=λv∆t, and thus the current is

I =
∆q

∆t
=

λv∆t

∆t
= λv

From the current, we can easily find the magnetic field a distance r from the wire.

B =
µoI

2πr
=

µoλv

2πr

If the wire were sitting still (or we were traveling parallel to it at the same velocity v), it would produce the electric
field given above. Rearranging the given expression, we can relate λ and E, λ=Er/2ke. Substituting this in our
expression for the magnetic field,

B =
µoλv

2πr
=

µoErv

4πker
= µoεovE =

v

c2
E

For the last step, we noted that εo =1/4πke and c2 =1/εoµo.


