
11
Mirrors

THE behavior of reflected light within the ray approximation follows from one simple principle
– the angle of incidence is equal to the angle of reflection. Everything else we need to know

about reflected light just boils down to plane geometry – so far as the physics goes, reflection is
from our point of view a solved problem! Nonetheless, we can use the law of reflection along with
some carefully applied geometry to derive the behavior of reflected light for a number of important
and often-encountered cases.

Figure 11.1: Total internal

reflection in the tail of a plas-

tic monkey. Photo by the au-

thor.

In this chapter, we will deal with the perfect reflection of light from
mirrors. Given an object and a particular sort of mirror, we will learn how
to deduce what the nature of the image formed by the mirror will be. If we
can first learn how to do this for a single point source of light, we can then
build up any more complicated object out many point sources. Our most
important example mirrors will be a simple flat mirror, a convex spherical
mirror, and a concave spherical mirror. In passing, we will also investigate
other technologically important geometries, such as the parabolic reflectors
used in satellite dishes.

More broadly, by treating the problem of reflection in various specific
geometries, we will begin to learn about the projection, focusing, and
manipulation of light. Combined with what we will learn about refraction
in lenses in the next chapter, we will be able to understand in detail a
great number of optical instruments, such as microscopes, telescopes, and projectors.

11.1 Flat Mirrors

The most simple reflecting object is just a flat mirror, as shown in Fig. 11.2. What happens if
we take a point source of light at position O, a distance p in front of the mirror? A point source
of light is just what it sounds like – a single point from which light rays leave radially in straight
lines. When the light rays exiting the source (blue) reach the surface of the mirror, we apply the
law of reflection to determine where the reflected rays go (orange). Only a few of the rays leaving
the source are drawn here.

11.1.1 Image formation

Some rays leaving the point source source are reflected off of the surface of the mirror, and reach
an observer. The rays reflected off of the mirror in this case appear to come from a point I behind
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320 11.1 Flat Mirrors

p q
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mirror
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flat mirror: p = q Figure 11.2: Reflection from a flat mirror. An image
is formed by light rays from an object reflecting off of the
mirror’s surface. The object is located at O, a distance
p from the mirror, while the image location I is behind
the mirror at a distance q. For a flat mirror, p = q.
Solid lines indicate actual light rays, dotted lines indi-
cate ‘virtual’ rays, whose apparent point of convergence
determines where the observer sees the image.

the mirror, if we extrapolate where these diverging rays appear to come from (dotted orange lines).i

Any time we have an intersection of light rays, or a point where light rays appear to originate from,
an image of the object which was the source of the rays is formed. From the observer’s point of
view, the rays reflected off of the source object at O appear to come from a point I behind the
mirror, so we would say that the view sees an image of the object at point I, a distance q behind
the mirror.

Remember, for reflection and refraction, we have to be able to run the rays forwards or backwards
and get the same result. If we trace the light rays from the object to the observers eyes, this is
of course the real path the rays take. Tracing the orange rays backward through the mirror to
find their point of convergence tells us where we would need a second point source to reproduce the
image observed. All real and virtual light rays fall into two categories – ones that converge onto a
point (either the image or the object), and ones that diverge.

Image formation:
Images are formed where light rays converge to a point (intersect), or where they appear
to originate from.

If the original point source is a distance p from the mirror, straightforward geometry tells us
that the image distance q must be the same, p=q. The image observed is exactly as far behind the
mirror as the object is in front of it. The image in this case is what is known as a virtual image
– light doesn’t actually pass through the point where the image is created, but only appears to
come from that point. A real image is formed when light actually passes through some point. Real
images can be projected onto a screen, for example, since they result from real light sources, while
virtual images cannot (hence the term “virtual”).

iSince this is not a real light ray anyway, we do not worry about refraction in the glass making up the mirror. We
further assume the mirrors to be negligibly thin in any case.
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Figure 11.3: Different observers see the same image
from a flat mirror. Even though the three observers are
at different positions, geometry tells us that they will all
see the image formed at the same location.

Virtual image: Light rays don’t actually pass through an image point, but appear to
originate from there.
Real image: Light rays actually pass through a point. Only real images can be projected
onto a screen.

