$\rm PH~102~Quiz~3:~Potential~and~so~forth$

$\Delta V = k_e \frac{q}{r}$	$k_e = 8.9$	$9875 \times 10^9 \frac{1}{2}$	$\frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$	$q\Delta V = PH$	Q =	$C\Delta V$ C	$= \kappa \epsilon_0 \frac{A}{d}$	$e = 1.6 \times 10^{-19}$	C
$C_{ m eq,\ parallel} = C_{ m I}$	$+C_2$	$C_{ m eq, \ series}$ =	$=\frac{C_1C_2}{C_1+C_2}$	$E_C =$	$\frac{1}{2}Q\Delta V =$	$\frac{1}{2}C(\Delta V)^2$	$-W = \Delta$	$PE = -qE_x \Delta x =$	$= q\Delta V$

$C_{\text{eq, parallel}} = C_1 + C_2$ $C_{\text{eq, series}} = \frac{C_1 C_2}{C_1 + C_2}$ $E_C = \frac{1}{2} Q \Delta V = \frac{1}{2} C (\Delta V)^2$ $-W = \Delta P E = -q E_x \Delta x = Q \Delta V$
1. Capacitors connected in parallel <i>must always</i> have the same:
 Charge Potential difference Energy stored None of the above
2. An ideal parallel plate capacitor is completely charged up, and then disconnected from a battery. The plates are then pulled a small difference apart. What happens to the capacitance, C , and charge stored, Q , respectively?
 decreases; increases increases; decreases decreases; stays the same stays the same; decreases
3. An isolated conductor has a surface electric potential of 10 Volts. An electron on the surface is moved by $0.1\mathrm{m}$. How much work must be done to move the charge? Note that e is the charge on an electron.
\bigcirc 1e Joules \bigcirc 0.1e Joules \bigcirc 10e Joules \bigcirc 0
4. An electron initially at rest is accelerated through a potential difference of 1 V, and gains kinetic energy KE_e . A proton, also initially at rest, is accelerated through a potential difference of -1 V, and gains kinetic energy KE_p . Which of the following must be true?
$ \bigcirc KE_e < KE_p $ $ \bigcirc KE_e = KE_p $ $ \bigcirc KE_e > KE_p $ $ \bigcirc \text{ not enough information} $
5. Consider a collection of charges in a given region, and suppose all other charges are distant and have negligible effect. The electric potential is taken to be zero at infinity. If the electric potential at a given point in the region is zero, which of the following statements must be true? (Only one is <i>always</i> true.)
 The electric field is zero at that point. The electric potential energy is a minimum at that point. There is no net charge in the region. Some charges in the region are positive and some are negative.

O The charges have the same sign and are symmetrically arranged around the given point.