\qquad

PH 102 Quiz 5: exam I, redux

1. Two isolated identical conducting spheres have a charge of q and $-3 q$, respectively. They are connected by a conducting wire, and after equilibrium is reached, the wire is removed (such that both spheres are again isolated). What is the charge on each sphere?$q,-3 q$$-q,-q$$0,-2 q$$2 q,-2 q$
2. If the number of carriers in a conductor n decreases by 100 times, but the carriers' drift velocity v_{d} increases by 5 times, by how much does its resistance change?It increases by 20 times.It decreases by 500 times.
\bigcirc It decreases by 20 times.It increases by 500 times.
3. Rank the currents at points $1,2,3,4,5$, and 6 from highest to lowest. The two resistors are identical.

$$
\begin{aligned}
& \bigcirc, 1,3,2,4,6 \\
& 5,3,1,4,2,6 \\
& 5=6,3=4,1=2 \\
& 5=6,1=2=3=4 \\
& 1=2=3=4=5=6
\end{aligned}
$$

4. Refer to the figures at right. What happens to the reading on the ammeter when the switch S is opened? Assume the wires and switch are perfect, and have zero resistance.The reading goes up.The reading goes down.The reading does not change.More information is needed.

switch closed

switch open
5. A current I flows through two resistors in series of values R and $2 R$. The wire connecting the two resistors is connected to ground at point b . Assume that these resistors are part of a larger complete circuit, such that the current I is constant in magnitude and direction. What is the electric potential relative to ground at points a and \mathbf{c}, V_{a} and V_{c}, respectively? Hint: what is the potential of a ground point?
$\bigcirc V_{a}=-I R, V_{c}=-2 I R$
$V_{a}=0, V_{c}=-3 I R$
$V_{a}=+I R, V_{c}=+2 I R$
$V_{a}=+I R, V_{c}=-2 I R$