Our flat mirror forms a virtual image, since the image an observer sees is behind the mirror, and
does not result from real light rays coming from the point of the image. The virtual image is just
where the actual object appears to be after the mirror reflects light rays coming from it. Images
from flat mirrors are always virtual. Can we determine anything else about the image? Is the image
of the same size and shape as the object? Can we more rigorously prove our assertion that p= q.
Sure. How do we deal with more complicated objects, as opposed to simple point sources?

11.1.2 Ray Diagrams

If we know how to handle single light rays and point sources, we can handle any more complicated
object by building it out of point sources. We can consider any object to be made up of a series
of points (or pixels, if you like), and trace the light rays from each point on the object. Usually
it is not necessary to trace rays from every point on the object, it is enough to trace rays from a
few crucial points and fill in the blanks by symmetry and common sense. As an example, consider
the upright blue arrow in front of a flat mirror in Fig. 11.4. Our usual example object will be an
arrow, since it is a simple shape that lets us easily determine whether images formed are inverted
or magnified. As we shall see, another advantage is that all we need to do is trace out the rays
from the very tip of the arrow, and the rest fills in naturally.

We place the arrow of height h at point P , a distance p from the mirror. Simple geometric
techniques will let us figure out exactly what the image is like. First, we trace a ray outward from
the tip of the arrow which intersects the mirror at a perfect 90◦, intersecting the mirror at point
Q. This ray will just be reflected right back – if the angle of incidence is 90◦, then so must be
the angle of reflection. For an observer sitting directly behind the object, this ray would appear to
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Figure 11.4: The location and size of a reflected image
from a flat mirror can be found with a simple geometric
construction. Trace one ray from the object perpendicu-
lar to the mirror’s surface and one ray from the object
through the origin. Real light rays reflect off of the mir-
ror, virtual light rays continue on through the mirror.
The convergence of virtual rays behind the mirror gives
the image location. Since triangles PQR and P ′QR are
identical, the image and object heights are equal, h=h′,
as are the image and object distances, p= |q|.

come from behind the mirror, so we continue tracing a virtual ray (dotted orange line) behind the
mirror.

Now, we need to trace at least one more ray to uniquely determine what the image looks like.
We need to find an intersection of real or virtual rays in order to have an image, so we have to have
at least two, and in general three is safer. For the second ray, we will trace a line from the tip of
the arrow to a point on the mirror at the same vertical position as the bottom of the arrow. The
use of two extremal rays gives us more confidence in the position of the resulting image – if two
such extreme rays find an intersecting point, we are fairly sure we have found the image location.
If we chose two rays at similar angles, small inaccuracies in our drawing become more important,
and we have a harder time discerning the image position and size with any accuracy. Try tracing
some ray diagrams for yourself, you will quickly find this to be true.

This second ray is reflected downward from point R on the mirror at the same angle θ at which
it impinges on the mirror. Extrapolating the reflected ray back through the mirror as a virtual ray
(dotted orange line), we see that it converges with the first virtual ray at point P ′. This point of
convergence, then, must be the location of the image. Furthermore, since we are tracing out rays
from the tip of the arrow, this must be the tip of the image’s arrow. Symmetry alone tells us that
the image arrow must be upright, like the real one. If you are not convinced, trace out the same
two types of rays from the bottom of the arrow, and you will see!

We have established, then, that the image is virtual, and upright (not inverted). What about
its size? The virtual ray from R to P ′,

−→
RP ′ clearly must make an angle θ with the horizontal axis,

since it is just a continuation of the reflected ray at point R. The lines PQ and QP
′ are horizontal,

so the angles ∠RPQ and ∠RP ′Q must also be θ, since they are alternate interior angles to the θ
drawn in the figure. The triangles #RPQ and #RP ′Q must therefore be equivalent, since they
share RQ as a side. If these two triangles are equivalent, it clear that h = h′, and p = q. Now
we have proved our assertion that the image formed by an object placed in front of a flat
mirror is as far behind the mirror as the object is in front of it. We have further proved
that the image is the same size as the object. The images formed by flat mirrors faithfully
reproduce objects.
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11.1 Flat Mirrors 323

Flat Mirrors:
1. The image is as far behind the mirror as the object is in front of it.
2. The image is the same size as the object.
3. The image is upright and virtual.

