\qquad
\qquad

University of Alabama
 Department of Physics and Astronomy

Quiz 1: Relativity and so forth

$\Delta t^{\prime}=\gamma \Delta t_{p} \quad L^{\prime}=\frac{L_{p}}{\gamma} \quad c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s} \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad v_{\mathrm{obj}}=\frac{v+v_{\mathrm{obj}}^{\prime}}{1+\frac{v v_{\mathrm{obj}}^{\prime}}{c^{2}}} \quad v_{\mathrm{obj}}^{\prime}=\frac{v_{\mathrm{obj}}-v}{1-\frac{v v_{\mathrm{obj}}}{c^{2}}} \quad x^{\prime}=\gamma(x-v t)$
$t^{\prime}=\gamma\left(t-\frac{v x}{c^{2}}\right) \quad p=\gamma m v \quad E_{t o t}=\gamma m c^{2}=K E+E_{R} \quad E_{R}=m c^{2} \quad K E=(\gamma-1) m c^{2} \quad E^{2}-(p c)^{2}=\left(m c^{2}\right)^{2} \quad E v=p c^{2}$

1. An airplane 10.0 m long is flying at $300 \mathrm{~m} / \mathrm{s}$. How much shorter will this airplane appear to be to an observer on the ground?
$5 \times 10^{-6} \mathrm{~m}$
$2 \times 10^{-3} \mathrm{~m}$0.1 m
$\bigcirc 5 \mathrm{~m}$
2. An electron in a television picture tube moves with $v=0.250 c$. What is its kinetic energy in electron volts? Note that the rest energy of an electron is $m_{e} c^{2}=0.511 \mathrm{MeV}$0.528 MeV0.511 MeV0.017 MeV0.253 MeV
3. A crew watches a movie that is two hours long in a space-craft that is moving at high speed through space. Will an Earthbound observer, who is watching the movie through a powerful telescope, measure the duration of the movie to be:
\bigcirc Longer than two hours.Shorter than two hours.Equal to two hours.I'd tell you, but that would violate the temporal prime directive.
4. A proton has a mass of $1.67 \times 10^{-27} \mathrm{~kg}$. What is its rest energy in electron volts (eV) ? Note $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$, and M is the metric prefix for 10^{6}.42 MeV313 MeV938 MeV1320 MeV
5. Which one of these things can two observers in different frames not agree on?Their relative speed of motion with respect to each other.The speed of light c.The simultaneity of two events taking place at the same position and same time in some frame.The distance between two points that remain fixed in one of their frames.
