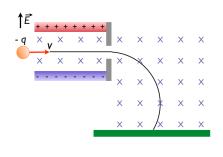
Quiz 6: Magnets and Such

$ \vec{\mathbf{F}}_B = q \vec{\mathbf{v}} \vec{\mathbf{B}} \sin \theta_{vB}$ charge q	$ec{\mathbf{B}} = rac{\mu_0 I}{2\pi r} \hat{\mathbf{ heta}} \mathrm{wire}$
$ \vec{\mathbf{F}}_B = BIl\sin \theta$ wire	$\frac{ \vec{\mathbf{F}}_{12} }{l} = \frac{\mu_0 I_1 I_2}{2\pi d}$ 2 wires, force per length

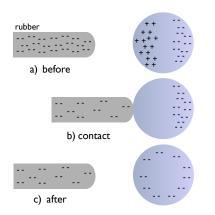

1. Consider a proton moving with a speed of $1 \cdot 10^5$ m/s through the earth's magnetic field ($|\vec{\mathbf{B}}| = 55 \,\mu\text{T}$). When the proton moves east, the magnetic force acts straight upward. When the proton moves northward, no force acts on it. What is the direction of the magnetic field?

- \square North
- \square South
- \square East
- \square West

2. What is the magnitude of the magnetic force in the previous example?

 $\Box 2.2 \cdot 10^{-9} \,\mathrm{N} \\ \Box 6.6 \cdot 10^{-15} \,\mathrm{N}$

- $\square 8.8 \cdot 10^{-19} \,\mathrm{N}$
- $\Box 4.4 \cdot 10^{-13} \,\mathrm{N}$



3. The figure shows a simplified mass spectrometer. Particles with charge q and mass m enter at left with a velocity v, and encounter a region with both an E and B field as shown. What is the relationship between v, B, and E for particles that make it through the aperture in the middle of the detector?

 $\Box EB = v$ $\Box E/B = v$ $\Box E^2/B = v$ $\Box B/E = v$

4. Once the particle enters the second region of the detector from the previous question, it is in a region of magnetic field only. In this region, the particle travels in a circular path. What is the radius of the circle?

 $\Box r = mB/qv$ $\Box r = qvB/m$ $\Box r = qB/mv$ $\Box r = mv/qB$

5. Permanent magnets sticking to a refrigerator door happens because the permanent magnet is able to induce magnetic poles in the steel of the door. This process is analogous to electrically charging objects by *induction*, where a charged object induces opposing charges in a conductor without contact.

Can a process like *conduction*, where a charged object transfers some of its charges to another, happen with magnets? Refer to the figure at left for the analogy.

- \square No, because there are no single magnetic charges.
- \square Yes, but it is a small effect due since $\mu_0 \ll \epsilon_0$
- $\hfill\square$ Yes, this is how permanent magnets become magnetized
- $\hfill\square$ No, because magnetic poles are not mobile.