11.1.3 Conventions for Ray Diagrams

For flat mirrors, we now know almost everything we need to. Other types of mirrors will not always
give images that are the same size as the object, however, and will not always be the same distance
away. If the image is not the same size as the object, we say that it is magnified. Magnified can
mean either larger or smaller. The degree of magnification is nothing more than the ratio of the
image height to the object heigh – how much larger or smaller is the image compared to the object?

Lateral Magnification of a Mirror:

M ≡ image height
object height

≡ h′

h
(11.1)

where h is the object height and h′ the image height. For a flat mirror, M =1.

For future convenience, we should also lay down some conventions for our ray diagrams. First,
we will always treat the mirror as the ‘zero’ for our horizontal axis. Distance is positive in front
of the mirror, and negative behind it. Real images are formed in front of the mirror, while virtual
images are formed behind the mirror (since no light goes through the mirror). The distance from
the mirror to the object will always be p, the distance to the image always q. The height of the
image will be h, the height of the object h′.

Conventions for Mirror Ray Diagrams:
1. The distance between the object and the mirror is p.
2. The distance between the image and the mirror is q.
3. The object’s height is h, the image’s height is h′.
4. In front of the mirror, p and q are positive.
5. The front of the mirror is where real rays propagate, the back is where virtual rays

are formed.
6. Behind the mirror, p and q are negative.
7. Real light rays are solid lines, virtual rays are dotted.

11.1.4 Handedness

Before we move on to different mirror geometries, one last word about mirrors and handedness. You
may remember that we discussed the difference between left- and right-handed coordinate systems
in Sect. 7.1.4. You already know of course that when you look in a mirror your sense of left and
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324 11.2 Spherical Mirrors

right are reversed. If you wave your right hand in the mirror, the image seems to wave its left.
Similarly, a mirror reflection is what relates left-handed and right-handed coordinate systems, or
right-handed and left-handed corkscrews. Examine Fig. 11.5, and convince yourself once again that
there is an intrinsic handedness or chirality to certain things. Only a mirror reflection can change
a left-handed to a right-handed coordinate system, no number of simple rotations will do it.

x̂

ŷ

ẑ

RH
x̂

ŷ

ẑ

LH

Figure 11.5: Reflected images have reversed hand-
edness. Clockwise, from upper left: a right-handed
corkscrew becomes a left-handed one in reflection, a left
hand becomes a right, and more generally a right-handed
coördinate system transforms to a left-handed one.

11.2 Spherical Mirrors

Spherical mirrors are just what they sound like: the reflective surface has the shape of an arc of
a circle. Spherical mirrors can be uniquely described by the radius of the circle R making up the
arc, and whether they are concave or convex. Concave mirrors are made by putting a reflective
coating on the inside surface of the circle, while convex mirrors are made by putting a reflective
coating on the outside surface of the circle.

11.2.1 Concave Mirrors

An example of a concave mirror is shown in Fig. 11.6a. The point C is the center of curvature
of the mirror (the center of the circular arc), and is a distance R from any point on the mirror’s
surface. The line drawn through the center of curvature C and a point V at the center of the arc
defines the principle axis of the mirror. How do we figure out what images look like using such
a mirror? Just like before, we trace light rays and apply the law of reflection and geometry.

mirror

V

I

(b)

R

center of

curvature

mirror

C

V

principle

axis

(a)

O C

Figure 11.6: (a) Reflection from a concave spherical
mirror. The center of curvature C is the center of the
spherical arc of radius R making up the mirror. The
principle axis passes through the center of curvature as
well as the middle of the mirror, V . (b) If we place an
object O anywhere on the principle axis farther away from
the mirror than C, a real image is formed at I. If the
distance from O to the mirror is relatively large compared
to R (such that the rays come off of the principle axis at
small angles), all rays reflect through the same point.
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11.2 Spherical Mirrors 325

Figure 11.6b shows a point source O placed relatively far from a spherical mirror, outside the
center of curvature. Rays leaving point O with a sufficiently small angle intersect the mirror, and
are all reflected back through a common convergence point I. The point I is the image point, and
the convergence of rays indicates that an image will form there, as though there were a copy of the
source at that point. Since real light rays are passing through the point I, the image formed is real.

