electrostatics

or, electric forces when nothing is moving.

Summarizing the properties of charge:

1. Charge is quantized in units of $|e|=1.6 \times 10^{-19} \mathrm{C}$
2. Electrons carry one unit of negative charge, $-e$
3. Protons carry one unit positive charge, $+e$
4. Objects become charged be gaining or losing electrons, not protons
5. Electric charge is always conserved

Table 3.1: Properties of electrons, protons, and neutrons

Particle	Charge [C]	$[e]$	Mass [kg]
electron $\left(e^{-}\right)$	-1.60×10^{-19}	-1	9.11×10^{-31}
proton $\left(p^{+}\right)$	$+1.60 \times 10^{-19}$	+1	1.67×10^{-27}
neutron $\left(n^{0}\right)$	0	0	1.67×10^{-27}

a) before
charged rubber rod

b) contact
c) after

metal sphere

"Little pieces of tissue paper (or light grains of sawdust) are attracted by a glass rod rubbed with a silk handkerchief (or by a piece of sealing wax or a rubber comb rubbed with flannel)."

- from a random 1902 science book

Table 3.2: Approximate electric field values, in $[\mathrm{N} / \mathrm{C}]$

Source	$\|\overrightarrow{\mathbf{E}}\|$	Source	$\mid \overrightarrow{\mathbf{E} \mid}$
Fluorescent lighting tube	10	Atmosphere (fair weather)	10^{2}
Balloon rubbed on hair	10^{3}	Atmosphere (under thundercloud)	10^{4}
Photocopier	10^{5}	Spark in air	10^{6}
Across a transistor gate dielectric	10^{9}	Near electron in hydrogen atom	10^{11}

2. Three point charges lie along the x axis, as shown at left. A positive charge $q_{1}=15 \mu \mathrm{C}$ is at $x=2 \mathrm{~m}$, and a positive charge of $q_{2}=6 \mu \mathrm{C}$ is at the origin. Where must a negative charge q_{3} be placed on the x-axis between the two positive charges such that the resulting electric force on it is zero?

3. Three point charges lie along the x axis, as shown at left. A positive charge $q_{1}=15 \mu \mathrm{C}$ is at $x=2 \mathrm{~m}$, and a positive charge of $q_{2}=6 \mu \mathrm{C}$ is at the origin. Where must a negative charge q_{3} be placed on the x-axis between the two positive charges such that the resulting electric force on it is zero?

$\sim 0.77 \mathrm{~m}$ from q2
or
~ 1.23 m from qı

(a)

(b)
equal charges

field: $A>B>C$

4. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?
\square a
\square b
$\square \mathrm{c}$
$\square \mathrm{d}$

5. Which set of electric field lines could represent the electric field near two charges of the same sign, but different magnitudes?
\square a
\square b
$\square \mathrm{c}$
$\square \mathrm{d}$

6. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of opposite sign and different magnitudes?
\square a
\square b
$\square \mathrm{c}$
$\square \mathrm{d}$

7. Referring again to the figure above, which set of electric field lines could represent the electric field near two charges of opposite sign and different magnitudes?
\square a
\square b
$\square \mathrm{c}$
$\square \mathrm{d}$

amoeba conductor

(a)
(b)

(a)

(b)

(a)
$(++++++++++++++++++++0$
(b)

