
4
Electrical Energy and Capacitance

POTENTIAL energy and the principle of conservation of energy often let us solve difficult
problems without dealing with the forces involved directly. More to the point, using an

energy-based approach to problem solving let us work with scalars instead of vectors. This way we
get to deal with just plain numbers, which is nice.

Figure 4.1: Michael Faraday (1791

- 1867), an English physicist and

chemist who contributed significantly

to the field of electromagnetism.16

In this chapter, we will learn that, as with the gravitational
field, the electric field has an associated potential and potential
energy. The electric potential will, in many cases, let us solve
problems more easily than with the electric field and, as it turns
out, electric potential is what we normally identify with ‘voltage’
in everyday life.

4.1 Electrical Potential Energy

The work done on an object by a conservative force, such
as the electric force, depends only on the initial and final
positions of the object, not on the path taken between initial and
final states. For example, the work done by gravity depends only
on the change in height. When a force is conservative, it means
that there exists a potential energy function, PE, which gives
the potential energy of an object subject to this conservative force
which depends only on the object’s position. Potential energy is
sometimes called the “energy of configuration” since it only depends on the position of objects in a
system. Thus, for the conservative electric force, we can find a change in electrical potential energy
just by knowing the starting and final configurations of the system we are studying – nothing in
between matters.

As you know, potential energy is a scalar quantity, and the change in potential energy is
equal to the work done by a conservative force.

Potential energy difference, ∆PE

∆PE = PEf − PEi = −WF (4.1)

where the subscripts f(i) refer to the final (initial position), and WF is the work done by
the conservative force ~F.

This is just how you dealt with gravity – moving an object of mass m through a vertical
displacement h gives a changes in potential energy ∆PE =mgh. Electrical forces and gravitational
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4.1 Electrical Potential Energy 107

forces have a number of useful similarities, as you now know, and the same is true for their respective
potential energies.

The Electric Force is Conservative:

1. We can define an electrical potential

2. There is potential energy associated with the presence of an electric field

3. Electric potential is potential energy per unit charge

Consider a small positive test charge q in a uniform electric field ~E, as shown in Figure 4.2. As
the charge moves from point A to point B, covering a displacement ∆x=xf−xi, the work done on
the charge by the electric field is the component of the force ~Fe = q~E parallel to the displacement
∆x:

iWork done moving a charge q in a constant electric field ~E:

∆WAB = ~F · ∆~x = |~F| |∆x| cos θ = qEx (xf − xi) = qEx∆x (4.2)

where q is the charge, Ex is the component of the electric field ~E along the direction of
displacement, and θ is the angle between the force ~F and the displacement ∆~x (of length
∆x).

Note that q, Ex, and ∆x can all be either positive or negative. Also recall that Ex is the x-
component of the electric field ~E, not the magnitude! Equation 4.2 is valid for the work done on a
charge by any constant electric field, no matter what the direction of the field, or sign of the charge.
Just remember that the angle between the field and displacement does matter!
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Figure 4.2: When a charge q moves in a uniform elec-

tric field ~E from point A to point B, covering a distance
∆x, the work done on the charge by the electric force is
qEx∆x.

Now that we have found the work done by the electric field, the work-energy theorem gives us
the potential energy change:

iAt this point you may want to remind yourself about the scalar or “dot” product, ~A · ~B= |A||B| cos θAB , where
θAB is the angle between ~A and ~B.
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108 4.1 Electrical Potential Energy

The change in electric potential energy ∆PE of an object with charge q moving
through a displacement ∆x in a constant electric field ~E is:

∆PE = −WAB = −q|~E| |∆~x| cos θ = −qEx∆x (4.3)

where the quantities are defined as in Eq. 4.2.

Remember, just like any other work, the work done involving the electric force only counts the
displacement parallel to the force. You can find the component of the field parallel to the full
displacement, or find the component of the displacement parallel to the field – it is the same thing.
Figure 4.3 compares a charge moving in an electric field to a mass moving in a gravitational field.
A positive charge moving in an electric field acts much like a mass moving in a gravitational field:
the positive charge at point A falls in the direction of the field, just as the mass does. This lowers
its potential energy, and increases its kinetic energy.

Assuming other forces are absent, we can also find the kinetic energy change through conservation
of energy. Since both the electrical and gravitational forces are conservative, we can find the changes
in kinetic and potential energy in both cases and compare them. In both situations, the change
in potential energy must be equal and opposite the change in kinetic energy for energy to be
conservedii:

KEi + PEi = KEf + PEf (4.4)

(KEf −KEi) = −(PEf − PEi) (4.5)

∆KE = −∆PE (4.6)

∆KE + ∆PE = 0 (4.7)

For the gravitational case, we have done this a million times for an object of mass m starting
at a height d and ending at a height defined as 0:

∆KE + ∆PEG = ∆KE + (0−mgd) = 0 (4.8)

=⇒ ∆KE = mgd (4.9)

For the electrical case, it is not much more difficult. We will move a charge q through an electric
field E:

iiThe subscripts i and f refer to initial and final, as usual.
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4.2 Electric Potential 109

∆KE + ∆PEE = ∆KE + (0− qEdd) = 0 (4.10)

=⇒ ∆KE = qEdd (4.11)
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Figure 4.3: (a) When an electric field ~E is directed downward,

point B has a lower electrical potential energy than point A. As

a positive test charge moves from A to B, the electrical poten-

tial energy decreases. (b) An object of mass m moves in the

direction of the gravitational field ~g, the gravitational potential

energy decreases.

Here d is the distance moved in the electric field
~E, and Ed is the component of the electric field
parallel to the direction of motion. For posi-
tive charges, electric potential energy works just
like gravitational potential energy. Since mass
comes only in one flavor, while charge comes in
positive and negative varieties, this is not the
whole story, however. For a negative charge,
we have to substitute −q for q in the equa-
tions above - rather than falling in the elec-
tric field like the positive charge, the negative
charge wants to move upward. In other words,
the negative charge “falls up” compared to a
positive charge.

In order to make a negative charge move
downward we would have to do work against the
electric field. Remember that positive charges
like to follow the direction of the electric field
lines, while negative charges like to go against them. For the positive charge in Figure 4.3, we are
moving the charge in the direction it wants to go. For a negative charge in the same situation,
we are moving the charge against the direction it wants to go. The negative charge has a positive
change in electrical potential energy moving from point A to point B, meaning kinetic energy
has to be lost to make this happen. The positive charge has a negative change in potential energy
moving from point A to point B, meaning kinetic energy will be gained by doing this.

4.2 Electric Potential

In Chapter 3, it was convenient to define ~E related to the electric force, viz., ~F = q~E. This let
us think about individual charges one at a time, even when our system was a collection of several
charges, and discard the idea of “action at a distance.” For the same reasons, we would like to
define a variation of the electrical potential energy per unit charge, so we may think about how
much potential energy would be gained or lost by a single charge present in an electric field.iii

iiiThis is similar to the chemical potential in a way, if you are familiar with that.
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110 4.2 Electric Potential

This quantity is the electric potential difference ∆V , and it is related to potential energy by
∆PE =q∆V .iv

The electric potential difference ∆V between points A and B is the change in
electric potential energy between those two points divided by the quantity of charge
moving Q:

∆V = VB − VA =
∆PE

q
or q∆V = ∆PE (4.12)

where VB is the potential at point B and VA is the potential at point A.

Electric potential is measured in Joules per Coulomb, otherwise known as Volts. Just like
gravitational potential, electric potential is a scalar quantity. It is essentially a measure of the
change in electric potential energy per unit charge. By definition, it takes 1 J to move 1 C worth
of charge between two points with a potential difference of 1V. If a 1 C charge moves through a
potential difference of 1 V, it gains 1 J of potential energy.

Units of V and ∆V : [J/C] (Joules per Coulomb) or [V] (Volts)

Consider the special case of a single charge q moving through a region of constant electric field,
such as the area between two parallel charged plates (Fig. 3.9). If the displacement of the charge
∆x is perfectly parallel to the electric field, we can divide Equation 4.3 by q to find the potential
difference ∆V :

Single charge q in a constant electric field ~E

∆V =
∆PE

q
= −|~E| |∆~x| cos θ = −Ex∆x (4.13)

where the quantities are defined as in Eq. 4.2.

This lets us see that potential difference also has units of electric field times distance. This makes
sense in a way, since for there to be an electrical potential difference we pretty much have to move
through an electric field. Since electric field has the units of newtons per coulomb (N/C), we can
make the following observation:

A newton (N) per coulomb (C) equals a volt (V) per meter (m): 1N/C = 1V/m

If we release a positive charge, it spontaneously accelerates from regions of high potential to low
potential - positive charges seek out minima in the electric potential. Conversely, negative charges

ivThe gravitational potential is the potential energy per unit mass, which is just gh for terrestrial cases, or −Gm
r

for the more general case. We would say that the potential energy difference between two points whose height differs
by h is mgh, while the potential difference is just gh.
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4.2 Electric Potential 111

seek out maxima in electric potential. Work must be done on positive charges to move them
toward higher potential, work must be done on negative charges to move them to regions of lower
potential.

4.2.1 Electric Potential and Potential Energy due to Point Charges

r (m)

q

Figure 4.4: The electric field ~E and electric potential V versus

the distance r from a point charge. Note V is proportional to

1/r, while E is proportional to 1/r2.

As described briefly in Sect. 3.2.1.1, in elec-
tric circuits the zero point of electric potential
(V =0) is defined by a “ground” wire connect-
ing some point in the circuit to the earth. In a
sense, defining a precise point at which V = 0
through a ground wire is a bit like choosing an
origin in a coördinate system. It can be any-
where you like, but you have to have one! For
example, connecting the negative terminal of a
9 V battery to the ground would define the neg-
ative terminal as V = 0, and the positive ter-
minal would be at +9 V. If, on the other hand,
we connected the positive terminal to ground,
it would have V = 0 and the negative terminal
would have −9 V. In a way, the potential differ-
ence of the battery of 9 V well-defined, but the absolute potentials are not until a zero point is
chosen.