For spherical mirrors in particular, we will usually assume that the light rays from the source
make a small angle with the principle axis. When this condition is met, all incident rays will reflect
back through the image point. On the other hand, when some rays reaching the mirror make a
relatively large angle with the principle axis – when the object is relatively close to the spherical
mirror – this is no longer true, as shown in Fig. 11.7. When the object is too close to the mirror,
some of the rays making a large angle with the principle axis no longer reflect back through the
image point, and no single point of convergence exists. This means that the image formed is not
clearly focused on one point, but spread out – the image is blurry. This phenomena is known as
spherical aberration. It is quite important for, e.g., telescopes and cameras – since spherical shapes
the easiest to produce, most lenses have spherical shapes and will suffer from this phenomena, as
we will see in more detail in the following chapter.

Figure 11.7: Rays at large angles from the principle
axis do not all reflect back to intersect the principle axis
at the same point. As a result, when objects are too close
to a spherical mirror, the image formed is “fuzzy” since
the convergence of rays is now spread out. This effect is
known as spherical aberration.

If we ensure that the object is sufficiently far from the mirror to avoid spherical aberration,
what will the image look like? Just like with flat mirrors, we will trace the rays coming from the
tip of an arrow placed in front of the mirror, as shown in Fig. 11.8. Again the arrow of height h is
placed a distance p from the mirror, at point O. The center of curvature for the mirror is C, and
the center of the mirror is at V .

First, we trace a ray from the tip of the arrow through the center of curvature at C. Since the
mirror is the arc of a circle, any line passing through the center of curvature must be normal to
the surface of the arc – that is, it must intersect the surface of the arc at a 90◦ angle. Therefore,
the ray drawn through the center of curvature reflects back along the same path. We will call the
angle this ray makes with the principle axis α.

Next, we draw a second ray from the tip of the arrow through the center of the mirror at V .
This ray makes an angle θ with the principle axis, and will reflect off the mirror at V with the same
angle. This ray intersects the first at the point I, and defines the tip of the image arrow. Since the
intersection point lies below the principle axis, the image is inverted. Further, we can already see
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V

I

C
h

O h
′ θα

p

q

R

θα Figure 11.8: The image formed by a spher-
ical concave mirror for objects placed outside
of the center of curvature C. The image is
real, magnified, and inverted.

that it is not the same size as the original arrow, so the image is also magnified. Finally, it is real
light rays that are intersecting in front of the mirror, so the image formed is real.

Concave spherical mirrors:
Images are real, inverted, and magnified.

Still, it would be nice to know exactly how big the image is, and where it is. This much we can
figure out with a bit of geometry. First, we can use the two θ angles and relate the object height
h and the image height h′. From the triangle formed by the object arrow and the uppermost ray:

tan θ =
h

p
(11.2)

Similarly, from the triangle formed by the reflection of that ray and the image arrow:

tan θ =
−h′

q
(11.3)

Note that since the image arrow points downward below the principle axis, the height of the image
is negative. Some simple algebra yields the magnification of the mirror:

tan θ =
h

p
=

h′

q
(11.4)

=⇒M =
h′

h
= −q

p
(11.5)
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Magnification for a concave spherical mirror:

M =
h′

h
= −q

p
(11.6)

Here h is the height of the object, h′ is the height of the image, p is the object distance,
q is the image distance. Negative M means the image is inverted.

