$\qquad$ Date $\qquad$

## PH 102 Quiz 1: Relativity and so forth

$$
\Delta t^{\prime}=\gamma \Delta t_{p} \quad L^{\prime}=\frac{L_{p}}{\gamma}=L_{p} \sqrt{1-\frac{v^{2}}{c^{2}}} \quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

1. An astronaut traveling at $v=0.80 c$ taps her foot 3.0 times per second. What is the frequency of taps determined by an observer on earth? (Hint: be careful about the difference between time and frequency!)$5.0 \mathrm{taps} / \mathrm{sec}$6.7 taps/sec1.8 taps/sec

○ $3.0 \mathrm{taps} / \mathrm{sec}$
2. A spaceship moves away from earth at high speed. How do experimenters on earth measure a clock in the spaceship to be running? How do those in the spaceship measure a clock on earth to be running?slow; fastslow; slowfast; slowfast; fast
3. If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth?no; yesno; noyes; noyes; yes
4. The period of a pendulum is measured to be 3.00 in its own reference frame. What is the period as measured by an observer moving at a speed of $0.950 c$ with respect to the pendulum?6.00 sec13.4 sec0.938 sec9.61 sec
5. The Stanford Linear Accelerator (SLAC) can accelerate electrons to velocities very close to the speed of light (up to about $0.99999999995 c$ or so). If an electron travels the 3 km length of the accelerator at $v=0.999 c$, how long is the accelerator from the electron's reference frame?134 m67.1 km94.9 m300 m