For point charges, the electric field is defined throughout space, except right at the charge, and
it works the same way for its electric potential. There is no obvious place to call “zero.” Further,
we cannot connect a tiny ground wire to a single electron! (What could we make the wire out of
...) In the end, we nearly always, we define the potential for a point charge to be zero an infinite
distance from the charge itself. This is actually convenient, believe it or not, and it makes clear
the fact that the only way to get rid of the potential due to a point charge is to completely banish
the charge itself. With this definition and some calculus, the electric potential of a point charge q

at a distance r from the charge can be found as:

Electric potential created by a point charge:

V = ke
q

r
(4.14)

where r is the distance from the point charge q, and ke is Coulomb’s constant (Eq. 3.2).

This gives us the electric potential – work per unit charge – required to move the charge q from
an infinite distance away to a point r. Figure 4.4 plots for comparison the electric field and electric
potential for a point charge as a function of the distance from the charge.
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112 4.2 Electric Potential

Keep in mind: you can only measure differences in electric potential. Some reference
point must always be defined as V =0. For a point charge, this is r=∞, for a circuit it
is a specific point in the circuit.

One quick point, to clear up any later confusion: when dealing with point charges like electrons
in electric fields, or atoms in a crystal (e.g., in nuclear or atomic physics, and sometimes inorganic
chemistry), we often use a more convenient unit of energy, the electron volt.

An Electron Volt [eV] is the kinetic energy an electron gains when accelerated through
a potential difference of 1V.

1 eV = 1.60× 10−19 C·V = 1.60× 10−19 J

We will encounter the electron volt more and more as time goes on, it turns out to be quite
convenient when worrying about small numbers of charges.

4.2.2 Energy of a System of Charges

Electric potential also obeys the superposition principle, just like the electric force. The total
electric potential at some point due to several point charges is just the sum of the
electric potentials due to the individual point charges. Since electric potential is a scalar,
we do not need to worry about components, electric potentials are just numbers.

Figure 4.5 shows a “3-d” plot of the electric potential of an electric dipole (one positive charge
and one negative charge close together, as in Fig. 3.6), where the color height scale represents the
magnitude of the electric potential. As expected from the superposition principle, the potential is
zero right between the two charges, and becomes very large near each charge, as does the electric
field (Fig. 3.6).

Figure 4.5: The electric potential in a plane containing an

electric dipole. The height (color) scale gives the electric poten-

tial. The lines represent equipotential contours.

From Eq. 4.12, we can see that it is easy to
convert between electric potential and electric
potential energy. What about the potential en-
ergy of two charges? If V1 is the potential due
to a charge q1 at a point P , the work required
to bring a charge q2 from infinity to the point
P is q2V1, as shown in Fig. 4.6. That is, q2V1

is the energy it took to configure our system
with charge q2 at point P , and how much energy
would be gained or lost by completely remov-
ing q2. Similarly, if q2 is fixed in place, it takes
q1V2 to bring q1 in from an infinite distance to
its final position.

This means that configuring two charges
close to one another entails a gain or loss of energy – each charges feels the potential from the
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4.2 Electric Potential 113

other. Bringing charges close together means energy is gained or lost to make that happen, and
that energy is the potential energy of the pair of charges – how much energy is tied up in keeping
those two charges where they are. For example, if two positive charges are to be kept close together
against their natural repulsion, energy should be supplied to keep them together. If a positive and
negative charge are to be kept together, energy should be supplied to keep them apart.

Now we see that potential energy really is the energy it takes to configure the system under study.
Figure 4.6 also illustrates the difference between the potential of a the separate point charges, and the
potential energy of the pair of point charges. If q1 is already fixed its position, but q2 is at infinity, the
work that must be done to bring q2 from infinity to its position near q1 is PE =q2V1 =keq1q2/r12.
That is what the potential energy is, the energy of this configuration of charges relative to just
having q1 all by itself. If q2 is fixed, it also takes PE = keq1q2/r12 to bring in q1. Thus, it takes
PE =keq1q2/r12 to build our system of two charges, no matter how we do it:

PEtwo charges = PE(1 due to 2) = PE(2 due to 1) = q2V1 = q1V2 =
keq2q1

r12
(4.15)

As mentioned above, if the charges are of the same sign, PE is positive, and work must be done
by an external force to bring the charges together. If they are of opposite charges, PE is negative,
and negative work must be done to keep the charges from accelerating toward each other as they
are brought together. In other words, work must be done to keep the charges apart. Another way
to view the potential energy of the pair of charges is to think about how much kinetic energy would
be gained if we let one of them loose again. If we have a pair of charges with an electrical potential
energy of, say, 1 J with both charges fixed, the charges can gain between them 1 J of kinetic energy
after being let loose. If one stays fixed, the other gets a full 1 J. If both charges are identical and
both move, they each get 0.5 J.

(a)

r12

q2

P

V2 =

keq2

r12

(c)

r12

q1

q2

(b)

r12

q1

V1 =

keq1

r12

P
′

PE =

keq1q2

r12

= q2V1 = q1V2

Figure 4.6: (a) If the charge q1 is removed, a potential keq2/r12 exists at point P due to charge q2 (b) Similarly, the
charge q1 gives a potential keq1/r12 at point P ′. (c) Either way we build our system of charges, the potential energy of the
system of two charges is just q2V1 =q1V2, or keq1q2/r12.

What if we have several charges? Just to be concrete, take the system of three point charges
in Figure 4.7. We can obtain the total potential energy of this system by calculating the PE for
every pair combination of charges and adding the results together. Since potential and potential

PH 102 / Fall 2007 Dr. LeClair



114 4.2 Electric Potential

energy are scalars, we don’t need to worry about components – this is just an algebraic sum:

PE = PE1&2 +PE2&3 +PE1&3 = PE2&1 +PE3&2 +PE3&1 = ke

(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
(4.16)

Figure 4.7: A system of three point charges. Finding
the total potential energy is just a matter of adding up
the potential of pair combinations of charges.

Note that it doesn’t matter what the order we sum them in, or if we transpose the labels –
PE1&2 is the same thing as PE2&1, and r13 is the same as r31, just like the example with two
charges above.v

What does this really mean, physically? It is the same whether we have two charges or three
or a million. What we are really summing up is the energy required to build this particular
configuration of charges. Imagine that q1 is fixed at the position shown in Figure 4.7, but that
q2 and q3 are at infinity. The work that must be done to bring q2 from infinity to its position
near q1 is PE1&2 = keq1q2/r12, which is the first term in Equation 4.16. The last two terms
represent the work required to bring q3 from infinity to its position near q1 and q2, which involves
the interaction with q1 (the second term in Equation 4.16) and the interaction with q2 (the third
term in Equation 4.16). Compare this with Equation 4.15. Again, the result is independent of the
order in which the charges are moved in from infinity.

We can write this more succinctly as a sum over all the charges:

PE =
1
2

3∑
i=1

3∑
j=1
j 6=i

keqiqj

rij
(4.17)

=
1
2

(
keq2q1

r21
+

keq3q1

r31
+

keq1q2

r12
+

keq3q2

r32
+

keq1q3

r13
+

keq2q3

r23

)
(4.18)

= ke

(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
(4.19)

Here we color-coded the like terms for clarity. Basically, first we pick some charge j, and sum over
all its pairings with the other charges i, making sure not to pair the charge with itself. Here we

vIf you are into the math, that means we sum over all possible combinations, nCk, not permutations, nPk, so we
do not count any pair more than once.
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4.2 Electric Potential 115

have the factor 1
2 because the sum as written would count every pair of charges twice – since the

pair 1&3 is the same as the pair 3&1. Think about that for a second, and reassure yourself that
the factor 1

2 is necessary. (If you are not familiar with summations, don’t worry. We will only ever
deal with a few charges at once.) For any arbitrary number of charges N , we can just change the
limits on the sum:

PEtotal =
1
2

N∑
j

N∑
i6=j

keqiqj

rij
(4.20)

The double-sum notation above means “take the charge j =1, and sum over all the other charges
i=2, 3, 4, . . . N , then take the charge j =2, and sum over the other charges i=1, 3, 4 . . .N, and so
on, until j =N .” Again, this counts every pair twice, hence the factor 1

2 .

4.2.2.1 Electrical Energy in a Crystal Lattice

-e

+e

b

(a) (b)

12 pairs

12 pairs

8 pairs

4 
pa

irs

Figure 4.8: (a) A crystal consisting of a cube of

−e negative charges, with a single +e charge at the

center of the cube. The potential energy of the ar-

rangement of nine charges is a sum over potential

energy of all pairs. (b) There are four types of

pairs involved in the sum.17

What good is being able to find the energy of a large
number of charges? Well, for one, this is one way to
compute the stability of various crystal lattices. As an
example, let us calculate the potential energy of eight
negative charges on the corners of a cube of side b, with
a single positive charge in the center. We will say each
negative charge has −e, while the single positive charge
is +e, Fig. 4.8 We can readily sum over all the possible
pair interactions in the crystal, after a bit of geometry to
figure out the distances between pairs.

For this crystal, we have 12 pairs of negative charges
that are just one edge of the cube apart, twelve pair-
ings between negative charges sideways across the cube
faces, eight pairings between the negative corner charges
and the central positive charge, and four corner to cor-
ner pairings of negative charges. This is illustrated in

Fig. 4.8. Standard geometry tells us that the distance between edge charges is just b, the distance
from corner to center is

√
3

2 b, the corner-corner distance across a cube face is
√

2b, and finally the
distance between opposite corner charges is

√
3b. The sum over all pairs is then:

PEcrystal = 8×
[
ke(−e · e)
(
√

3/2)b

]
+ 12×

[
kee

2

b

]
+ 12×

[
kee

2

√
2 b

]
+ 4×

[
kee

2

√
3 b

]
≈ 13.55kee

2

b
(4.21)

Figure 4.8 shows where each term in the sum comes from. Though this seems a bit complicated,
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116 4.2 Electric Potential

think about how hard it would be to compute the forces for every pair of charges and find the
resultant vector force! We would have to do that for every stage of construction of the crystal, a
tedious task at best. The relatively simple potential energy calculation above is a powerful way to
address the amount of energy tied up in maintaining a particular charge distribution.