Assuming we know h and p to begin with, we still need one more equation in order to uniquely
determine h′ and q, the height and position of the image. For that, we can use the α angles. From
the triangle defined by the left-most α and the object,

tanα =
h

p−R
(11.7)

Using the triangle defined by the right-most α and the image,

tanα = − h′

R− q
(11.8)

We can now use the above equations for tanα along with Eq. 11.6 to find another useful equation
relating p and q alone:

tanα =
h

p−R
= − h′

R− q

h′

h
= −R− q

p−R
= −q

p
(using Eq. 11.6)

p(R− q) = q(p−R)

pR− pq = qp− qR

pR + qR = 2qp

R(p + q) = 2qp
R

2
=

qp

p + q
=

1
1
q + 1

p

2
R

=
1
p

+
1
q

This last expression is known as the mirror equation, relates the image and object distances to
the physical radius of curvature of the mirror alone. As we shall find out shortly, this equation
is far more general than our simple derivation of it would imply. Coupled with the expression for
magnification, we can now deduce the behavior of any object with any concave spherical mirror . . .

so long as the object isn’t too close to the mirror.
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Mirror equation:

2
R

=
1
p

+
1
q

(11.9)

where p is the object distance, q is the image distance, and R is the radius of curvature
of the mirror.

11.2.1.1 Concave spherical mirrors and distant objects

We have already seen that forming sharp images from a concave spherical mirror requires the object
to be relatively far from the mirror (at least outside the radius of curvature). What happens if
the object is really, really far away? Say, far enough compared to R that p is essentially infinite?
When the object is very, very far away, the incident rays are all very nearly parallel to the principle
axis. For very distant sources, any small angle away from the principle axis will result in the rays
diverging too far to hit the mirror, only those rays at tiny angles relative to the principle axis will
hit the mirror. For all intents and purposes, we can assume all rays from a very distant object
impinge on the mirror parallel to the principle axis, as shown in Fig. 11.9.

C

R

f

F

Figure 11.9: For very distant objects (p←
∞), incident light rays are essentially paral-
lel, and all reflect through the focal point of
the mirror F . For very distant objects, the
image distance is q≈f≈R/2, where f is the
focal length of the mirror (the position of F ).

The mirror equation gives us yet more insight. If we let p tend toward infinity, then 1/p tends
toward zero. In this case, q ≈R/2 – the image is formed exactly half way between the center of
curvature and the mirror when the object is very far away compared to R. In this special case of
a distant object, all the incident rays converge at the same point F (Fig. 11.9), which we call the
focal point of the mirror. The focal length f of a mirror is just the distance between the mirror
and the focal point on the principle axis where light from a distant object would converge. Put
another way, it is the image distance q when we allow p to tend toward infinity. Thus, for our
concave spherical mirror, f = R

2

Though the focal length and radius of curvature are simply related, it is the former that you
will hear more often in optics. The focal length of a mirror is where light would focus if we had a
point source infinitely far away, and is one way of comparing the properties of different mirrors (or
lenses, as we shall see). Even though we can’t actually realize this situation, we can get far enough
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away from a mirror to approximate it, and in fact, this is the regime in which we try to operate
most optical instruments. If you have any experience with photography, you are no doubt already
familiar with focal lengths. In any case: the focal length is a characteristic of a spherical mirror,
just half its radius of curvature, and it allows us to re-write the mirror equation in an ostensibly
more useful way:

Mirror equation in terms of the focal length:

1
f

=
1
p

+
1
q

(11.10)

where p is the image distance, q is the object distance, and f is the focal length. For a
concave spherical mirror, the focal length is half the radius of curvature, 2f =R.

The fact that spherical mirrors focus all distant light onto a single point makes them potentially
useful for, e.g., solar heating or focusing antennas. As we shall see in subsequent sections, however,
there is a still more clever geometry which is much better for light harvesting applications.

11.2.2 Convex Spherical Mirrors

A convex spherical mirror is shown in Fig. 11.10, in which the outer surface of the spherical arc
has a reflective coating. While a concave spherical mirror tends to focus distant light on to a single
point, a convex spherical mirror tends to diverge incident rays. Nearly all incident rays on the
surface of the convex spherical mirror diverge after reflection, as if they are coming from behind the
mirror itself. Analyzing the image formed by this type of mirror is not much more difficult than
the other cases we have dealt with, we just have to construct a ray diagram.

h

O

p q

C

F

I
h
′

Front Back

Figure 11.10: The image formed by a
spherical convex mirror is virtual, magnified,
and upright.

