electrical energy \& capacitance

- today \& tomorrow
- first: wrap up Gauss' law
- rest of the week: circuits/current/resistance
- NEXT MON: exam I
multiple choice, cumulative more details throughout the week
(a)
(b)

(a)

(b)

(a)
$(++++++++++++++++++++0$
(b)

$$
\langle
$$

(a)
$V_{2}=\frac{k_{e} q_{2}}{r_{12}}, \ldots-\sigma^{\prime}$

(b)

(c)

$P E=(I$ due to 2$)+(2$ due to $I)$
 (E to bring I close to 2)
 (E to bring 2 close to I)

(c)

$P E=(I$ due to 2$)+(2$ due to $I)$
(E to bring I close to 2)
(E to bring 2 close to I)

$$
P E=P E_{1 \& 2}+P E_{2 \& 3}+P E_{1 \& 3}=P E_{2 \& 1}+P E_{3 \& 2}+P E_{3 \& 1}=k_{e}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)
$$

q_{3}

$$
\begin{aligned}
P E & =\frac{1}{2} \sum_{i=1}^{3} \sum_{\substack{j=1 \\
j \neq i}}^{3} \frac{k_{e} q_{i} q_{j}}{r_{i} j} \\
& =\frac{1}{2}\left(\frac{k_{e} q_{2} q_{1}}{r_{21}}+\frac{k_{e} q_{3} q_{1}}{r_{31}}+\frac{k_{e} q_{1} q_{2}}{r_{12}}+\frac{k_{e} q_{3} q_{2}}{r_{32}}+\frac{k_{e} q_{1} q_{3}}{r_{13}}+\frac{k_{e} q_{2} q_{3}}{r_{23}}\right) \\
& =k_{e}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)
\end{aligned}
$$

what is the potential energy of the "crystal"

$+q$
we just have to sum the energy of all unique pairs of charges.

4 so how many are there?
we just have to sum the energy of all unique pairs of charges.

4 so how many are there?
ways of choosing pairs from five charges $=\binom{5}{2}={ }^{5} C_{2}=\frac{5!}{2!(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=10$
we just have to sum the energy of all unique pairs of charges. so how many are there?
ways of choosing pairs from five charges $=\binom{5}{2}={ }^{5} C_{2}=\frac{5!}{2!(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=10$

$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
$(2,3)$	$(2,3)$	$(2,5)$	
$(3,4)$	$(3,5)$		
$(4,5)$			

we just have to sum the energy of all unique pairs of charges.

so how many are there?

ways of choosing pairs from five charges $=\binom{5}{2}={ }^{5} C_{2}=\frac{5!}{2!(5-2)!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{2 \cdot 1 \cdot 3 \cdot 2 \cdot 1}=10$

$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
$(2,3)$	$(2,3)$	$(2,5)$	
$(3,4)$	$(3,5)$		
$(4,5)$			

\#, pairing type	separation			pairs	
4, center-corner	a	$(1,5)$	$(2,5)$	$(3,5)$	$(4,5)$
4, adjacent corners	$a \sqrt{2}$	$(1,4)$	$(3,4)$	$(2,3)$	$(1,2)$
2, far corner	$2 a$			$(1,3)$	$(2,4)$

$P E_{\text {square }}=4$ (energy of center-corner pair) +2 (energy of far corner pair) +4 (energy of adjacent corner pair)

$$
\begin{aligned}
& =4\left[\frac{k_{e} q^{2}}{a}\right]+2\left[\frac{k_{e} q^{2}}{2 a}\right]+4\left[\frac{k_{e} q^{2}}{a \sqrt{2}}\right] \\
& =\frac{k_{e} q^{2}}{a}\left[4+1+\frac{4}{\sqrt{2}}\right] \\
& =\frac{k_{e} q^{2}}{a}[5+2 \sqrt{2}] \approx 7.83 \frac{k q^{2}}{a}
\end{aligned}
$$

it works for more complicated stuff

$M=-4.82$

travel along surface:
 E perpendicular to path everywhere

no work done!
electric force is conservative ...

equipotential lines?

 contours of constant Vno work to move along them (like gravity)

$x, y=$ spatial coordinates potential constant on lines

2d

$x, y=$ spatial coordinates
$z=$ electric potential 3d

conductor $=$ mirror for field $\&$ potential lines

Circuit diagram symbol for voltage sources:

Batteries: $+{ }^{+} \vdash^{-} \stackrel{+}{+}| |^{-}$
General constant voltage source:

(a)

(b)

(b)