In this case, note that the total energy of this crystal lattice is positive, representing the fact
that work had to be done on the crystal to assemble it in the first place. Left to its own devices,
the charges in the crystal would want to disassemble. If we did let these charges move apart again,
they would recover the potential energy as kinetic energy and speed away. This makes sense – it is
silly to expect that real crystals are made of mostly negative charges, when we know that they are
neutral overall. In reality, crystals are made of an equal number of positive and negative charges,
which in many cases leads to a negative potential energy, indicating that the charges actually lower
their energy by assembling into a crystal, and therefore favor doing so.

It is also curious that the potential energy sum for our cubic crystal ends up being a constant
factor (about 13.55 times) what it would be for just a single pair of point charges separated by
a distance b. In general, this is true for nearly any crystal lattice we can construct – the energy
will always be some multiple of what for a single pair of charges. The multiple itself – in this case
13.55 – divided by the total number of charges is known as Madelung’s constant, and every sort of
crystal lattice has its own particular Madelung constant. The Madelung constant only depends on
the geometric arrangement of the constituent ions in the crystal structure. Basically, the Madelung
constant is something you look up in a table that takes care of all the nasty summing for you –
someone has already done it! In general we can the potential energy of a crystal like this:

PEcrystal =
1
2
MN

kez
2e2

r
(4.22)

here M is the Madelung constant, N is the number of charges we are considering, z is the charge of
the ions in the lattice (±1 in this case), and r is their separation. By inspection, you can see that
for our cubic crystal, 13.55= 1

2MN . Since there are N =9 charges in our example, our Madelung
constant is 2(13.55)/10=2.71.

If we take the structure of NaCl (common salt or rocksalt), the so-called face-centered cubic
structure shown in Fig. 4.9a, the Madelung number ends up being about −1.75 if you carefully
take the limit of the sum for very large N . The rocksalt structure has alternating positive Na+ and
Cl− ions, arranged in a face-centered cubic structure. Overall, it is electrically neutral, and the
negative potential energy reflects the stability of the structure. The negative sign shows that
work would have to be done to take the NaCl crystal apart – it is intrinsically stable. This is in
contrast to our ficticious body-centered cubic case above. Since our cubic crystal is mostly made
of negative charges, it is not stable, and work has to be done to assemble it. The NaCl structure,
however, has an equal number of positive and negative charges, and the negative potential energy
sum explains the cohesion of the crystal and the fact that NaCl spontaneously assembles when Na
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4.3 Potentials and charged conductors 117

and Cl are mixed. The Na and Cl constituents can lower their overall energy by assembling into
a crystal, and that is what they do when given half a chance. The more negative the Madelung
constant, the more stable the crystal is, if everything else is the same.

(a) (b)

Na+

Cl-

O2-

Ti4+

Figure 4.9: (a) The NaCl or rocksalt structure. There

are an equal number of Na+ and Cl− ions, the crystal is

neutral overall. (b) The Rutile (TiO2) structure. There

are twice as many O2− ions as Ti4+ to maintain neu-

trality.17

As another example, consider the Rutile (TiO2)
structure in Fig. 4.9b. In this case, the Madelung
number is −4.82, suggesting that rutile structure
materials should be quite stable, and they generally
are. There is one problem with all of this, however.
Based on the analysis above, shrinking the distance
b between charges in the crystal should make the po-
tential energy even more negative. In other words,
the smaller the spacing, the more stable the crystal
would be. If that were true, why would the crystal
not just keep shrinking shrinking until it collapsed?
In fact, it can be shown that no system of stationary
charges can be in a stable equilibrium according to
classical physics. We need quantum physics to ex-
plain why, e.g., salt crystals do not spontaneously shrink, and how crystals are stable in the first
place.

4.3 Potentials and charged conductors

So the work done on a charge by an electric force is related to the change in electric potential
energy of the charge. We also know that the change in electric potential energy between points
A and B must be related to the potential difference between those two points. Putting these two
facts together, we can easily relate work and potential difference:

Work and electrical potential for a charge moving from point A to B:

−W = ∆PE = q (VB − VA) (4.23)

where VB is the electrical potential B, and VA is the electrical potential A.

In Chapter 3, we said that for a conductor in electrostatic equilibrium, net charge resides only
on the conductor’s surface. Moreover, we said that the electric field just outside the surface of the
conductor is perpendicular to the surface, and that the field inside the conductor is zero. This also
means that all points on the surface of a charged conductor in electrostatic equilibrium
are at the same potential.
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Figure 4.10: An arbitrarily shaped conductor carrying a positive
charge. When the conductor is in electrostatic equilibrium, all of the
charge resides at the surface, ~E = 0 inside the conductor, and the di-
rection of ~E just outside the conductor is perpendicular to the surface.
The electric potential is constant inside the conductor and is equal to
the potential at the surface. Note from the spacing of the positive signs
that the surface charge density is nonuniform.

Equation 4.23 gives us a very general result: no net work is required to move a
charge between two points which are at the same electric potential. Mathe-
matically, W =0 whenever VB =VA.

Consider the path connecting points A and B along the surface of the conductor in Figure 4.10.
If we move only along the conductor’s surface, the electric field ~E is always perpendicular to our
path. Since the electric field and displacement are always perpendicular, no work is done when
moving along the surface of a conductor. Equation 4.23 then tells us that if the work is zero, points
A and B must be at the same potential, VB−VA =0. Since the path we have chosen is completely
arbitrary, this means it is true for any two points on the surface.

Potentials and charged conductors

1. electric potential is a constant on the surface

2. electric potential is constant inside, and has the same as the value at the surface

3. no work is required to move a charge from the interior to the surface, or between
two points on the surface

Of course, this only holds for perfect conductors. If other dissipative (or non-conservative) forces
are present, this is not true, and work is required to move the charge in the presence of a dissipative
force. The electrical analog of friction or viscosity is resistance, which will be treated in the next
chapter.

4.4 Equipotential Surfaces

A surface on which all points are at the same electric potential is called an equipotential surface. The
potential difference between any two points on the surface is zero, hence, no work is required to
move a charge at constant speed on an equipotential surface. The surface of a conductor is
therefore an equipotential surface. Equipotential surfaces have a simple relationship to the ~E field:
the field is perpendicular to the equipotential surface at every point. Figure 4.11 shows equipotential
surfaces and electric field lines for a single point charge, a dipole, and two like charges. Notice that
once you have drawn electric field lines, drawing equipotential surfaces is trivial, and vice versa.
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q

(a)

q -q

(b) (c)

q q

Figure 4.11: The blue lines electric field lines, and the red lines are equipotential surfaces for (a) a single point charge,
(b) an electric dipole, and (c) two like charges. In each case, the equipotential surfaces are perpendicular to the electric field
lines at every point. (Again, arrows are left off of the field lines for simplicity. Equipotential lines do not need arrows, since
potential is a scalar.)

q conductor
E=0

q

Figure 4.12: The blue lines electric field lines, and the red lines are equipotential surfaces for left a conducting sphere near
a point charge q, and right a point charge suspended above a long grounded conducting plate.

More examples are given in Fig. 4.12, which include conductors. For a conductor, we know the
electric field inside is zero, and the electric potential is constant. Add to this the fact that electric
field lines and equipotential lines are always perpendicular where they meet, and you should be
able to explain all of the examples shown here. This why in the right-hand example, a single charge
above a ground plane, the electric field lines all intersect the ground plane at perfect right angles,
and in the left-hand example, there are no lines inside the conducting sphere. Compare these figures
with Fig. 3.9 – the relationship between electric field lines and equipotential lines should be clear.
Appendix B might give you a bit more insight as to why the electric field lines and equipotential
lines behave the way they do. Recall from Sect. 3.5 that a conductors are mirrors for electric field
lines, the same is true for the equipotential lines.

4.5 Voltage Sources as Circuit Elements

How do we actually change the potential or voltage of one object relative to another? Charging by
induction or conduction are two ways, but somewhat cumbersome. A device known as a voltage
source is a circuit element with two terminals, where a constant voltage difference is supplied
between these two terminals. Whatever you connect to the “negative” terminal of the voltage
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120 4.6 Capacitance

source will have a voltage ∆V lower than the “positive” terminal. Using a “ground” point (recall
Sect. 3.2.1.1), one can also experimentally define one of the terminals as V =0. If we “ground” the
negative terminal, then the negative terminal is Vneg =0, and the positive terminal has Vpos =∆V .
We will see much more of this in the coming chapters, and it will begin to make more sense!

Batteries are one example of a constant voltage source, which we will cover in more detail in
Chapter 6, and the wall outlets in your house are another example of a voltage source (though this
voltage is not strictly constant, see Chapter 9). Ideal textbook voltage sources always supply a
constant potential difference, ∆V . Real voltage sources always have restrictions, a primary one being
the amount of power that can be sourced. Below are circuit diagram symbols for constant voltage
sources: the first two represents batteries, the last is a generic symbol for any more complicated
sort of voltage source:

Circuit diagram symbol for voltage sources:

Batteries:
+ – + –

General constant voltage source: ����
+ –

Now that we know a bit about voltage and conductors, we are moving closer to being able
to describe simple electric circuits. Presently, we will introduce our first real circuit element, the
capacitor.

4.6 Capacitance

Figure 4.13: A parallel-plate capacitor con-

sists of two conducting plates of area A, sep-

arated by a distance d. The capacitance of

this structure is C =ε0A/d.

A capacitor is an electronic component used to store elec-
tric charge, it is used in essentially any electric circuit you can
name. Capacitors are at the heart of both Random Access
Memory (RAM) and flash memory, besides being crucial for
nearly any sort of power supply. It is one of the fundamen-
tal building blocks for electronics, and the first we will meet.
Figure 4.13 shows a typical design for a capacitor – two metal
plates with some special stuff in between. It is hard to be-
lieve complicated devices like computers rely on such a simple
construction, but it is true!