For the moment, two rays are enough to grasp the nature of image formation for a convex
mirror. First, we draw a ray horizontally from the tip of our object arrow in Fig. 11.10. This ray is
reflected upward away from the object and mirror. If we trace the reflected ray backward through
the mirror, it intersects the principle axis exactly at the focal point of the mirror. Next, we draw a
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330 11.3 Ray Diagrams for Mirrors

ray from the tip of the arrow through the center of curvature of the mirror. In front of the mirror,
it is a real ray, while in back of the mirror it is a virtual ray. The intersection of our two virtual
rays behind the mirror gives the image location.

Table 11.1: Sign Conventions for Mirrors

Quantity Symbol Front Back Upright Inverted

Object location p + −
Image location q + −
Focal length f + −
Object height h′ + −
Image height h′ + −
Magnification M + −

In this case, we can see that the image is upright, virtual, and magnified. What is the actual
image position and magnification factor? As it turns out, if we work through the geometry, the
same mirror equation is valid for convex spherical mirrors, if we keep in mind that p

and q are negative when we are behind the mirror. In this particular case for convex spherical
mirrors, h and h′ are positive, p is positive, and q is negative. Table 11.1 is a reminder of the sign
conventions we use for mirrors. Parenthetically, we note that the mirror equation also works for
flat mirrors! The radius of curvature of a flat plane is infinite, and applying this to Eq. 11.9 readily
gives p=q.

11.3 Ray Diagrams for Mirrors

So far, we have constructed ad hoc ray diagrams for the different mirrors under consideration. The
ray diagrams are nothing more than graphical constructions to give us an overall impression of the
image formed. We tried to choose rays that gave extremal cases, in the hopes that this would give
a more accurate image. In fact, we can come up with a set of general rules for constructing a ray
diagram for any simple mirror, so long as we know the object location and the mirror’s center of
curvature. In the end, we need only three rays. So far we have used only two, and that has worked
fine. In some sense the third ray is a ‘sanity check.’ With only two rays, it is almost certain that
we will have an intersection somewhere, even if make some small mistakes in our ray tracing. The
odds of a third ray spuriously intersecting the other two at the same point is tiny, so if all three
rays intersect at the same point, we can be sure that our diagram is reasonably correct.

How to construct ray diagrams:
Ray 1 is drawn parallel to the principle axis, and reflects back through the focal point.
Ray 2 is drawn through the focal point, and reflects back parallel to the principle axis.
Ray 3 is drawn through the center of curvature, and reflects back on itself.
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In using these rules and analyzing different situations for spherical mirrors, we can make the
some generalizations to serve as rules-of-thumb:

Images from Spherical Mirrors:
1. Concave Mirrors (Fig. 11.11):

(a) p > R: object outside center of curvature,
gives a real, inverted, and reduced image

(b) R > p > f : object outside focal point and inside center of curvature,
gives a real, inverted, enlarged image

(c) p < f : object inside focal length
gives virtual, upright image

2. Convex Mirrors:
(a) image is always virtual and upright

C

R

f
F

real,
inverted,
enlarged

real,

inverted,

reduced

virtual,
upright,
enlarged

Figure 11.11: The type of image formed by a spheri-
cal mirror depends on the location of the object relative
to the center of curvature and the focus of the mirror.
For objects outside the center of curvature, the image is
real, inverted, and reduced. For objects between the cen-
ter of curvature and focus, the image is real, inverted,
and enlarged. For objects inside the focus, the images
are virtual, upright, and enlarged.

Figure 11.12 shows these three rules applied to concave and convex spherical mirrors. The first
rule just follows from our discussion of discussion of very distant rays incident on a spherical mirror
– the definition of the focal point is the point at which rays parallel to the principle axis reflect
through (virtual rays in the case of convex mirrors). The second rule follows in the same way.
The third rule is essentially the definition of the radius of curvature – any line passing through the
radius of curvature is incident normal on the surface of the mirror, and must reflect back on itself.

11.4 Parabolic Mirrors

Circular mirrors are just fine, but isn’t there something more efficient? Is there a shape of mirror
we could make such that all distant rays are focused onto a single point, not just those close to the
central axis? Indeed, there is just such a curve, and you are already familiar with it: the parabola.
In fact, the parabola is unique in this regard. It is the only curve such that all incident parallel
rays will be reflected and focused on to a single point, the focus of the parabola.

