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1. The end of a charged rubber rod will attract small pellets of Styrofoam that, having made contact with
the rod, will move violently away from it. Describe why that happens.

Solution: The electric field from the charged rubber rod will orient the charges in the overall electrically
neutral Styrofoam pellets such that the opposite charges attracted closer to the rod, and the like charges
farther away. This will cause the Styrofoam pellets to jump toward the rubber rod. Upon contact, charge
from the rubber rod will neutralize opposing charges on the Styrofoam pellets, leaving the pellets with a
net charge of the same sign as the rod. This will immediately cause a repulsive interaction, which causes
the pellets to move violently away.

Say the rubber rod is charged negatively. This will cause the positive charges in the pellets to orient
themselves closer to the rod, and the negative charges in the pellets to orient themselves farther away. This
causes the pellets to be attracted to the rod. Once in contact, negative charge from the rubber rod will
(through contact) move on to the pellets, neutralizing some of the positive charge. After neutralization,
this leaves a net surplus of negative charge on the pellets, which will then be quickly repelled from the
negatively charged rod.

2. A charge of q and a charge of 5q sit a distance d away. Where could a third charge of magnitude 2q sit
between them and experience no net force?

Solution: Without calculating anything, we can first figure where the third charge should be relative to
the first two. Let us put the 5q charge at the origin, with the q charge a distance d away along the +x

axis (i.e., the 5q on the left, the q on the right). To the left of the 5q charge, the electric forces on the 2q

charge from both the 5q and q charges would be repulsive and toward −x (left). There is no way that we
can have two forces in the same direction cancel, so the 2q charge cannot be to the left of the origin.

To the right of the q charge (so, x>d), the force from both charges on the 2q charge would be repulsive
to the right, and again there is no way we can have a net zero force. However, in between the two charges
(so 0<x<d), the repulsive forces are in opposite directions from the 5q and q charges, and cancellation
is possible. Further, since the electric force depends on the magnitude of the charges involved, we know
we will have to place the 2q charge closer to the q charge than the 5q.

Let the 2q charge sit at a distance x from the origin, such that 0<x<d. From the arguments above, we
know that we must find x>d/2 so that the 2q charge is closest to the q charge. The distance from the 2q



to the 5q charge is now just x, while the distance from the 2q to the q charge is d−x. The total force on
the 2q charge is then just the sum of the individual forces from the 5q and q charges, taking into account
that they point in opposite directions – the force from the 2q charge should be negative, since it points
toward −x. The total force balance must be zero, hence
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Rearranging and canceling, we solve for x, the distance between the 2q and 5q charges.
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Thus, the 2q must be a distance d/
(
1 +

√
5
)

from the 5q charge to feel no net force. You can verify that
the forces are the same by plugging our result for x back into the expression for Ftot above.

3. Three charges q sit at the vertices of an equilateral triangle whose sides are length d. What is the net
force on each charge? Roughly sketch the electric field lines around the set of charges.

Solution: Here is the situation:
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Since the structure is symmetric, the force on each of the three charges will be the same – each of the
three charges is in the same situation as the others. From the geometry, we can see that any given charge
will have two repulsive forces on it from the other two charges, and these forces will be directed at a 60◦

angle with respect to each other.

Considering charge 1 above, the forces from charges 2 and 3 will be equal in magnitude. Further, from
the symmetry of the problem, their x components (horizontal) will cancel, and the net force will be only
in the vertical direction. Charges 2 and 3 are each a distance d from charge 1, so we can readily calculate
the magnitude of either force if all three charges have magnitude q:
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keq2

d2
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The net force along the y direction is simply adding the y components of the two forces:

Fy,net = F12,y + F13,y = F12 cos 30 + F13 cos 30 = 2F12 cos 30 = 2
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And, that is that.

Below is a quick calculation of the field, using tiny arrows to represent the electric force a positive charge
would feel at various points in space on a square grid (i.e., an arrow for the electric field at every point in
space). These are not the field lines exactly – that would be connecting the arrows with smooth curves
flowing out from the charges, and encoding the field strength in the density of lines.