A typical capacitor consist of two parallel metal plates, sep-
arated by a distance d. When used in a circuit, the plates are
connected to the positive and negative terminals of a voltage
source such as a battery. An ideal voltage source insists that
the two plates have a voltage difference of ∆V , and this has
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the effect of pulling electrons off of one plate, leaving it with a net positive charge +Q, and trans-
ferring these electrons to the second plate, leaving it with a net negative charge −Q. The charge on
both plates is equal, but opposite in sign. Essentially, putting the two plates at different potentials
means electrons want to migrate to the plate with higher potential, and leave the plate with lower
potential deficient.

The transfer of charge between the plates stops when the potential difference across the plates
is the same as the potential difference of the voltage source. The capacitor stores this potential
difference, and hence stores electrical energy, until some later time when it can be reclaimed for a
specific application. You can think of this as energy storage from one point of view, or a time-delayed
response from another.

Keep in mind (again): you can only measure differences in electric potential. Some reference
point must always be defined as V = 0. In the case of the capacitor connected only to a battery
(without any ground points), the potential is zero half way between the two plates.vi

Definition of Capacitance:
The capacitance C is the ratio of the charge stored on one conductor (or the other) to
the potential difference between the conductors:

C ≡
∣∣∣∣ Q

∆V

∣∣∣∣ (4.24)

C is always positive, and has units of farads [F], or coulombs per volt [C/V].

4.6.1 Parallel-Plate Capacitors

The capacitance of a particular arrangement of two conductors depends on their geometry and
relative arrangement. One common (and simple) structure is the parallel plate capacitor, as
shown in Figure 4.13. In Chapter 3, we stated without proof (but not without good reason) that
the electric field between two parallel plates is constant. But what is the field in between the plates?

First, we assume that the two plates are identical, such that they have the same charge on them
– one has +Q and one has −Q. Second, we assume the plates area A is large compared to their
spacing d, such that we can ignore the edge regions where the field “fringes” (see Fig. 3.9 and 4.14).
Finally, we will connected the plates to a battery with total voltage V .

In Sect. 3.8.4, we found that the electric field above a flat conducting plate is given by E = σE/ε0,
where σE is the charge per unit area on the plate. Since the total charge on each plate is just Q,
the charge per unit area is σE =Q/A, and Q=σEA. This leads us to a more useful expression for
the field: E = Q

Aε0
. Again, this is not valid near the edges of the plates where the field is not really

constant.
viThe potential is also zero infinitely far away of course, but this is hardly useful or reassuring when wiring a

circuit.
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122 4.6 Capacitance

Now where the field is constant, we know that the potential difference between the two plates
is ∆V =Ed, where d is the distance between the two plates. Combining this with the facts above,
we can find the capacitance of the parallel plate capacitor from Equation 4.24:

C =
Q

∆V
=

σEA

Ed
=

σEA

(σE/ε0) d
= ��σEA

(��σE/ε0) d
= ε0

A

d
(4.25)

Capacitance of a parallel plate capacitor:

C = ε0
A

d
(4.26)

where d is the spacing between the plates, and A is the area of the plates.

We can see from Equation 4.26 that capacitors can store more charge when the plates become
larger. The same is true when the plates get close together. When the plates are closer together,
the opposing charges exert a stronger force on each other, allowing more charge to be stored on the
plates. From Equation 4.24, a capacitor of value C at a potential difference of ∆V stores
a charge Q = C∆V .

Figure 4.14 shows more realistic field lines for a parallel plate capacitor. In between the two
plates, the field is very nearly constant, but much less so near the edges of the plates. So long as
the plates are relatively large compared to their separation, we can for practical purposes ignore
this complication, and our capacitance calculated from Eq. 4.26 will be very accurate.

V+

V -

Figure 4.14: (a) The electric field (blue) and equipoten-
tial (red) lines near and between the plates of a parallel-
plate capacitor. The potential and field are both uniform
near the center, but nonuniform near the edges.

Capacitors form the basis for several types of Random Access Memory (RAM) in modern com-
puters. Dynamic random access memory (DRAM) is one type of random access memory that
stores each bit of data in a separate capacitor. One capacitor in a DRAM structure holds one bit
of information (a “1” or a “0”). When the capacitor has charge stored in it, the bit is a “1,” and
when there is no charge stored the bit is a “0.” Flash memory works in a roughly similar manner.
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4.6.2 Energy stored in capacitors

charge
added

∆PE = −W =
∑

i

∆Qi∆Vi = area under curve =
1

2
Q∆V

Q

∆Vi

∆Qi

∆V

change in 
potential

PEi = ∆Vi ∆Qi

Figure 4.15: Each bit of charge ∆Qi transferred

through a voltage ∆Vi contributes a bit of potential

energy PEi = ∆Vi∆Qi. Summing all those contri-

butions to get the total energy stored is the same

as finding the total area of the shaded region. If we

make ∆Vi and ∆Qi tiny enough, the area is basi-

cally a triangle, and in total PE = 1
2
Q∆V .

Capacitors store electrical energy. Anyone who has
worked with electronic equipment long enough has ver-
ified this one painful way or another.vii If the plates of
a charged capacitor are connected to a conducting ob-
ject, the capacitor will transfer charge from one plate to
another until it is discharged. This is often seen as a
“spark” if the capacitor was charged to a high enough
voltage. Given that humans are reasonably good conduc-
tors at high voltages, this can be a problem.

Charged capacitors store energy, and that energy is
the work required to move the charge onto the plates. If
a capacitor is initially uncharged (both plates neutral),
very little work is required to move a charge ∆Q from
one plate to another across the separation d. As soon
as this charge is moved, however, a potential difference
∆V = ∆Q/C appears between the plates. This potential
difference means that work must be done to move additional charges onto the plates. Combining
what we know so far, and assuming a constant electric field between the plates, the work that needs
to be done to move the first bit of charge ∆Q has to be:

∆PE = −∆W (4.27)

= ∆Q · E∆x (4.28)

= ∆Q · E d (4.29)

=
1
ε0

∆QσEd (4.30)

But we know that σE = ∆Q
A , and thus ∆Q=σEA, which simplifies things:

∆PE = ∆Q∆Q
d

Aε0
(4.31)

Since C = ε0A
d for our parallel plate capacitor,

∆PE =
(∆Q) (∆Q)

C
(4.32)

viiI once burned a small hole in my thumb by accidentally discharging a high-voltage capacitor across it while
repairing a TV, for example. Capacitors can store dangerous amounts of energy if released at the wrong time!
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If we keep doing this with more and more ∆Qs, until we build up the total charge Q, we can find
the total work. As illustrated in Fig. 4.15, each little bit of charge ∆Qi adds a bit of potential
energy ∆Vi∆Qi. If we sum up all those contributions, we are really just finding the shaded area
of the triangle on the graph. The area of a triangle is just 1

2(base)(height), so the total change in
potential energy is just:viii

|W | = |∆PE| = 1
2
Q∆V (4.33)

Remember that Q=C∆V must still be true, so we can write the energy stored in the capacitor in
three different ways, as shown below (noting that energy stored = work done). For example, you
can verify that a 5 µF capacitor charged with a 120V source stores 3.6 mJ (3.6×10−3 J).

Energy stored in a capacitor:

Energy stored =
1
2
Q∆V =

1
2
C (∆V )2 =

Q2

2C
(4.34)

Remember that the units of energy are Joules.

Is there an analogy for electrical energy storage? One way to store gravitational energy is simply
to pump a large mass m of water up to a height ∆y, see Figure 4.16. Releasing the water at a later
time releases the stored potential energy mg∆y, which could be used to, e.g., rotate a turbine. In
fact, this is one way to store excess energy generated at off-peak times in power plants for later
reclamation.

Figure 4.16: (a) Raising a mass m of water to a height
∆y above the ground stores an energy mg∆y. (b) Charging
a capacitor C with a potential difference ∆V stores an energy
1
2
Q∆V = Q2

2C
.

4.6.3 Capacitors as Circuit Elements

Now that we know about a second circuit element, we can begin to make some simple circuits. As
you might have gathered above, capacitors are often used in electrical circuits as energy-storage

viiiThis is a bit of a hand-waving derivation, but it doesn’t require any calculus like the more rigorous version does.
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devices. As we will find out later, they can also used to filter out high- and low-frequency signal
selectively. The circuit diagram symbol for a capacitor is a reminder of the parallel plate geometry:

Circuit diagram symbol for a capacitor: a`
What can we do only knowing about two circuit components, capacitors and batteries? Well,

we can hook up a capacitor to a battery, as shown in Fig. 4.17

+ -

+ -

(a) (b)

∆V

+Q -Q

+ -

∆V

C

C

Figure 4.17: (a) A parallel plate capacitor of

value C connected to a battery supplying a voltage

difference ∆V (b) Circuit diagram for this config-

uration.

What does this circuit do? The moment we connect
the battery to the capacitor, charges will start to flow
from one plate to another for time, until both plates are
fully charged. Fully charged means that the potential dif-
ference between the two plates is the same as that at the
battery terminals, ∆V . After that ... nothing. The capac-
itor will just happily store these charges. If the capacitor
is disconnected from the battery, the charges will remain
on the two plates since they have no path to escape. The
capacitor stays charged, thereby storing energy, so long
as it is truly isolated. If one of the plates had a path to
ground, for instance, the charges would leak away via this
ground connection, and the energy would dissipate. In a
rough sense, FLASH memory works by storing charges on
very tiny, isolated conducting plates.

We cannot do very much with only capacitors and batteries, but we will remedy this in subse-
quent chapters. For now, there are a few more things we can figure out about capacitors.

4.6.4 Combinations of Capacitors

Figure 4.18: A picture of several

common types of capacitors.18

Two or more capacitors can be combined in circuits in many pos-
sible ways, but most reduce to two simple configurations: parallel
and series. Two capacitors in series or in parallel can be reduced
to a single equivalent capacitance, and more complicated arrange-
ments can be viewed as combinations of series and parallel capaci-
tors.

4.6.4.1 Parallel Capacitors

Capacitors are manufactured with standard values, and by combin-
ing them in different ways, any non-standard value of capacitance
can be realized. Figure 4.19 shows a parallel arrangement of capac-
itors. The left plate of each capacitor is connected by a wire (black
lines) to the positive terminal of a battery, while the right plate of each capacitor is connected to
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the negative terminal of the battery.ix This means that the capacitors in parallel both have
the same potential difference ∆V across them, the voltage supplied by the battery.

