electrical energy & capacitance

- today & tomorrow
- first: wrap up Gauss' law
- rest of the week: circuits/current/resistance
- NEXT MON: exam I

multiple choice, cumulative

more details throughout the week

(a)

(b)

r (m)

(c)
$$r_{12} q_{2}$$

$$PE = \frac{k_{e}q_{1}q_{2}}{r_{12}}$$

$$= q_{2}V_{1} = q_{1}V_{2}$$

```
PE = (I due to 2) + (2 due to I)
(E to bring I close to 2)
(E to bring 2 close to I)
```


$$PE = PE_{1\&2} + PE_{2\&3} + PE_{1\&3} = PE_{2\&1} + PE_{3\&2} + PE_{3\&1} = k_e \left(\frac{q_1q_2}{r_{12}} + \frac{q_1q_3}{r_{13}} + \frac{q_2q_3}{r_{23}}\right)$$

$$PE = \frac{1}{2} \sum_{i=1}^{3} \sum_{\substack{j=1\\j\neq i}}^{3} \frac{k_e q_i q_j}{r_i j}$$

$$= \frac{1}{2} \left(\frac{k_e q_2 q_1}{r_{21}} + \frac{k_e q_3 q_1}{r_{31}} + \frac{k_e q_1 q_2}{r_{12}} + \frac{k_e q_3 q_2}{r_{32}} + \frac{k_e q_1 q_3}{r_{13}} + \frac{k_e q_2 q_3}{r_{23}} \right)$$

$$= k_e \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

$$q_1$$

$$r_{13}$$

what is the potential energy of the "crystal"

ways of choosing pairs from five charges
$$=$$
 $\binom{5}{2} = {}^{5}C_{2} = \frac{5!}{2!(5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10$

ways of choosing pairs from five charges
$$=$$
 $\begin{pmatrix} 5 \\ 2 \end{pmatrix} = {}^5C_2 = \frac{5!}{2!(5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10$

$$(1,2)$$
 $(1,3)$ $(1,4)$ $(1,5)$

$$(2,3)$$
 $(2,3)$ $(2,5)$

$$(3,4)$$
 $(3,5)$

ways of choosing pairs from five charges
$$=$$
 $\binom{5}{2} = {}^{5}C_{2} = \frac{5!}{2!(5-2)!} = \frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1} = 10$

$$(1,2)$$
 $(1,3)$ $(1,4)$ $(1,5)$

$$(2,3)$$
 $(2,3)$ $(2,5)$

$$(3,4)$$
 $(3,5)$

#, pairing type	separation				pairs
4, center-corner	$\frac{a}{\sqrt{a}}$	(1,5)	(2,5)	, , ,	(4,5)
4, adjacent corners	$a\sqrt{2}$	(1, 4)	(3, 4)	(2,3)	(1,2)
2, far corner	2a			(1, 3)	(2, 4)

 $PE_{\text{square}} = 4 \text{ (energy of center-corner pair)} + 2 \text{ (energy of far corner pair)} + 4 \text{ (energy of adjacent corner pair)}$

$$=4\left[\frac{k_eq^2}{a}\right]+2\left[\frac{k_eq^2}{2a}\right]+4\left[\frac{k_eq^2}{a\sqrt{2}}\right]$$

$$=\frac{k_e q^2}{a} \left[4 + 1 + \frac{4}{\sqrt{2}} \right]$$

$$=\frac{k_e q^2}{a} \left[5 + 2\sqrt{2} \right] \approx 7.83 \frac{kq^2}{a}$$

it works for more complicated stuff

(a) Rocksalt

$$M = -1.75$$

$$M = -4.82$$

travel along surface:
E perpendicular to path
everywhere

no work done!

electric force is conservative ...

x, y = spatial coordinates z = electric potential 3d equipotential lines? contours of constant V

no work to move along them (like gravity)

x, y = spatial coordinates potential constant on lines 2d

conductor = mirror for field & potential lines

Circuit diagram symbol for voltage sources:

Batteries:
$$-+$$
 $-$

General constant voltage source: -(+-)

$$W = mg\Delta y$$

(a)