4. An ion milling machine uses a beam of gallium ions (m = 70 u) to carve microstructures from a
target. A region of uniform electric field between parallel sheets of charge is used for precise control
of the beam direction. Single ionized gallium atoms with initially horizontal velocity of 1.8×104 m/s
enter a 2.0 cm-long region of uniform electric field which points vertically upward, as shown below. The
ions are redirected by the field, and exit the region at the angle θ shown. If the field is set to a value of
E=90 N/C, what is the exit angle θ?
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Solution: A singly-ionized gallium atom has a charge of q = +e, and the mass of m = 70 u means 70
atomic mass units, where one atomic mass unit is 1 u=1.66× 10−27 kg.

What we really have here is a particle under the influence of a constant force, just as if we were to throw a
ball horizontally and watch its trajectory under the influence of gravity (the only difference is that since
we have negative charges, things can “fall up"). To start with, we will place the origin at the ion’s initial
position, let the positive x axi run to the right, and let the positive y axis run straight up. Thus, the
particle starts with a velocity purely in the x direction: ~v0 =vx x̂.

While the particle is in the electric-field-containing region, it will experience a force pointing along the
+y direction, with a constant magnitude of qE. Since the force acts only in the y direction, there will be
a net acceleration only in the y direction, and the velocity in the x direction will remain constant. Once
outside the region, the particle will experience no net force, and it will therefore continue along in a
straight line. It will have acquired a y component to its velocity due to the electric force, but the x

component will still be vx. Thus, the particle exits the region with velocity ~v=vx x̂ + vy ŷ. The angle at
which the particle exits the plates, measured with respect to the x axis, must be

tanθ =
vy

vx

Thus, just like in any mechanics problem, finding the angle is reduced to a problem of finding the final
velocity components, of which we already know one. So, how do we find the final velocity in the y

direction? Initially, there is no velocity in the y direction, and while the particle is traveling between the
plates, there is a net force of qE in the y direction. Thus, the particle experiences an acceleration
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m
=

qEy
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The electric field is purely in the y direction in this case, so Ey =90 N/C. Now we know the acceleration
in the y direction, so if we can find out the time the particle takes to transit the plates, we are done, since
the the transit time ∆t and acceleration ay determine vy:

vy = ay∆t

Since the x component of the velocity is not changing, we can find the transit time by noting that the
distance covered in the x direction must be the x component of the velocity times the transit time. The
distance covered in the x direction is just the width of the plates, so:

dx = vx∆t = 2.0 cm =⇒ ∆t =
dx

vx

Putting the previous equations together, we can express vy in terms of known quantities:
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Finally, we can now find the angle θ as well:
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And that’s that. Now we plug in the numbers we have, watching the units carefully:

θ = tan−1

[
qEydx

mv2
x

]
= tan−1

[ (
1.6× 10−19 C

)
(90 N/C) (0.02 m)

(70 · 1.66× 10−27 kg) (1.8× 104 m/s)2

]

= tan−1

[
7.6× 10−3 N

kg ·m/s2

]
note 1 N=1 kg ·m/s2

= tan−1 7.6× 10−3 ≈ 0.44◦

5. A charge of 1.8 nC sits at the center of a cube. What is the electric flux out of one face? Over the
whole surface? Would your answer change if the charge is not at the center of the cube?

Solution: It is easier to answer the second question first. If the cube encloses the point charge, then the



flux through the entire cube must be found in accordance with Gauss’ law:i
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Back to the first question. If the charge sits symmetrically at the center of the cube, then the flux must be
the same over every face of the cube. Thus, each side takes 1/6 of the total flux, since there are six sides:

ΦE,side =
1
6
ΦE,tot = 33.9
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]
(11)

If the charge were not in the center of the cube, the flux through the whole cube would be the same,
provided that the charge were still fully enclosed by the cube. If the charge were partially penetrated by
one side of cube (say, half in and half out) then this would not be the case, and we would need to figure
out how much of the charge was inside the cube and how much was outside. In either case, we could not
say anything very clever about the flux through any given side – figuring that out relied crucially on the
charge being symmetrically placed with respect to the six sides of the cube, so we could say they all had
equal flux. If the charge were off-center, closer to one side than the others, this is no longer true, and our
answer to the first part of the question no longer holds.

iDon’t forget that “n” means 10−9.