When the capacitors are first connected, electrons leave the positive plates and go to the negative
plates until equilibrium is reached - when the voltage on the capacitors is equal to the voltage of
the battery. The internal (chemical) energy of the battery is the source of energy for this transfer.
In this configuration, both capacitors charge independently, and the total charge stored is the sum
of the charge stored in C1 and the charge stored in C2. We can write the charge on the capacitors
using Equation 4.24:

Q1 = C1∆V

Q2 = C2∆V

Qtotal = Q1 + Q2 = C1∆V + C2∆V = (C1 + C2) ∆V

What this equation shows is that two capacitors in parallel behave as one single capacitor
with a value of C1 +C2. In other words, “capacitors add to each other in parallel.” We call C1+C2

the “equivalent capacitance”, Ceq =C1+C2

Two Capacitors in Parallel:

Ceq = C1 + C2 (4.35)

Three or More Capacitors in Parallel:

Ceq = C1 + C2 + C3 + . . . (4.36)

The key point for capacitors in parallel is that the voltage on each capacitor is the same. One
way to see this is that they are both connected to the battery by the same perfect wires, so they
pretty much have to have the same voltage. This is true in general, as we will find out, so long as
we have perfect textbook wires. It follows readily that the equivalent capacitance of a parallel
combination is always more than either of the individual capacitors.

4.6.4.2 Series Capacitors

Figure 4.20a shows the second simple combination, two capacitors connected in series. For series
capacitors, the magnitude of charge is be the same on all plates. Consider the left-most
plate of C1 and right-most plate of C2 in Figure 4.20. Since they are connected directly to the
battery, they must have the same magnitude of charge, +Q and −Q respectively.

Since the middle two plates (the right plate of C1 and the left plate of C2) are not connected
to the battery at all, together they must have no net charge. On the other hand, the left and right

ixIn circuit diagrams like these, the wires are assumed to be perfect.
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Figure 4.19: (a) A parallel connection of two capaci-
tors to a battery (b) The circuit diagram for the parallel
combination. (c) The potential differences across the ca-
pacitors are the same, and the equivalent capacitance is
Ceq = C1 + C2

Figure 4.20: (a) A series combination of two capaci-
tors. The charges on the capacitors are the same. (b)
Circuit diagram corresponding to (a). The equivalent ca-
pacitance be calculated from the reciprocal relationship,

1
Ceq

= 1
C1

+ 1
C2

plates of the same capacitor have to have the same magnitude of charge, so this means all plates
have a charge of either +Q or −Q stored on them. All of the right plates have charge −Q,
and all the left plates have a charge +Q

Can we reduce this series combination to a single equivalent capacitor, like we did for the parallel
case? Sure, with a little math. A single capacitor equivalent to the series capacitors, Figure 4.20b,
must have a charge of +Q on its right plate, and −Q on its left plate, so the total charge stored is
still ±Q on each plate.. Further, it must have a potential difference equal to that of the battery,
∆V . Using Equation 4.24:

∆V =
Q

Ceq
(4.37)

We can also apply Equation 4.24 to each of the individual capacitors:

∆V1 =
Q

C1
∆V2 =

Q

C2
(4.38)

Conservation of energy requires that all of the potential difference of the battery ∆V be
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“used up” somewhere. Since our wires are assumed to be perfect, the only place the potential
can go is onto the capacitors. Therefore, for the series case the voltage on C1 and C2 must together
total that of the battery:

∆V = ∆V1 + ∆V2 (4.39)

This, combined with Equations 4.37 and 4.38, gives us:

∆V =
Q

Ceq
=

Q

C1
+

Q

C2
(4.40)

Canceling the Q’s, we can come up with the equivalent capacitance for series capacitors:

Two Capacitors in Series:

1
Ceq

=
1
C1

+
1
C2

(4.41)

Three or More Capacitors in Series:

1
Ceq

=
1
C1

+
1
C2

+
1
C3

. . . (4.42)

It follows that the equivalent capacitance of a series combination is always less than
either of the individual capacitors. The key point for capacitors in series is that the charge
on each capacitor is the same, and the same as the charge on the equivalent capacitor.

What to do for more complex combinations of capacitors?

1. Combine capacitors that are in parallel or series in to single equivalent capacitors,
using (4.35) and (4.41).

2. Parallel capacitors all have the same potential difference ∆V across them.

3. Series capacitors all have the same charge Q, which is the same as the charge on
their equivalent capacitor.

4. Redraw the circuit after every combination.

5. Repeat the first two steps until there is only equivalent one capacitor left.

6. Find the charge on this equivalent capacitor using (4.24).

7. Reverse your steps one by one to find the charge and voltage drop on each equiv-
alent capacitor along the way, until you recreate the original diagram.
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4.6.4.3 Example of a complex capacitor combination

The easiest way to see how one can use the rules for series and parallel capacitors to reduce any
complex combination of capacitors to a single equivalent capacitor is by example. For example,
consider the combination of capacitors in Figure 4.21 below.

∆V=15 Volts

+ -

C4

=

+ -

C3 20u

=

+ -
6u 20u

C2

=

+ -
6u 20u

3u20u

(a)

+ -

∆V=15 Volts

C4
=

+ -

C3 20u
=

+ -
6u 20u

C2
=

+ -
6u 20u

3u20u

(b)

Figure 4.21: (a) Reducing the complex combination to a single equivalent capacitor. (b) Working backwards to find the
charge on each capacitor.

Finding the equivalent capacitor First, we notice from Figure 4.21a that the only purely
series or parallel combination to start with is the 20 µF and 3 µF capacitors in series. We can
combine those into an equivalent capacitance, C2, using Equation 4.41:

1
C2

=
1

20 µF
+

1
3 µF

(4.43)

C2 =
1

1
20 µF + 1

3 µF

=
3 · 20
3 + 20

(4.44)

C2 = 2.6 µF (4.45)

Redraw the circuit to reflect this change, and we arrive at the second diagram in Figure 4.21a. Now
we have the equivalent capacitor C2 purely in parallel with the 6 µF capacitor. Using Equation 4.35,
we can combine those two into another equivalent capacitance C3:

C3 = C2 + 6 µF = 8.6 µ F (4.46)

Redraw the circuit, and we arrive at the third diagram in Figure 4.21a. Now we only have C3 in
parallel with 20 µF left, which we can now combine into a final overall equivalent capacitance C4.
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Again using Equation 4.41, we have

1
C4

=
1
C3

+
1

20 µF
or C4 = 6.02 µF (4.47)

So the equivalent capacitance of the four capacitors we started with is about 6 µF.

Finding the charge on each capacitor Now we have to work backwards from our single
equivalent capacitor and deduce the charge and voltage on each individual capacitor, following
Figure 4.21b. First, we know the charge on C4, the equivalent capacitor, once we know the value
of C4 (above) and ∆V (given):

Q4 = C4∆V = (6.02µ F)(15V) = 90.3 µC

Now C3 and the 20 µF are in series. Two series capacitors must both have the same charge but
different voltages. Further, the charge on series capacitors is the same as the charge on the equivalent
capacitor. Therefore, both the 20 µF and C3 have to have the same charge that C4 has. So

Q3 = Q20 µ = Q4 = 90.3 µC

Now we get to the third diagram. We know that the 6 µF and C2 together have Q4 worth of charge.
Parallel capacitors both have the same voltage, but different charges. If we call the voltage on these
two capacitors V , the charge on the 6 µF is 6 µF·V , and the charge on C2 is C2 · V , which gives us
Q4:

Q4 = 90.3 µC = (C2)V + (6 µF)V

Since C2 = 2.6 µF, this gives V = 10.47 Volts, so

Q6 µ = (6 µF)V = 62.9 µC and Q2 = (C2)V = 27.4 µC

Note that the voltage V and the voltage on the lower 20 µF capacitor must together equal the
battery voltage, so the voltage on the lower 20 µF capacitor must be 15.00− 10.47 = 4.53 V. Now
for the last step. You now know the charge on C2, which is the same as the total charge on the
20 µF and 3 µF capacitors. Since they are in series, they both have the same charge, and the both
have to have Q2. Thus Q3 µ =Q20 µ =27.4 µC. We can find the voltage on each by noting that
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V3 µ =
Q3 µ

C3 µ
= 9.13 V and V20 µ =

Q20 µ

C20 µ
= 1.37 V

Further, we know that that V3 µ +V20 µ has to equal the voltage on the equivalent capacitor C2, viz.
10.47 V. So, in the end, the charge on the 20 µF is the same as that on the effective capacitance,
the charge on 20 µF and the 3 µF are the same, and the charge on the 6 µF is about halfway in
between either of those. The charge, capacitance, and voltages are summarized in Table 4.1.

Table 4.1: Equivalent capacitances, charges, and voltages for Figure 4.21.

Capacitor [µF] Charge [µC] Voltage [V]

top 20µ 27.4 1.37
C2 = 2.6 27.4 10.47
C3 = 8.6 90.3 10.47
C4 = 6.02 90.3 15
6µ 63 10.47
3µ 27.4 9.13
lower 20 90 4.53

4.6.5 Capacitors with (non-conducting) stuff inside

Q0

+-

Dielectric

Q0

+-

C0 C0 

(a) (b)
∆V0 ∆V

κ

κ

Figure 4.22: (a) With air between the plates, the voltage across the

capacitor is ∆V0, the capacitance is C0, and the charge is Q0. (b)

With a dielectric inside, the charge is still Q0, but the voltage and

capacitance change.

What if we separate the plates of our par-
allel plate capacitor with something other
than air? As you might expect, this
changes the capacitance. A dielectric is
another name for an insulating material
(like rubber, or most ceramics and plas-
tics). When we put a dielectric between
the plates of our capacitor, the capacitance
increases. If the dielectric totally fills the
region between the plates, the increase is
proportional to a constant κ, the dielectric
constant. We note that sometimes you will
see the dielectric constant is written as εr

rather than κ, but it is the same thing.

