Name _

PH 102 Quiz 2: Use the Force

$$\vec{\mathbf{F}} = k_e \frac{q_1 q_2}{r_{12}^2} \, \hat{\mathbf{r}}_{12} \qquad k_e = 8.9875 \times 10^9 \, \frac{\mathbf{N} \cdot \mathbf{m}^2}{\mathbf{C}^2} \qquad \vec{\mathbf{E}} = \frac{\vec{\mathbf{F}}}{q_0} \qquad |\vec{\mathbf{E}}| = k_e \frac{|q|}{r^2}$$

- 1. Two charges of $+1 \mu C$ each are separated by 1 cm. What is the force between them?
 - $\bigcirc 0.89 \,\mathrm{N}$
 - $\bigcirc 90 \,\mathrm{N}$
 - \bigcirc 173 N
 - $\bigcirc 15 \,\mathrm{N}$
- 2. The electric field *inside* an isolated conductor is
 - \bigcirc determined by the size of the conductor
 - \bigcirc determined by the electric field outside the conductor
 - \bigcirc always zero
 - $\bigcirc\,$ always larger than an otherwise identical insulator
- 3. Which statement is false?
 - Charge deposited on conductors stays localized
 - Charge distributes itself evenly over a conductor
 - Charge deposited on insulators stays localized
 - \bigcirc Charges in a conductor are mobile, and move in response to an electric force
- 4. Which of the following is true for the electric force, but not the gravitational force?
 - $\bigcirc\,$ The force propagates at a speed of c
 - $\bigcirc\,$ The force acts at a distance without any intervening medium
 - The force between two bodies depends on the square of the distance between them
 - The force between two bodies can be repulsive as well as attractive.

5. Two charges of $+1 \ \mu$ C are separated by 1 cm. What is the magnitude of the electric field halfway between them?

 $\bigcirc 9 \times 10^7 \,\mathrm{N/C}$ $\bigcirc 4.5 \times 10^7 \,\mathrm{N/C}$ $\bigcirc 0$ $\bigcirc 1.8 \times 10^8 \,\mathrm{N/C}$