This is illustrated in Fig. 11.13. If a series of parallel rays is incident downard on the parabola,
they will all converge at the focus F . Equivalently, since we can always run our ray diagrams
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Figure 11.12: Ray diagrams for spherical mirrors. top left:
An object outside the center of curvature for a concave spher-
ical mirror. The image formed is real, inverted, and smaller.
bottom left: An object inside the center of curvature of a con-
cave spherical mirror gives a virtual image which is upright and
larger than the object. above: A convex spherical mirror al-
ways gives an image which is upright, virtual, and smaller than
the object.

‘forward’ or ‘backward,’ a point source of light placed at F will produce a parallel beam of light.
Incidentally, this works in three dimensions too. A circular paraboloid, made by rotating a parabola
about its axis, is the only 3D surface for which all rays parallel to a given ray pass through the same
point after reflection by the surface. What good is this property? Well, this is how modern car
headlights use a single bulb to produce a beam of light, and it is how satellite antennas (‘dishes’)
manage to focus an extremely tiny amount of radiation into a usable signal. Make the parabola as
large as possible, collecting radiation from as large an area as possible, and it all gets focused to a
single point, enormously amplifying the intensity. The same principle is used for radio astronomy
and solar ovens.

F

Figure 11.13: Focusing of light by a
parabolic mirror. A distant light source pro-
viding incident rays which are parallel will
be reflected by the parabola and focused onto
a single point F . Conversely, a point source
located at the focus F will produce a beam of
parallel rays. Parabolic mirrors offer some
advantages over spherical mirrors for focus-
ing – the parallel rays can come it at an an-
gle to the parabola and still be focused, and
spherical aberrations can be significantly re-
duced.

How does this work? Geometrically, a parabola is a conic section defined as the locus of points
equidistant from a single point (the focus) and a straight line (the directrix). This is shown in
Fig. 11.14. Without loss of generality, we will take the parabola centered on the origin of an x− y

coordinate system. Let the focus F be at the point (0, f), and the directrix be the line y =−f .
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This is still perfectly general - an arbitrary point and line, since we can make f whatever we want.
Our parabola is ‘between’ the focus and directrix.

Construct a line connecting F with an arbitrary point P (x0, y0) on the parabola, and a vertical
line intersecting the directrix at point D(x0,−f). A parabola is, as stated above, geometrically
defined as the locus of all points for which FP = PD. If we didn’t already know that, could we
figure out what curve satisfies this relationship? We can, simply calculate the lengths FP and PD

with the distance formula:

FP = PD
√

(x0 − 0)2 + (y0 − f)2 =
√

(x0 − x0)2 + (y0 + f)2

x2
0 + y2

0 − 2fy0 + f2 = y2
0 + 2fy0 + f2

x2
0 = 4fy0

y0 =
1
4f

x2
0

Lo and behold, the curve is a parabola. One can easily repeat this calculation for a parabola
centered on an arbitrary point, the same conclusion holds: a parabola is the only curve for which
all points are equidistant from a single line and a single point. For a parabola centered on (x0, y0)
symmetric about the y axis (i.e., pointing upward or downward), one finds (y − y0)= 1

4f (x− x0)2.

F

(0, f)

y = −f

P (x0, y0)

(x0,−f)

D

F

P

D

D
′

T

(0, f)

y = −f (x0,−f)

T
′

B

B
′

(a) (b)

Figure 11.14: left: Construc-
tion of a parabola. A parabola
is the locus of points equidis-
tant from the focus F (0, f) and
the directrix line y = −f .
right: Any ray directed along
the parabola’s axis of symmetry
is reflected and passes through
the focus.

So what? Now we can sketch a proof of the unique focal property of the parabola as well, using
the second portion of Fig. 11.14. If we can prove that a tangent line to the parabola at point P

will make equal angles with PF and PD, this is enough to prove the focal property. First, we must
figure out how to construct a tangent to the parabola at any point.ii

iiMany of you probably realize how much easier this task would be with a bit of calculus - in fact, it is a trivial
problem if we use calculus. The geometric problem is not trivial, but worth working through if for no other reason
to emphasize the fact that parabolas are simple geometric constructions, not just abstract quadratic equations. In
our studies of optics, good geometrical insight will serve you well.
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By definition, triangle #FPD is isosceles - for a parabola, PF and PD are equal. Let point T

be the midpoint of the line connecting F and D, FD. Now the triangles #FPT and #TPD have
two equal sides, since FP = PD and by construction FT = TD. The perpendicular bisector FD

divides the x− y pane into two sections: all points which are nearer to F than to D, and all points
that are nearer to D than to F . Except for point P , every point on the parabola itself lies closer
to F than to D by virtue of being above the line PT .