Figure 4.22 shows the effect of a di-
electric inserted in a parallel plate capaci-
tor. Without the dielectric, we know that
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132 4.6 Capacitance

∆V0 = Q0/C0. If we now insert the dielectric, the voltage is reduced to:

∆V =
∆V0

κ
=

∆V0

εr
(4.48)

What happens is that part of the potential difference originally across the plates of the capacitor
is now spent on the dielectric itself. Being an insulator, the dielectric can support regions of charge,
unlike a conductor. When it is inserted into the capacitor, the part of the dielectric near the +Q0

plate builds up a partial negative charge in response, and the part near the −Q0 plate builds up a
partial positive charge. This has the effect of “canceling” part of the +Q and −Q charges on the
plates, so the battery supplies more charges to compensate! This goes on until an equilibrium is
reached, and the dielectric can steal no more charge.

In the end, since the dielectric “steals” a bit of extra charge, the capacitor with a dielectric inside
stores more charge than the capacitor without the dielectric. The total amount of charge present,
including the “extra” bit “stolen” by the dielectric, is proportional to κ, so the capacitance of the
new structure is increased by a factor of κ:

C =
Q0

∆V
=

κQ0

∆V0
=

εrQ0

∆V0
(4.49)

For a parallel plate capacitor, this means:

Parallel plate capacitor with a dielectric between the plates:

C = κε0
A

d
= εrε0

A

d
(4.50)

the dielectric increases the capacitance by a factor κ, the dielectric constant. The dielec-
tric constant is also sometimes called εr.

This is not an insignificant effect - the value of κ can range from ∼1 for air to a few thousands –
adding a good dielectric layer can increase the amount of charge stored by hundreds or thousands!
For vacuum, the value is exactly 1, so Equation 4.50 just reduces to Equation 4.26. The value of κ

is always greater than 1 (κ>1), so the capacitance always increases when a dielectric is included.
Why this is true microscopically is treated in the next section. Table 4.2 lists the dielectric constants
for a few common materials.

This trick for making larger capacitors does not work indefinitely. Every dielectric has a “dielec-
tric strength,” the maximum tolerated value of the electric field inside that particular material. If
the electric field inside the dielectric exceeds this value, the dielectric breaks down, which usually
means a spark jumps across (or through) it. Exceeding the dielectric strength is a catastrophic
failure, and usually results in “magic smoke” being released from the device in question.
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4.7 Dielectrics in Electric Fields 133

Table 4.2: Dielectric constants of materials at T0 =20◦C19

Material κ Material κ

Vacuum 1
Air 1.00054 Teflon R© 2.1
Polyethylene 2.25 Paper 3.5
Silicon dioxide 3.7 Pyrex 4.7
Rubber 7 Methanol 30
Silicon 11.68 Water (distilled) 80.1
SrTiO3 310 BaTiO3 ∼ 1000

4.7 Dielectrics in Electric Fields

Somehow or another, dielectrics inside a capacitor are able to dramatically increase the amount of
charge that can be stored and decrease the voltage across the capacitor. Our explanation so far
is that the dielectric itself partly charges, which both increases the amount of charge stored and
decreases the net voltage. How does this work? In order to understand what is really going on, we
have to think a bit about the microscopic nature of the dielectric.
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(a)

Figure 4.23: (a) Atoms and many nuclei have

no net charge separation without an electric field

present. (b) Some “polar” molecules have a per-

manent electric dipole moment. Usually, these

moments are oriented randomly from molecule to

molecule, and the net moment is zero. (c) In an

electric field, non-polar molecules can have an in-

duced dipole moment, due to electrons and nuclei

wanting to move in opposite directions in response

to the field. Permanent dipoles remain bound, but

can move or rotate slightly to align with the elec-

tric field. Either way, an overall dipole moment

results.

The dielectric itself contains a large number of atomic
nuclei and electrons, but overall there are equal numbers
of positive nuclei and electrons to make the dielectric over-
all neutral. We have said that charges in insulators are
not mobile, so electrons and nuclei remain bound. What,
then, are the induced charges in the dielectric? Despite
being bound, both electrons and nuclei in a dielectric can
move very slightly without breaking their bonds. Elec-
trons will attempt to move in the direction opposite the
electric field between the plates, and nuclei will attempt
to move in the opposite direction. As a result, tiny dipoles
are formed inside the dielectric, which will be aligned
along the direction of the electric field (see Figure 4.23).
Random thermal motion of the atoms or molecules will
limit the degree of alignment to an extent. In most ma-
terials the degree of alignment and the induced dipole
strength are directly proportional to the external electric
field. Essentially, an electric field induces a charge separation within the atom or molecule.

Some molecules have a natural charge separation or dipole moment already built in, so-called
polar molecules such as water or CO2. In these kinds of dielectrics, the built-in dipole moments
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134 4.7 Dielectrics in Electric Fields

are usually randomly aligned, and cancel each other out overall. An electric field exerts a torque
on the dipoles, which tries to orients them along the electric field. Once again, random thermal
motion works against this alignment, but the overall effect of the electric field is a net alignment,
the degree of which is proportional to the applied electric field. Thus, in both polar and non-polar
dielectrics, there is a net orientation of dipoles when an electric field is applied. The net dipole
strength is far stronger in polar materials, and in the rest of the discussion below we will assume
that our dielectric is made of polar molecules.

Now, what happens when we place our dielectric between two conducting plates? With no
voltage applied between the plates, there is no electric field, and the tiny dipoles are randomly
oriented, Fig. 4.24b. Once a voltage is applied to the plates, a constant electric is created between
them, which serves to align the dipoles, Fig. 4.24c. The net alignment of dipoles within a dielectric
leads to the surfaces of the dielectric being slightly charged, Fig. 4.24. Within the bulk of the
dielectric, dipoles will be aligned head-to-tail, and their electric fields will mostly cancel (Fig. 4.24a).
At the surfaces of the dielectric, however, there will be an excess of positive charge on one side, and
an excess of negative charge on the other. In this situation, the dielectric is said to be polarized.
The dielectric is still electrically neutral on the whole, an equal number of positive and negative
charges still exist, they have only separated due to the applied electric field.

+
-

+
-

+

-

+-

+ -

+

-

+ + + + + + + + + + 

+

-
+

-
+

-
+

-
+

-
+

-

- - - - - - - - - -

+ + + + + + + + + + 

- - - - - - - - - -

!Eplates+

-

+

-

+
-

+
-

!Edipoles

Figure 4.24: (a) When no voltage is applied between the

plates, the polar molecules align randomly, and there is no net

dipole moment. (b) A voltage applied across the plates creates

an electric field, which aligns the molecules. (c) The electric

field from the voltage applied across the plates is partially can-

celed by the field due to the aligned dipoles.

These surface charges from the aligned
dipoles look just like sheets of charge, in fact.
This is the origin of our earlier statement that
the dielectric picks up an induced charge on
its surface – the part of the dielectric near the
positive plate does build up a partial negative
charge, and the part near the negative plate
does build up a partial positive charge. What
we missed in our initial analysis was the fact
that in reality we are aligning charges through-
out the dielectric, even though only the surfaces
have a net charge. Not only are we storing en-
ergy in the surface charges, we are also storing
energy by creating the aligned configuration of

the dipoles! It took energy to orient them, so keeping them aligned is in a sense storing energy for
later release. In a sense, we actually store energy in the whole volume of the dielectric, not just at
the surfaces.

The electric field due to these effective sheets of charge is opposite that of the applied electric
field, and thus the total electric field – the sum of the applied and induced field – is smaller than
if there were no dielectric. Thus, the dielectric reduces both the applied voltage and the electric
field. The electric field due to the oriented dipoles inside the dielectric is usually proportional to

Dr. LeClair PH 102 / Fall 2007



4.7 Dielectrics in Electric Fields 135

the total electric field they experience:

Edipoles = χEEtotal (4.51)

where the constant of proportionality χE is called the electric susceptibility. It represents the relative
strength of the dipoles within the material, or more accurately, how easily a material polarizes in
response to an electric field. The total electric field the dipoles experience is not just the field due
to voltage applied across the plates, but must also include the field of all the other dipoles as well:

Etotal = Eplates − Edipoles (4.52)

Etotal = Eplates − χEEtotal (4.53)

(1 + χE)Etotal = Eplates (4.54)

=⇒ Etotal =
1

1 + χE
Eplates (4.55)

Thus, the field inside the plates is reduced by a factor 1
1+χE

by the presence of the dielectric (χE

is always positive). We already know that for a parallel plate capacitor, ∆V =Ed, where d is the
spacing between the plates, so we can also readily find the effect of the dielectric on the voltage
between the plates:

∆Vtotal =
1

1 + χE
Eplatesd =

1
1 + χE

∆V0 =
∆V0

κ
(4.56)

here we again use ∆V0 for the voltage on the plates without the dielectric. This result agrees
precisely with Eq. 4.48, if we make the substitution κ=1+χE , as we have in the last term in the
equation above. We can go further and calculate the capacitance, just as we did for Eq. 4.50:

C = (1 + χE)ε0
A

d
= κε0

A

d
= κC0 (4.57)

where C0 is the capacitance without the dielectric present. Thus, our “dielectric constant” is
simply related to the dielectric susceptibility, the ability of the dielectric to polarize in response to
an electric field. This makes sense in a way – the more easily polarized the dielectric, the more
easily it affects the capacitance. Also, since κ=1 for vacuum, χE =0, which also makes sense as the
vacuum is not polarizable (so far as we know). The result we obtain using this more sophisticated
model is exactly the same as earlier, but now we have a plausible microscopic origin for the effect
of dielectrics in capacitors, and we know why the electric field and voltage are reduced, and the
capacitance increased.
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4.8 Quick Questions

1. Capacitors connected in parallel must always have the same:

© Charge

© Potential difference

© Energy stored

© None of the above

2. An ideal parallel plate capacitor is completely charged up, and then disconnected from a
battery. The plates are then pulled a small difference apart. What happens to the capacitance,
C, and charge stored, Q, respectively?

