PH 102 Quiz 1: Relativity and so forth

$$\Delta t' = \gamma \Delta t_p \qquad \qquad L' = \frac{L_p}{\gamma} = L_p \sqrt{1 - \frac{v^2}{c^2}} \qquad \qquad c = 3.00 \times 10^8 \,\mathrm{m/s} \qquad \qquad \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$

1. An astronaut traveling at v = 0.80c taps her foot 3.0 times per second. What is the frequency of taps determined by an observer on earth? (*Hint: be careful about the difference between time and frequency!*)

- \bigcirc 5.0 taps/sec
- \bigcirc 6.7 taps/sec
- \bigcirc 1.8 taps/sec
- \bigcirc 3.0 taps/sec

2. A spaceship moves away from earth at high speed. How do experimenters on earth measure a clock in the spaceship to be running? How do those in the spaceship measure a clock on earth to be running?

- \bigcirc slow; fast
- \bigcirc slow; slow
- \bigcirc fast; slow
- \bigcirc fast; fast

3. If you are moving in a spaceship at high speed relative to the earth, would you notice a difference in your pulse rate? In the pulse rate of the people back on earth?

- \bigcirc no; yes
- 🔿 no; no
- \bigcirc yes; no
- \bigcirc yes; yes

4. The period of a pendulum is measured to be 3.00 in its own reference frame. What is the period as measured by an observer moving at a speed of 0.950*c* with respect to the pendulum?

- \bigcirc 6.00 sec
- \bigcirc 13.4 sec
- $\bigcirc 0.938 \, {
 m sec}$
- \bigcirc 9.61 sec

5. The Stanford Linear Accelerator (SLAC) can accelerate electrons to velocities very close to the speed of light (up to about 0.9999999995c or so). If an electron travels the 3 km length of the accelerator at v=0.999c, how long is the accelerator from the *electron's* reference frame?

- 134 m
- \bigcirc 67.1 km
- 94.9 m
- \bigcirc 300 m