Let B be any other point on the parabola, and B′ the point nearest to it lying on the directrix.
The line segment BB

′ is the shortest possible segment connecting the point B on the parabola to
the directrix. The segment BB

′ must be vertical and perpendicular to the directrix for this to be
true. By construction, then, BB

′ = FB < BD - a vertical line segment from B to the directrix
must be the same length as the line segment from B to F . Since BB

′ is the shortest distance from
B to the directrix, it must be shorter than BD. If this is true, then PT can not pass through B,
or it would be closer to the directrix than the focus, a contradiction. Thus P is the only point of
intersection of the line PT and the parabola. Thus, PT must be tangent to the parabola at point
P .

Whew! Now, if PT is tangent to the parabola at P , the angles ∠FPT and ∠TPD must be
equal. Further, ∠TPD is equal to angle ∠D′PT ′. If we imagine D′P to be a light ray incident on
a parabolic surface reflected toward F , this establishes that the incident and reflected angles are
equal. Since the point P was completely arbitrary, this means that any incident vertical ray must
be reflected through the focus F , and that any light originating at F will be reflected as a vertical
ray.

Other conic sections have reflective properties similar to the parabola. For instance, if a light
source is placed at one focus of an ellipse, the rays will converge onto the other focus after being
reflected. Any wave, including sound waves, may be substituted for light. A nice trick is to make
an elliptically-shaped room, known as a ‘whispering gallery.’ If a sound is created at one focus -
even a very quiet one - it will be heard clearly at the second focus. It is a dramatic demonstration.
You can stand at one focus and whisper so quietly someone standing next to you cannot hear, and
yet be clearly heard at the other focus. Some famous examples of rooms like this are listed in the
Wikipedia: http://en.wikipedia.org/wiki/Whispering gallery.
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11.5 Quick Questions

1. A concave makeup mirror has a focal length of 15 cm. If an object is placed 25 cm in front
of the mirror, determine the signs of the focal length, object distance, and image distance.

! +, −, +
! +, −, −
! +, +, −
! +, +, +

2. An inverted image of an object is viewed on a screen from the side facing a converging lens.
An opaque card is then introduced covering only the upper half of the lens. What happens to
the image on the screen?

! Half the image would disappear.
! Half the image would disappear and be dimmer.
! The entire image would appear and remain unchanged.
! The entire image would appear, but would be dimmer.

3. A concave makeup mirror is designed so that a person 26 cm in front of it sees an upright
image magnified by a factor of two. What is the radius of curvature of the mirror?

! 1.04m
! 3.78m
! 0.52m
! 2.08m
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11.6 Problems

1. While looking at her image in a cosmetic mirror, Dina notes that her face is highly magnified
when she is close to the mirror, but as she backs away from the mirror, her image first becomes
blurry, then disappears when she is about 38.0 cm from the mirror, and then inverts when she
is beyond 38.0 cm.

(a) What type of mirror does Dina have?
(b) What is the focal length of the mirror?
(c) What is the radius of curvature of the mirror?
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11.7 Solutions to Quick Questions

1. +, +, +.

2. The entire image would appear, but would be dimmer.

3. 1.04m.

11.8 Solutions to Problems

1. The fact that the image chagnes from upright to inverted immediately tells us that Dina
has a concave spherical mirror. A convex mirror always gives an upright image, as does a flat
mirror. The point at which the image (briefly) disappears and inverts is the focal length, so
f =38 cm. For spherical mirrors, we know that f =2R, the radius of curvature is just twice as
big: R=76 cm.

Figure 11.11 may jog your memory a bit. Right at the focal point, when the image goes from
upright and enlarged to inverted and enlarged, the image disappears.
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