© decreases; increases

© increases; decreases

© decreases; stays the same

© stays the same; decreases

3. An isolated conductor has a surface electric potential of 10Volts. An electron on the surface
is moved by 0.1 m. How much work must be done to move the charge? (e is the electron charge.)

© 1e Joules

© 0.1e Joules

© 10e Joules

© 0

4. An electron initially at rest is accelerated through a potential difference of 1 V, and gains
kinetic energy KEe. A proton, also initially at rest, is accelerated through a potential difference
of −1 V, and gains kinetic energy KEp. Which of the following must be true?

© KEe < KEp

© KEe = KEp

© KEe > KEp

© not enough information

5. A parallel plate capacitor is shrunk by a factor of two in every dimension – the separation
between the plates, as well as the plates’ length and width are all two times smaller. If the
original capacitance is C0, what is the capacitance after all dimensions are shrunk?

© 2C0

© 1
2C0

© 4C0

© 1
4C0
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6. The figure at right shows the equipo-
tential lines for two different configura-
tions of two charges (the charges are the
solid grey circles). Which of the following
is true?

© The charges in (a) are of the same sign
and magnitude, the charges in (b) are of the
same sign and different magnitude.
© The charges in (a) are of opposite sign and

of the same magnitude, the charges in (b) are of
the opposite sign and different magnitude.
© The charges in (a) are of the same sign

and magnitude, the charges in (b) are of the
opposite sign and the same magnitude.
© The charges in (a) are of the opposite sign

and different magnitude, the charges in (b) are
of the same sign and different magnitude.

(a)

(b)

7. A capacitor with air between its plates is charged to 120V and then disconnected from the
battery. When a piece of glass is placed between the plates, the voltage across the capacitor
drops to 30V. What is the dielectric constant of the glass? (Assume the glass completely fills
the space between the plates.)

© 4

© 2

© 1/4

© 1/2
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4.9 Problems

1. Electrons in a TV tube are accelerated from rest through a potential difference of 2.00×104 V
from an electrode towards the screen 25.0 cm away. What is the magnitude of the electric field,
if it assumed to be constant over the whole distance? You may assume that the electron moves
parallel to the electric field at all times.

2. A proton moves 1.5 cm parallel to a uniform electric field of E =240 N/C. How much work
is done by the field on the proton?

3. It takes 3×106 J of energy to fully recharge a 9 V battery. How many electrons must be
moved across the 9 V potential difference to fully recharge the battery?

4. What is the effective capacitance of the four ca-
pacitors shown at right? 6uF 20uF

3uF20uF

5. Calculate the speed of a proton that is accelerated from rest through a potential difference
of 104V.

6. A proton at rest is accelerated parallel to a uniform electric field of magnitude 8.36 V/m
over a distance of 1.10 m. If the electric force is the only one acting on the proton, what is its
velocity in km/s after it has been accelerated over 1.10 m?

q1

q1 q3

x

1.0 m

q2

2.0 m

+ +-

7. Three charges are positioned along the
x axis, as shown at left. All three charges
have the same magnitude of charge, |q1|=
|q2|= |q3|= 10−9 C (note that q2 is nega-
tive though). What is the total potential
energy of this system of charges? We de-
fine potential energy zero to be all charges
infinitely far apart.

8. Two identical point charges +q are located on the y axis at y=+a and y=−a. What is the
electric potential for an arbitrary point (x,y)?
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6µF

14µF3µF 7µF

20µF

ΔV
- +

9. What is the equivalent capacitance for the five capac-
itors at left (approximately)?

+ Q + Q- 2Q

x

y

(-d,0) (d,0)

10. The charge distribution shown is re-
ferred to as a linear quadrupole. What is
the electric potential at a point on the y
axis?

q1 q31.0 m

q2

+ +

- © 11. Three charges are arranged in an
equilateral triangle, as shown at left. All
three charges have the same magnitude of
charge, |q1| = |q2| = |q3| = 10−9 C (note
that q2 is negative though). What is the
total potential energy of this system of
charges? Take the zero of potential energy
to be when all charges are infinitely far
apart.

κ

κ

(a) (b) © 12. A parallel plate capacitor has a
capacitance C when there is vacuum be-
tween the plates. The gap between the
plates is half filled with a dielectric with
dielectric constant κ in two different ways,
as shown below. Calculate the effective
capacitance, in terms of C and κ, for both
situations. Hint: try breaking each situa-
tion up into two equivalent capacitors.
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4.10 Solutions to Quick Questions

1. Potential difference.

2. Decreases; stays the same. The capacitance of a parallel plate capacitor is C = ε0A
d . If we

pull the plates apart and increase the spacing d, the capacitance decreases. Nothing happens to
the charges already on the plates if the capacitor is disconnected, though – they have no where
to go!

3. 0. The charge is moved along the surface of the conductor, which is always at the same
electric potential. Since the charge has moved through no net potential difference, no work has
been done.

4. KEe = KEp. All of the potential energy gained by the proton and electron has to be
converted into kinetic energy, and both particles lose the same potential energy by moving
through the potential difference. Both particles have equal but opposite charges and move
through equal and opposite potential differences – since the negatively charged electron moves
through a positive potential difference, and the positively charged proton moves through a
negative potential difference, the net loss of potential energy q∆V is the same. Therefore, the
amount of kinetic energy gained by each particle is the same. Since both particles started at
rest, their resulting kinetic energies have to be the same. The velocity of the electron will be
much greater, however, owing to its smaller mass – recall that kinetic energy is 1

2mv2.

5. 1
2C0. The capacitance of a parallel plate capacitor whose plates have an area A and a

separation d is C = ε0A
d . If we imagine the plates to be rectangular of length l and width w,

the area A is A = lw. Let the capacitance of the capacitor be C0 = ε0lw
d before dimensions are

shrunk. Once we reduce the length, width, and separation by two times, we have:

C =
ε0

(
1
2 l

) (
1
2w

)(
1
2d

) =
ε0

1
2 lw

d
=

1
2
C0

It is easy to prove that if we chose, e.g., circular plates, the answer would be the same – for
any reasonable shape, the area goes down as the square of the dimensional decrease, while the
separation just goes down as the factor itself.

6. This is probably another question most easily answered by elimination. In (a), the charges
are clearly of the same magnitude, since the graph is perfectly symmetric, while in (b) the
charges must be of different magnitude to explain the asymmetric graph. Therefore, the third
answer cannot be correct.

In (a), the potential is constant along a vertical line separating the two charges (since there is
a perfectly vertical line running halfway between the charges). This would only be true if they
are of opposite signs. If the charges were of the same sign, there would be equipotential lines
running horizontally from charge to charge. Similarly, the charges must also be of opposite sign
in (b). This also rules out the first answer.
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Based on similarity of (a) and (b), it must be that if (a) has charges of opposite magnitude,
then so does (b). This also means that the fourth answer is out, which leaves only the second
answer as a possibility. If you are still not clear on why the correct answer must be the second
one, you may want to look carefully at the examples of equipotential lines in different situations
presented in this chapter.

7. 4. Without the piece of glass, our capacitor has a value we’ll call C. The charge stored on
the capacitor is Q = CV = 120C when the initial voltage is Vinitial = 120 V. The piece of glass
acts as a dielectric, which increases the capacitance to κC (κ is always greater than 1).

Since the battery was disconnected, after inserting the piece of glass the total amount of charge
Q stays the same - there is no source for additional charge to enter the capacitor. Now, however,
the voltage Vfinal is less and the capacitance is more. We can set the initial amount of charge
before inserting the glass equal to the final charge after inserting the glass, and solve for κ:

Q = CVinitial = κCVfinal

or �CVinitial = κ�CVfinal

=⇒ Vinitial = κVfinal

κ =
Vinitial

Vfinal
=

120
30

= 4

4.11 Solutions to Problems

1. 8.00 × 104 V/m. In a constant electric field, the electric field, potential difference and
displacement are related by:

∆V = −|~E||∆~x| cos θ (4.58)

Since the displacement and electric field are parallel everywhere, θ=0, and we have just ∆V =
E∆x. We have a potential difference ∆V =2×104 V developed over a displacement of ∆x=25 cm
(0.25 m). Plugging in the numbers:

∆V = −E∆x (4.59)
2× 104 V = −E (0.25 m) (4.60)

=⇒ E = −2× 104 V
0.25 m

= −8.00× 104 V/m (4.61)

Since we want only the magnitude of the electric field, it is sufficient to write 8.00× 104 V/m.

2. 5.8 × 10−19 J The work done in moving a single charge through a constant electric field is
given by:

W = qEx∆x (4.62)

where Ex is the component of the electric field parallel to the displacement. In this case,
the displacement is always parallel to the electric field, so Ex is just the total field and ∆x
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the displacement. Now we just plug in the numbers, remembering to put the displacement in
meters:

W = qE∆x (4.63)
=

(
1.6× 10−19 C

)
(240 N/C) (0.015 m) (4.64)

≈ 5.8× 10−19 N ·m = 5.8× 10−19 J (4.65)

In the last line we used the fact that one Joule is defined to be one Newton times one meter.

3. 2×1024 electrons. The energy required to charge the battery is just the amount that the
potential energy of all the charges changes by. Each electron is moved through 9 V, which means
each electron changes its potential energy by −e · 9 V, where e is the charge on one electron.
The total potential energy is the potential energy per electron times the number of electrons,
n. Basically, this is conservation of energy: the total energy into the battery has to equal the
amount of energy to move one electron across 9 V times the number of electrons.

∆Ein + ∆PE = 0
3.6× 106 J + n(−e · 9 V) = 0

ne · 9 V = 3.6× 106 J

n =
3.6× 106 J

e · 9 V

=
3.6× 106 J

(1.6× 10−19 C) (9V)

=
3.6× 106

(1.6× 10−19) (9)
≈ 2× 1024

Here we make use of the fact that Coulombs times Volts is Joules. As usual, if you just use
proper SI units throughout, the units will work out on their own.

4. 6.02 µF. See page 129, this is the same capacitor layout!

5. 1.41 × 105 m/s. When the proton is accelerated through a potential difference ∆V , it loses
a potential energy of e∆V , which is converted into kinetic energy. We only need to apply
conservation of energy, noting that the proton started at rest, and choosing our zero of potential
energy such that the final potential energy is zero:
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Einitial = Efinal

KEinitial + PEinitial = KEfinal + PEfinal

0 + q∆V =
1
2
mpv

2
f + 0

=⇒ v2
f =

2q∆V

mp

vf =

√
2q∆V

mp
=

√
2 · 1.6× 10−19 C · 104 V

1.67× 10−27 kg

≈ 1.41× 10−5 [C ·V/kg]
1
2

= 1.41× 10−5 [J/kg]
1
2 = 1.41× 10−5

[
kg ·m2/s2 · kg

] 1
2

= 1.41× 10−5 m/s

The units are a bit tricky here, but remember that if you keep everything in proper SI units from
the start, they will always work out ok. Remember from the definition of electrical potential
that one Volt is equal to one Joule per Coulomb, 1 V=1 J/C – it then follows that 1C ·V=1 J.

6. 42.0 km/s. Of course, 42 is the answer to life, the universe, and everything.x

Anyway. The proton starts from rest, and hence has no kinetic energy. It is accelerated by
an electric field, and thus gains kinetic energy. The kinetic energy gained must come from the
electric field. A charge q moving parallel to a constant electric field E over a distance ∆x changes
its potential energy by:

∆PE = qE∆x

The charge on a proton is just +e, and E and ∆x are given. The change in kinetic energy is
just the final kinetic energy of the proton, since it started from rest. The gain in kinetic energy
must equal the change in potential energy:

∆PE = PEinitial − PEfinal = −∆KE = − (KEinitial −KEfinal)

eE∆x− 0 = −
(

0− 1
2
mpv

2
final

)
eE∆x =

1
2
mpv

2
final

=⇒ v2
final =

2eE∆x

mp

vfinal =

√
2eE∆x

mp

Plugging in what we are given ...

xFrom Hitchhiker’s Guide to the Galaxy ... there are often nerd jokes on physics exams.
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vfinal =

√
2 (1.6× 10−19 C) (8.36 V/m) (1.10 m)

1.67× 10−27 kg

≈ 42000
√

C ·V/kg

= 42000
√

J/kg

= 42000

√
kg ·m2

s2 · kg

= 42 km/s

Making absolutely sure that the units work out, one should note that Coulombs times Volts is
Joules, or kg·m2/s2. If you always use proper SI units, it will work out though, and you won’t
have to remember lots of unit conversions.

7. The potential energy of a system of charges can be found by superposition, by adding
together the potential energy of all unique pairs of charges. In this case, we have three distinct
pairs of charges – (1,2), (1,3), and (2,3). The potential energy of the pair (1,2) is the electric
potential that charge 2 feels due to charge 1, times charge 2:

PE(1,2) = keq2
q1

r2
12

= ke
q1q2

r2
12

Here r12 is the separation between charges 1 and 2, or just 1.0 m in this case. We do the same
for the other two pairs of charges, and add all three energies together (being very careful with
signs):

PEtotal = PE(1,2) + PE(1,3) + PE(2,3)

= ke
q1q2

r12
+ ke

q1q3

r13
+ ke

q2q3

r23

= ke

(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
=

(
9× 109 N ·m2

C2

) [(
−10−9 C

) (
10−9 C

)
1 m

+

(
10−9 C

) (
10−9 C

)
3 m

+

(
−10−9 C

) (
10−9 C

)
2 m

]

=
(

9× 109 N ·m2

C2

) (
10−18 C2

m

) [
−1 +

1
3
− 1

2

]
=

(
9× 10−9 N ·m

) [
−7
6

]
≈ −1.1× 10−8 J

Here we used the fact that a 1 J≡1 N ·m.

8. keq√
x2+(a−y)2

+ keq√
x2+(a+y)2

. For this one, it is perhaps easier to draw ourselves a picture:

We will label the upper charge 1, and the lower charge 2. The principle of superposition tells
us that we only need to find the potential at point (x, y) due to each separately, and then add
the results together. First, we focus on charge 1, located at (0, a). First, we need the distance
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+ q

+ q

x

y

(0,-a)

(0,a)
(x,y)

d1

d2

d1 from charge 1 to the point (x, y). The horizontal distance is just x, and the vertical distance
has to be a−y. Therefore,

d1 =
√

x2 + (a− y)2 (4.66)

The potential due the first charge, which we’ll call V1 is then found from Eq. 4.14:

V1 =
keq

d1
=

keq√
x2 + (a− y)2

(4.67)

The potential due to the second charge at (0,−a) is found in an identical manner, only noting
that the vertical distance is now a+y:

d2 =
√

x2 + (a + y)2 (4.68)

V2 =
keq

d2
=

keq√
x2 + (a + y)2

(4.69)

Finally, since potential is a scalar quantity (it has only magnitude, not direction), the super-
position principle tells us that the total electric potential at point (x, y) is just the sum of the
individual potentials due to charges 1 and 2:

Vtot = V1 + V2 =
keq√

x2 + (a− y)2
+

keq√
x2 + (a + y)2

(4.70)

Without resorting to approximations, there isn’t really a much more aesthetically pleasing form
for this one.

9. First of all, we should notice that the 7µF capacitor has nothing connected to its right wire,
so it can’t possibly be doing anything in this circuit. We can safely ignore it. Next, the 3 µF
and 14 µF capacitors are simply in series, so we can readily find their equivalent capacitor:
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Ceff,3&14 =
(3 µF)(14 µF)

(3 µF) + (14µF)
≈ (2.65 µF)

This 2.65 µF effective capacitor is purely in parallel with the 6µF capacitor. We can therefore
just add the two capacitances together and come up with an equivalent capacitance for the 3,
14, and 6 µF capacitors:

Ceff,3,14,&6 = Ceff,3&14 + 6 µF = 8.65 µF

Finally, that equivalent capacitance is just in series with the 20µF capacitor, so the overall
equivalent capacitance is readily found:

Ceff, total =
Ceff,3,14,&620 µF

Ceff,3,14,&6 + 20 µF
≈ 6 µF

10. Once again, we can simply use the principle of superposition. The total electric potential
at any point is just the sum of the electric potentials due to each point charge. We’ll label the
charges 1-3 from left to right, and calculate the potential due to each first.

If we take an arbitrary point on the y axis (0, y), what is the distance to charge 1? The vertical
distance will always be just y, and the horizontal distance is just d. Therefore, the distance d1

to the first charge is:

d1 =
√

d2 + y2 (4.71)

The electric potential V1 due to charge 1, +Q, is then found from Eq. 4.14:

V1 =
keQ

d1
=

keQ√
d2 + y2

(4.72)

The distance to charge 2 is simply y, since it is also located on the y axis. The electric potential
V2 due to charge 2 is then:

V2 =
−2keQ

y
(4.73)

Finally, the distance to charge 3 is just the same as the distance to charge 1. Since both charges
also have the same magnitude, V1 = V3. The total potential at a point (0, y) is then just the
sum of the potentials from all three individual charges:
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Vtot = V1 + V2 + V3 (4.74)

=
keQ

d1
=

keQ√
d2 + y2

+
−2keQ

y
+

keQ

d1
=

keQ√
d2 + y2

(4.75)

=
2keQ√
d2 + y2

+
−2keQ

y
(4.76)

= 2keQ

[
1√

d2 + y2
− 1

y

]
(4.77)

11. −9 µJ. The potential energy of a system of charges can be found by calculating the potential
energy for every unique pair of charges and adding the results together. In this case, we have
three unique pairings: charges 1 and 2, charges 2 and 3, and charges 1 and 3:

PE = PE1&2 + PE2&3 + PE1&3 (4.78)

= ke

(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
(4.79)

Here r12 is the distance between charge 1 and 2, and so on. Since we have an equilateral triangle,
all distances are 1m. Since all charges are equal in magnitude, we can simplify this quite a bit
once we plug in what we know - we just need to keep track of the signs of the charges:

PEtotal = ke

(
q1q2

r12
+

q1q3

r13
+

q2q3

r23

)
=

(
9× 109 N ·m2

C2

) [(
10−9 C

) (
−10−9 C

)
1 m

+

(
10−9 C

) (
10−9 C

)
1 m

+

(
−10−9 C

) (
10−9 C

)
1 m

]

=
(

9× 109 N ·m2

C2

) (
10−18 C2

m

)
[−1 + 1− 1]

=
(
9× 10−9 N ·m

)
[−1]

≈ −9× 10−9 J

Again, we used the conversion 1 J≡1 N ·m.

12. (a) Dielectric parallel to the plates: Ceff = 2K
1+K C.

It is easiest to think of this as two capacitors in series, both with half the plate spacing - one
filled with dielectric, one with nothing. First, without any dielectric, we will say that the original
capacitor has plate spacing d and plate area A. The capacitance is then:

C0 =
ε0A

d
(4.80)

The upper half capacitor with dielectric then has a capacitance:

Cd =
Kε0A

d/2
=

2Kε0A

d
= 2KC0 (4.81)
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The half capacitor without then has

Cnone =
ε0A

d/2
=

2ε0A

d
= 2C0 (4.82)

Now we just add the two like capacitors in series:

1
Ceff

=
1

2KC0
+

1
2C0

(4.83)

Ceff =
4KC2

0

2KC0 + 2C0
(4.84)

=
2K

1 + K
C0 (4.85)

(b) Dielectric “perpendicular” to the plates: Ceff = K+1
2 C.

In this case, we think of the half-filled capacitor as two capacitors in parallel, one filled with
dielectric, one with nothing. Now each half capacitor has half the plate area, but the same
spacing. The upper half capacitor with dielectric then has a capacitance:

Cd =
Kε0

1
2A

d
=

Kε0A

2d
=

1
2
KC0 (4.86)

The half capacitor without then has

Cnone =
ε0

1
2A

d
=

ε0A

2d
=

1
2
C0 (4.87)

Now we just add our parallel capacitors:

Ceff =
1
2
KC0 +

1
2
C0 (4.88)

=
1
2

(K + 1) C0 (4.89)

=
K + 1

2
C0 (4.90)
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